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1 Introduction

Recall that an ordinary differential equation (ODE) contains an independent variable x and a dependent
variable u, which is the unknown in the equation. The defining property of an ODE is that derivatives
of the unknown function u′ = du

dx
enter the equation. Thus, an equation that relates the independent

variable x, the dependent variable u and derivatives of u is called an ordinary differential equation. Some
examples of ODEs are:

u′(x) = u

u′′ + 2xu = ex

u′′ + x(u′)2 + sinu = lnx

In general, and ODE can be written as F (x, u, u′, u′′, . . . ) = 0.
In contrast to ODEs, a partial differential equation (PDE) contains partial derivatives of the depen-

dent variable, which is an unknown function in more than one variable x, y, . . . . Denoting the partial
derivative of ∂u

∂x
= ux, and ∂u

∂y
= uy, we can write the general first order PDE for u(x, y) as

F (x, y, u(x, y), ux(x, y), uy(x, y)) = F (x, y, u, ux, uy) = 0. (1.1)

Although one can study PDEs with as many independent variables as one wishes, we will be primar-
ily concerned with PDEs in two independent variables. A solution to the PDE (1.1) is a function
u(x, y) which satisfies (1.1) for all values of the variables x and y. Some examples of PDEs (of physical
significance) are:

ux + uy = 0 transport equation (1.2)

ut + uux = 0 inviscid Burger’s equation (1.3)

uxx + uyy = 0 Laplace’s equation (1.4)

utt − uxx = 0 wave equation (1.5)

ut − uxx = 0 heat equation (1.6)

ut + uux + uxxx = 0 KdV equation (1.7)

iut − uxx = 0 Shrödinger’s equation (1.8)

It is generally nontrivial to find the solution of a PDE, but once the solution is found, it is easy to
verify whether the function is indeed a solution. For example to see that u(t, x) = et−x solves the wave
equation (1.5), simply substitute this function into the equation:

(et−x)tt − (et−x)xx = et−x − et−x = 0.

1.1 Classification of PDEs

There are a number of properties by which PDEs can be separated into families of similar equations.
The two main properties are order and linearity.
Order. The order of a partial differential equation is the order of the highest derivative entering the
equation. In examples above (1.2), (1.3) are of first order; (1.4), (1.5), (1.6) and (1.8) are of second
order; (1.7) is of third order.
Linearity. Linearity means that all instances of the unknown and its derivatives enter the equation
linearly. To define this property, rewrite the equation as

Lu = 0, (1.9)

where L is an operator, which assigns u a new function Lu. For example L = ∂2

∂x2
+1, then Lu = uxx+u.

The operator L is called linear if

L(u+ v) = Lu+ Lv, and L(cu) = cLu (1.10)
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for any functions u, v and constant c. The equation (1.9) is called linear, if L is a linear operator. In
our examples above (1.2), (1.4), (1.5), (1.6), (1.8) are linear, while (1.3) and (1.7) are nonlinear (i.e.
not linear). To see this, let us check, e.g. (1.6) for linearity:

L(u+ v) = (u+ v)t − (u+ v)xx = ut + vt − uxx − vxx = (ut − uxx) + (vt − vxx) = Lu+ Lv,

and
L(cu) = (cu)t − (cu)xx = cut − cuxx = c(ut − uxx) = cLu.

So, indeed, (1.6) is a linear equation, since it is given by a linear operator. To understand how linearity
can fail, let us see what goes wrong for equation (1.3):

L(u+v) = (u+v)t+(u+v)(u+v)x = ut+vt+(u+v)(ux+vx) = (ut+uux)+(vt+vvx)+uvx+vux 6= Lu+Lv.

You can check that the second condition of linearity fails as well. This happens precisely due to the
nonlinearity of the uux term, which is quadratic in “u and its derivatives”.

Notice that for a linear equation, if u is a solution, then so is cu, and if v is another solution, then
u+ v is also a solution. In general any linear combination of solutions

c1u1(x, y) + c2u2(x, y) + · · ·+ cnun(x, y) =
n∑
i=1

ciui(x, y)

will also solve the equation.
The linear equation (1.9) is called homogeneous linear PDE, while the equation

Lu = g(x, y) (1.11)

is called inhomogeneous linear equation. Notice that if uh is a solution to the homogeneous equation
(1.9), and up is a particular solution to the inhomogeneous equation (1.11), then uh+up is also a solution
to the inhomogeneous equation (1.11). Indeed

L(uh + up) = Luh + Lup = 0 + g = g.

Thus, in order to find the general solution of the inhomogeneous equation (1.11), it is enough to find
the general solution of the homogeneous equation (1.9), and add to this a particular solution of the
inhomogeneous equation (check that the difference of any two solutions of the inhomogeneous equation
is a solution of the homogeneous equation). In this sense, there is a similarity between ODEs and PDEs,
since this principle relies only on the linearity of the operator L.

1.2 Examples

Example 1.1. ux = 0
Remember that we are looking for a function u(x, y), and the equation says that the partial derivative

of u with respect to x is 0, so u does not depend on x. Hence u(x, y) = f(y), where f(y) is an arbitrary
function of y. Alternatively, we could simply integrate both sides of the equation with respect to x.
More on this in the following examples.

Example 1.2. uxx + u = 0
Similar to the previous example, we see that only the partial derivative with respect to one of the

variables enters the equation. In such cases we can treat the equation as an ODE in the variable in which
partial derivatives enter the equation, keeping in mind that the constants of integration may depend on
the other variables. Rewrite the equation as

uxx = −u,

which, as an ODE, has the general solution

u = c1 cosx+ c2 sinx.
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Since the constants may depend on the other variable y, the general solution of the PDE will be

u(x, y) = f(y) cosx+ g(y) sinx,

where f and g are arbitrary functions. To check that this is indeed a solution, simply substitute the
expression back into the equation.

Example 1.3. uxy = 0
We can think of this equation as an ODE for ux in the y variable, since (ux)y = 0. Then similar to

the first example, we can integrate in y to obtain

ux = f(x).

This is an ODE for u in the x variable, which one can solve by integrating with respect to x, arriving
at at the solution

u(x, y) = F (x) +G(y).

1.3 Conclusion

Notice that where the solution of an ODE contains arbitrary constants, the solution to a PDE contains
arbitrary functions. In the same spirit, while an ODE of order m has m linearly independent solutions, a
PDE has infinitely many (there are arbitrary functions in the solution!). These are consequences of the
fact that a function of two variables contains immensely more (a whole dimension worth) of information
than a function of only one variable.

3



Problem Set 1

1. (#1.1.2 in [Str]) Which of the following operators are linear?

(a) Lu = ux + xuy

(b) Lu = ux + uuy

(c) Lu = ux + u2
y

(d) Lu = ux + uy + 1

(e) Lu =
√

1 + x2(cos y)ux + uyxy − [arctan(x/y)]u

2. (#1.1.3 in [Str]) For each of the following equations, state the order and whether it is nonlinear,
linear inhomogeneous, or linear homogeneous; provide reasons.

(a) ut − uxx + 1 = 0

(b) ut − uxx + xu = 0

(c) ut − uxxt + uux = 0

(d) utt − uxx + x2 = 0

(e) iut − uxx + u/x = 0

(f) ux(1 + u2
x)
−1/2 + uy(1 + u2

y)
−1/2 = 0

(g) ux + eyuy = 0

(h) ut + uxxxx +
√

1 + u = 0

3. Show that cos(x− ct) is a solution of ut + cux = 0.

4. (#1.1.10 in [Str]) Show that the solutions of the differential equation u′′′ − 3u′′ + 4u = 0 form a
vector space. Find a basis of it.

5. (#1.1.11 in [Str]) Verify that u(x, y) = f(x)g(y) is a solution of the PDE uuxy = uxuy for all pairs
of (differentiable) functions f and g of one variable.

6. (#1.1.12 in [Str]) Verify by direct substitution that

un(x, y) = sinnx sinhny

is a solution of uxx + uyy = 0 for every n > 0.

7. Find the general solution of
uxy + ux = 0.

(Hint: first treat it as an ODE for ux).
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2 First-order linear equations

Last time we saw how some simple PDEs can be reduced to ODEs, and subsequently solved using ODE
methods. For example, the equation

ux = 0 (2.1)

has “constant in x” as its general solution, and hence u depends only on y, thus u(x, y) = f(y) is the
general solution, with f an arbitrary function of a single variable. Today we will see that any linear
first order PDE can be reduced to an ordinary differential equation, which will then allow as to tackle
it with already familiar methods from ODEs.

Let us start with a simple example. Consider the following constant coefficient PDE

aux + buy = 0. (2.2)

Here a and b are constants, such that a2 +b2 6= 0, i.e. at least one of the coefficients is nonzero (otherwise
this would not be a differential equation). Using the inner (scalar or dot) product in R2, we can rewrite
the left hand side of (2.2) as

(a, b) · (ux, uy) = 0, or (a, b) · ∇u = 0.

Denoting the vector (a, b) = v, we see that the left hand side of the above equation is exactly Dvu(x, y),
the directional derivative of u in the direction of the vector v. Thus the solution to (2.2) must be
constant in the direction of the vector v = ai + bj.

v = Ha, bL

-5 5
x

-5

5

y

Figure 2.1: Characteristic lines bx− ay = c.

Ξ

Η

Ha, bL
H-b, aL

Hx, yL

Ξ = Hx, yL Ha, bL
Η = Hx, yL H-b, aL

�

-10 -5 5
x

-5

5

y

Figure 2.2: Change of coordinates.

The lines parallel to the vector v have the equation

bx− ay = c, (2.3)

since the vector (b,−a) is orthogonal to v, and as such is a normal vector to the lines parallel to v. In
equation (2.3) c is an arbitrary constant, which uniquely determines the particular line in this family of
parallel lines, called characteristic lines for the equation (2.2).

As we saw above, u(x, y) is constant in the direction of v, hence also along the lines (2.3). The line
containing the point (x, y) is determined by c = bx− ay, thus u will depend only on bx− ay, that is

u(x, y) = f(bx− ay), (2.4)

5



where f is an arbitrary function. One can then check that this is the correct solution by plugging it
into the equation. Indeed,

a∂xf(bx− ay) + b∂yf(bx− ay) = abf ′(bx− ay)− baf ′(bx− ay) = 0.

The geometric viewpoint that we used to arrive at the solution is akin to solving equation (2.1) simply
by recognizing that a function with a vanishing derivative must be constant. However one can approach
equation (2.2) from another perspective, by trying to reduce it to an ODE.

2.1 The method of characteristics

To have an ODE, we need to eliminate one of the partial derivatives in the equation. But we know that
the directional derivative vanishes in the direction of the vector (a, b). Let us then make a change of the
coordinate system to one that has its “x-axis” parallel to this vector, as in Figure 2. In this coordinate
system

(ξ, η) = ((x, y) · (a, b), (x, y) · (b,−a)) = (ax+ by, bx− ay).

So the change of coordinates is {
ξ = ax+ by,
η = bx− ay. (2.5)

To rewrite the equation (2.2) in this coordinates, notice that

ux = uξ
∂ξ

∂x
+ uη

∂η

∂x
= auξ + buη,

uy = uξ
∂ξ

∂y
+ uη

∂η

∂y
= buξ − auη.

Thus,
0 = aux + buy = a(auξ + buη) + b(buξ − auη) = (a2 + b2)uξ.

Now, since a2 + b2 6= 0, then, as we anticipated,

uξ = 0,

which is an ODE. We can solve this last equation just as we did in the case of equation (2.1), arriving
at the solution

u(ξ, η) = f(η).

Changing back to the original coordinates gives u(x, y) = f(bx− ay). This is the same solution that we
derived with the geometric deduction. This method of reducing the PDE to an ODE is called the method
of characteristics, and the coordinates (ξ, η) given by formulas (2.5) are called characteristic coordinates.

Example 2.1. Find the solution of the equation 3ux − 5uy = 0 satisfying the condition u(0, y) = sin y.
From the above discussion we know that u will depend only on η = −5x−3y, so u(x, y) = f(−5x−3y).

The solution also has to satisfy the additional condition (called initial condition), which we verify by
plugging in x = 0 into the general solution.

sin y = u(0, y) = f(−3y).

So f(z) = sin(− z
3
), and hence u(x, y) = sin

(
5x+3y

3

)
, which one can verify by substituting into the

equation and the initial condition.
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2.2 General constant coefficient equations

We can easily adapt the method of characteristics to general constant coefficient linear first-order equa-
tions

aux + buy + cu = g(x, y). (2.6)

Recall that to find the general solution of this equation it is enough to find the general solution of the
homogeneous equation

aux + buy + cu = 0, (2.7)

and add to this a particular solution of the inhomogeneous equation (2.6). Notice that in the charac-
teristic coordinates (2.5), equation (2.7) will take the form

(a2 + b2)uξ + cu = 0, or uξ +
c

a2 + b2
u = 0,

which can be treated as an ODE in ξ. The solution to this ODE has the form

uh(ξ, η) = e
− c
a2+b2

ξ
f(η),

with f again being an arbitrary single-variable function. Changing the coordinates back to the original
(x, y), we will obtain the general solution to the homogeneous equation

uh(x, y) = e
− c(ax+by)

a2+b2 f(bx− ay).

You should verify that this indeed solves equation (2.7).
To find a particular solution of (2.6), we can use the characteristic coordinates to reduce it to the

inhomogeneous ODE

(a2 + b2)uξ + cu = g(ξ, η), or uξ +
c

a2 + b2
u =

g(ξ, η)

a2 + b2
.

Having found the solution to the homogeneous ODE, we can find the solution to this inhomogeneous
equation by e.g. variation of parameters. So the particular solution will be

up = e
− c
a2+b2

ξ

ˆ
g(ξ, η)

a2 + b2
e

c
a2+b2

ξ
dξ.

The general solution of (2.6) is then

u(ξ, η) = uh + up = e
− c
a2+b2

ξ

(
f(η) +

ˆ
g(ξ, η)

a2 + b2
e

c
a2+b2

ξ
dξ

)
.

To find the solution in terms of (x, y), one needs to first carry out the integration in ξ in the above
formula, then replace ξ and η by their expressions in terms of x and y.

Example 2.2. Find the general solution of −2ux + 4uy + 5u = ex+3y.
The characteristic change of coordinates for this equation is given by{

ξ = −2x+ 4y,
η = 4x+ 2y.

From these we can also find the expressions of x and y in terms of (ξ, η). In particular notice that
x+ 3y = ξ+η

2
. In the characteristic coordinates the equation reduces to

20uξ + 5u = e
ξ+η
2 .
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The general solution of the homogeneous equation associated with the above equation is

uh = e−
1
4
ξf(η),

and the particular solution will be

up = e−
1
4
ξ

ˆ
e
ξ+η
2

20
e

1
4
ξ dξ = e−

1
4
ξ · 1

15
e
η
2 e

3
4
ξ = e−

1
4
ξ · 1

15
e

1
4

(3ξ+2η).

Adding these two will give the general solution to the inhomogeneous equation

u(ξ, η) = e−
1
4
ξ

(
f(η) +

1

15
e

1
4

(3ξ+2η)

)
.

Finally, substituting the expressions for ξ and η in terms of (x, y), we will obtain the solution

u(x, y) = e−
1
4

(2x−4y)

(
f(4x+ 2y) +

1

15
e

1
4

(2x+16y)

)
.

You should check that this indeed solves the differential equation.

2.3 Variable coefficient equations

The method of characteristics can be generalized to variable coefficient first-order linear PDEs as well,
albeit the change of variables may no longer be orthogonal. The general variable coefficient linear
first-order equations is

a(x, y)ux + b(x, y)uy + c(x, y)u = d(x, y). (2.8)

Let us first consider the following simple particular case

ux + yuy = 0. (2.9)

Using our geometric intuition from the constant coefficient equations, we see that the directional deriva-
tive of u in the direction of the vector v = (1, y) is constant. Notice that the vector v itself is no longer
constant, and varies with y. The curves that have v as their tangent vector have slope y

1
, and thus satisfy

dy

dx
=
y

1
.

We can solve this equation as an ODE, and obtain the general solution

y = Cex, or e−xy = C. (2.10)

As in the case of the constant coefficients, the solution to the equation (2.9) will be constant along these
curves, called characteristic curves. This family of non-intersecting curves fills the entire coordinate
plane, and the curve containing the point (x, y) is uniquely determined by C = e−xy, which implies that
the general solution to (2.9) is

u(x, y) = f(C) = f(e−xy).

As always, we can check this by substitution.

ux + yuy = −f ′(e−xy)e−xy + yf ′(e−xy)e−x = 0.

Let us now try to generalize the method of characteristics to the equation

a(x, y)ux + b(x, y)uy = 0. (2.11)
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The idea is again to introduce new coordinates (ξ, η), which will reduce (2.11) to an ODE. Suppose{
ξ = ξ(x, y),
η = η(x, y)

(2.12)

gives such a change of variables. To rewrite the equation in this coordinates, we compute

ux = uξξx + uηηx,

uy = uξξy + uηηy,

and substitute these into equation (2.11) to get

(aξx + bξy)uξ + (aηx + bηy)uη = 0.

Since we would like this to give us an ODE, say in ξ, we require the coefficient of uη to be zero,

aηx + bηy = 0.

Without loss of generality, we may assume that a 6= 0 (locally). Notice that for curves y(x) that have
the slope dy

dx
= b

a
we have

d

dx
η(x, y(x)) = ηx + ηy

dy

dx
= ηx +

b

a
ηy = 0.

So the characteristic curves, just as before, are given by

dy

dx
=
b

a
. (2.13)

The general solution to this ODE will be η(x, y) = C, with ηy 6= 0 (otherwise ηx = 0 as well, and this
will not be a solution). This is how we find the new variable η, for which our PDE reduces to an ODE.
We choose ξ(x, y) = x as the other variable. For this change of coordinates the Jacobian determinant is

J =
∂(ξ, η)

∂(x, y)
=

ξx ξy
ηx ηy

= ηy 6= 0.

Thus, (2.12) constitutes a non-degenerate change of coordinates. In the new variables equation (2.11)
reduces to

a(ξ, η)uξ = 0, hence uξ = 0,

which has the solution
u = f(η).

The general variable coefficient equation (2.8) in these coordinates will reduce to

a(ξ, η)uξ + c(ξ, η)u = d(ξ, η),

which is called the canonical form of equation (2.8). This equation, as in previous cases, can be solved
by standard ODE methods.

Example 2.3. Find the general solution of the equation

xux − yuy + y2u = y2, x, y 6= 0.

Condition (2.13) in this case is dy
dx

= − y
x
. This is a separable ODE, which can be solved to obtain the

general solution xy = C. Thus, our change of coordinates will be{
ξ = x,
η = xy.

9



In these coordinates the equation takes the form

ξuξ +
η2

ξ2
u =

η2

ξ2
, or uξ +

η2

ξ3
u =

η2

ξ3
.

Using the integrating factor

e
´ η2
ξ3
dξ

= e
− η2

2ξ2 ,

the above equation can be written as (
e
− η2

2ξ2 u

)
ξ

= e
− η2

2ξ2
η2

ξ3
.

Integrating both sides in ξ, we arrive at

e
− η2

2ξ2 u =

ˆ
e
− η2

2ξ2
η2

ξ3
dξ = e

− η2

2ξ2 + f(η).

Thus, the general solution will be given by

u(ξ, η) = e
η2

2ξ2

(
f(η) + e

− η2

2ξ2

)
= e

η2

2ξ2 f(η) + 1.

Finally, substituting the expressions of ξ and η in terms of (x, y) into the solution, we obtain

u(x, y) = f(xy)e
y2

2 + 1.

One should again check by substitution that this is indeed a solution to the PDE.

2.4 Conclusion

The method of characteristics is a powerful method that allows one to reduce any first-order linear PDE
to an ODE, which can be subsequently solved using ODE techniques. We will see in later lectures that
a subclass of second order PDEs – second order hyperbolic equations can be also treated with a similar
characteristic method.
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3 Method of characteristics revisited

3.1 Transport equation

A particular example of a first order constant coefficient linear equation is the transport, or advection
equation ut + cux = 0, which describes motions with constant speed. One way to derive the transport
equation is to consider the dynamics of the concentration of a pollutant in a stream of water flowing
through a thin tube at a constant speed c.

Let u(t, x) denote the concentration of the pollutant in gr/cm (unit mass per unit length) at time t.
The amount of pollutant in the interval [a, b] at time t is then

ˆ b

a

u(x, t) dx.

Due to conservation of mass, the above quantity must be equal to the amount of the pollutant after
some time h. After the time h, the pollutant would have flown to the interval [a+ ch, b+ ch], thus the
conservation of mass gives ˆ b

a

u(x, t) dx =

ˆ b+ch

a+ch

u(x, t+ h) dx.

To derive the dynamics of the concentration u(x, t), differentiate the above identity with respect to b to
get

u(b, t) = u(b+ ch, t+ h).

Notice that this equation asserts that the concentration at the point b at time t is equal to the con-
centration at the point b + ch at time t + h, which is to be expected, due to the fact that the water
containing the pollutant particles flows with a constant speed. Since b is arbitrary in the last equation,
we replace it with x. Now differentiate both sides of the equation with respect to h, and set h equal to
zero to obtain the following differential equation for u(x, t).

0 = cux(x, t) + ut(x, t),

or
ut + cux = 0. (3.1)

Since equation (3.1) is a first order linear PDE with constant coefficients, we can solve it by the
method of characteristics. First, we rewrite the equation as

(1, c) · ∇u = 0,

which implies that the slope of the characteristic lines is given by

dx

dt
=
c

1
.

Integrating this equation, one arrives at the equation for the characteristic lines

x = ct+ x(0), (3.2)

where x(0) is the coordinate of the point at which the characteristic line intersects the x-axis. The
solution to the PDE (3.1) can then be written as

u(t, x) = f(x− ct) (3.3)

for any arbitrary single-variable function f .
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Let us now consider a particular initial condition for u(t, x)

u(0, x) =

{
x 0 < x < 1,
0 otherwise.

(3.4)

According to (3.3), u(0, x) = f(x), which determines the function f . Having found the function from the
initial condition, we can now evaluate the solution u(t, x) of the transport equation from (3.3). Indeed

u(t, x) = f(x− ct) =

{
x− ct 0 < x− ct < 1
0 otherwise

Noticing that the inequalities 0 < x − ct < 1 imply that x is in-between ct and ct + 1, we can rewrite
the above solution as

u(t, x) =

{
x− ct ct < x < ct+ 1,
0 otherwise,

which is exactly the initial function u(0, x), given by (3.4), moved to the right along the x-axis by ct
units. Thus, the initial data u(0, x) travels from left to right with constant speed c.

We can alternatively understand the dynamics by looking at the characteristic lines in the xt coordi-
nate plane. From (3.2), we can rewrite the characteristics as

t =
1

c
(x− x(0)).

Along these characteristics the solution remains constant, and one can obtain the value of the solution
at any point (t, x) by tracing it back to the x-axis:

u(t, x) = u(t− t, x− ct) = u(0, x(0)).

t=0 t=3

x

u

Figure 3.1: u(t, x) at two different times t.

x

t

u

Figure 3.2: The graph of u(t, x) colored with re-
spect to time t.

Figure 1 gives the graphs of u(t, x) at two different times, while Figure 3.1 gives the three dimensional
graph of u(t, x) as a function of two variables.

3.2 Quasilinear equations

We next look at a simple nonlinear equation, for which the method of characteristics can be applied as
well. The general first order quasilinear equation has the following form

a(x, y, u)ux + b(x, y, u)uy = g(x, y, u).
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We can see that the highest order derivatives, in this case the first order derivatives, enter the equation
linearly, although the coefficients depend on the unknown u. A very particular example of first order
quasilinear equations is the inviscid Burger’s equation

ut + uux = 0. (3.5)

As before, we can rewrite this equation in the form of a dot product, which is a vanishing condition for
a certain directional derivative

(1, u) · (ut, ux) = 0, or (1, u) · ∇u = 0.

This shows that the tangent vector of the characteristic curves, v = (1, u), depends on the unknown
function u.

3.3 Rarefaction

Let as now look at a particular initial condition, and try to construct solutions along the characteristic
curves. Suppose

u(0, x) =

{
1 if x < 0,
2 if x > 0.

(3.6)

The slope of the characteristic curves satisfies

dx

dt
= u(t, x(t)) = u(0, x(0)).

Here we used the fact that the directional derivative of the solution vanishes in the direction of the
tangent vector of the characteristic curves. This implies that the solution remains constant along the
characteristics, i.e. u(t, x(t)) remains constant for all values of t. We can find the equation of the
characteristics by integrating the above equation, which gives

x(t) = u(0, x(0))t+ x(0). (3.7)

Using the initial condition (3.6), this equation will become

x(t) =

{
t+ x(0) if x(0) < 0,
2t+ x(0) if x(0) > 0.

Thus, the characteristics have different slopes depending on whether they intersect the x axis at a pos-
itive, or negative intercept x(0). We can express the characteristic lines to give t as a function of x, so
that the initial condition is defined along the horizontal x axis.

t =

{
x− x(0) if x(0) < 0,
1
2
(x− x(0)) if x(0) > 0.

(3.8)

Some of the characteristic lines corresponding to the initial condition (3.6) are sketched in Figure 3
below. The solid lines are the two families of characteristics with different slopes.

Notice that in this case the waves originating at x(0) > 0 move to the right faster than the waves
originating at points x(0) < 0. Thus an increasing gap is formed between the faster moving wave front
and the slower one. One can also see from Figure 3, that there are no characteristic lines from either of
the two families given by (3.8) passing through the origin, since there is a jump discontinuity at x = 0
in the initial condition (3.6). In fact, in this case we can imagine that there are infinitely many charac-
teristics originating from the origin with slopes ranging between 1

2
and 1 (the dotted lines in Figure 3).

The proper way to see this is to notice that in the case of x(0) = 0, (3.7) implies that

u =
x

t
, if t < x < 2t.
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Figure 3.3: Characteristic lines illustrating rar-
efaction.
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Figure 3.4: Characteristic lines illustrating shock
wave formation.

This type of waves, which arise from decompression, or rarefaction of the medium due to the increasing
gap formed between the wave fronts traveling at different speeds are called rarefaction waves. Putting all
the pieces together, we can write the solution to equation (3.5) satisfying initial condition (3.6) as follows.

u(t, x) =

{
1 if x < t,
x
t

if t < x < 2t,
2 if x > 2t.

3.4 Shock waves

A completely opposite phenomenon to rarefaction is seen when one has a faster wave moving from left
to right catching up to a slower wave. To illustrate this, let us consider the following initial condition
for the Burger’s inviscid equation

u(0, x) =

{
2 if x < 0,
1 if x > 0.

(3.9)

Then the characteristic lines (3.7) will take the form

x(t) =

{
2t+ x(0) if x(0) < 0,
t+ x(0) if x(0) > 0.

Or expressing t in terms of x, we can write the equations as

t =

{
1
2
(x− x(0)) if x(0) < 0,
x− x(0) if x(0) > 0.

(3.10)

Thus, the characteristics origination from x(0) < 0 have smaller slope (corresponding to faster speed),
than the characteristics originating from x(0) > 0. In this case the characteristics from the two families
will intersect eventually, as seen in Figure 4. At the intersection points the solution u becomes multi-
valued, since the point can be traced back along either of the characteristics to an initial value of either
1, or 2, given by the initial condition (3.9). This phenomenon is known as shock waves, since the faster
moving wave catches up to the slower moving wave to form a multivalued (multicrest) wave.

3.5 Conclusion

We saw that the method of characteristics can be generalized to quasilinear equations as well. Using the
method of characteristics for the inviscid Burger’s equations, we discovered that in the case of nonlinear
equations one may encounter characteristics that diverge from each other to give rise to an unexpected
solution in the widening region in-between, as well as intersecting characteristics, leading to multivalued
solutions. These are nonlinear phenomena, and do not arise in the study of linear PDEs.
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Problem Set 2

1. (#1.2.1 in [Str]) Solve the first order equation 2ut+ 3ux = 0 with the auxiliary condition u = sinx
when t = 0.

2. (#1.2.2 in [Str]) Solve the equation 3uy + uxy = 0. (Hint : Let v = uy.)

3. (#1.2.3 in [Str]) Solve the equation (1 + x2)ux + uy = 0. Sketch some of the characteristic curves.

4. (#1.2.6 in [Str]) Solve the equation
√

1− x2ux + uy = 0 with the condition u(0, y) = y.

5. (#1.2.7 in [Str])

(a) Solve the equation yux + xuy = 0 with u(0, y) = e−y
2
.

(b) In which region of the xy plane is the solution uniquely determined?

6. (#1.2.10 in [Str]) Solve ux + uy + u = ex+2y with u(x, 0) = 0.

7. Show that the characteristics of ut + 5uux = 0 with u(x, 0) = f(x) are straight lines.
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4 Vibrations and heat flow

In this lecture we will derive the wave and heat equations from physical principles. These are second
order constant coefficient linear PDEs, which we will study in detail for the rest of the quarter.

4.1 Vibrating string

Consider a thin string of length l, which undergoes relatively small transverse vibrations (think of a
string of a musical instrument, say a violin string). Let ρ be the linear density of the string, measured
in units of mass per unit of length. We will assume that the string is made of homogeneous material
and its density is constant along the entire length of the string. The displacement of the string from its
equilibrium state at time t and position x will be denoted by u(t, x). We will position the string on the
x-axis with its left endpoint coinciding with the origin of the xu coordinate system.

Considering the motion of a small portion of the string sitting atop the interval [a, b], which has mass
ρ(b− a), and acceleration utt, we can write Newton’s second law of motion (balance of forces) as follows

ρ(b− a)utt = Total force. (4.1)

Having a thin string with negligible mass, we can ignore the effect of gravity on the string, as well as
air resistance, and other external forces. The only force acting on the string is then the tension force.
Assuming that the string is perfectly flexible, the tension force will have the direction of the tangent
vector along the string. At a fixed time t the position of the string is given by the parametric equations{

x = x,
u = u(x, t),

where x plays the role of a parameter. The tangent vector is then (1, ux), and the unit tangent vector

will be

(
1√

1+u2x
, ux√

1+u2x

)
. Thus, we can write the tension force as

T(x, t) = T (x, t)

(
1√

1 + u2
x

,
ux√

1 + u2
x

)
=

1√
1 + u2

x

(T, Tux), (4.2)

where T (t, x) is the magnitude of the tension. Since we consider only small vibrations, it is safe to
assume that ux is small, and the following approximation via the Taylor’s expansion can be used√

1 + u2
x = 1 +

1

2
u2
x + o(u4

x) ≈ 1.

Substituting this approximation into (4.2), we arrive at the following form of the tension force

T = (T, Tux).

With our previous assumption that the motion is transverse, i.e. there is no longitudinal displace-
ment (along the x-axis), we arrive at the following identities for the balance of forces (4.1) in the x,
respectively u directions

0 = T (b, t)− T (a, t)

ρ(b− a)utt = T (b, t)ux(b, t)− T (a, t)ux(a, t).

The first equation above merely states that in the x direction the tensions from the two edges of the small
portion of the string balance each other out (no longitudinal motion). From this we can also see that the
tension force is independent of the position on the string. Then the second equation can be rewritten as

ρutt = T
ux(b, t)− ux(a, t)

b− a
.

16



Passing to the limit b→ a, we arrive at the wave equation

ρutt = Tuxx, or utt − c2uxx = 0,

where we used the notation c2 = T/ρ. As we will see later, c will be the speed of wave propagation,
similar to the constant appearing in the transport equation.

One can generalize the wave equation to incorporate effects of other forces. Some examples follow.

a) With air resistance: force is proportional to the speed ut

utt − c2uxx + rut = 0, r > 0.

b) With transverse elastic force: force is proportional to the displacement u

utt − c2uxx + ku = 0, k > 0.

c) With an externally applied force

utt − c2uxx = f(x, t) (inhomogeneous).

4.2 Vibrating drumhead

Similar to the vibrating string, one can consider a vibrating drumhead (elastic membrane), and look
at the dynamic of the displacement u(x, y, t), which now depends on the two spatial variables (x, y)
denoting the point on the 2-dimensional space of the equilibrium state. Taking a small region on the
drumhead, the tension force will again be directed tangentially to the surface, in this case along the
normal vector to the boundary of the region. Its vertical component will be T ∂u

∂n
, where ∂u

∂n
denotes the

derivative of u in the normal direction to the boundary of the region. The vertical component of the
cumulative tension force will then be

Tvert =

ˆ
∂D

T
∂u

∂n
ds =

ˆ
∂D

T∇u · n ds,

where ∂D denotes the boundary of the region D, and the integral is taken with respect to the length
element along the boundary of D. The second law of motion will then take the formˆ

∂D

T∇u · n ds =

¨
D

ρutt dxdy.

Using Green’s theorem, we can convert the line integral on the left hand side to a two dimensional
integral, and arrive at the following identity¨

D

∇ · (T∇u) dxdy =

¨
D

ρutt dxdy.

Since the region D was taken arbitrarily, the integrands on both sides must be the same, resulting in

ρutt = T (uxx + uyy), or utt − c2(uxx + uyy) = 0.

This is the wave equation in two spatial dimensions. Three dimensional vibrations can be treated in
much the same way, leading to the three dimensional wave equation

utt − c2(uxx + uyy + uzz) = 0.

Often one makes use of the operator notation

∆ = ∇ · ∇ = ∂2
x + ∂2

y + . . .

to write the wave equation in any dimension as

utt − c2∆u = 0.

The ∆ operator is called Laplace’s operator or the Laplacian.
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4.3 Heat flow

Let u(x, t) denote the temperature at time t at the point x in some thin insulated rod. Again, think of
the rod as positioned along the x-axis in the xu coordinate system, where the vertical axis will measure
the temperature. The heat, or thermal energy of a small portion of the rod situated at the interval [a, b]
is given by

H(x, t) =

ˆ b

a

cρu dx,

where ρ is the linear density of the rod (mass per unit of length), and c denotes the specific heat capacity
of the material of the rod. The instantaneous change of the heat with respect to time will be the time
derivative of the above expression

dH

dt
=

ˆ b

a

cρut dx.

Since the heat cannot be lost or gained in the absence of an external heat source, the change in the heat
must be balanced by the heat flux across the cross-section of the cylindrical piece around the interval
[a, b] (we assume that the lateral boundary of the rod is perfectly insulated). According to Fourier’s
law, the heat flux across the boundary will be proportional to the derivative of the temperature in the
direction of the outward normal to the boundary, in this case the x-derivative.

Heat flux = κux,

where κ denotes the thermal conductivity. Using this expression for the heat flux, and noting that the
change in the internal heat of the portion of the rod is equal to the combined flux through the two ends
of this portion, we have ˆ b

a

cρut dx = κ(ux(b, t))− ux(a, t)).

Differentiating this identity with respect to b, we arrive at the heat equation

cρut = κuxx, or ut − kuxx = 0,

where we denoted k = κ
cρ

.

As in the case of the wave equation, one can consider higher dimensional heat flows (heat flow in a
two dimensional plate, or a three dimensional solid) to arrive at the general heat equation

ut − k∆u = 0.

We also note that diffusion phenomena lead to an equation which has the same form as the heat
equation (cf. Strauss for the actual derivation, where instead of Fourier’s law of heat conduction one
uses Fick’s law of diffusion).

4.4 Stationary waves and heat distribution

If one looks at vibrations or heat flows where the physical state does not change with time, then
ut = utt = 0, and both the wave and the heat equations reduce to

∆u = 0. (4.3)

This equation is called the Laplace equation. Notice that in the one dimensional case (4.3) reduces to

uxx = 0,

which has the general solution u(x, t) = c1x + c2 (remember that u is independent of t). The solutions
to the Laplace equation are called harmonic functions, and we will see later in the course that one
encounters nontrivial harmonic function in higher dimensions.
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4.5 Boundary conditions

We saw in previous lectures that PDEs generally have infinitely many solutions. One then imposes
some auxiliary conditions to single out relevant solutions. Since the equations that we study come from
physical considerations, the auxiliary conditions must be physically relevant as well. These conditions
come in two different varieties, initial conditions and boundary value conditions.

The initial condition, familiar from the theory of ODEs, specifies the physical state at some particular
time t0. For example for the heat equation one would specify the initial temperature, which in general
will be different at different points of the rod,

u(x, 0) = φ(x).

For the vibrating string, one needs to specify both the initial position of (each point of) the string, and
the initial velocity, since the equation is of second order in time,

u(x, 0) = φ(x), ut(x, 0) = ψ(x).

In the physical examples that we considered at the beginning of this lecture, it is clear that there is a
domain on which the solutions must live. For example in the case of the vibrating string of length l, we
only look at the amplitude u(t, x), where 0 ≤ x ≤ l. Similarly, for the heat conduction in an insulated
rod. In higher dimensions the domain is bounded by curves (2d), surfaces (3d) or higher dimensional
geometric shapes. The boundary of this domain is where the system interacts with the external factors,
and one needs to impose boundary conditions to account for these interactions.

There are three important kinds of boundary conditions:

(D) the value (on the boundary) of u is specified (Dirichlet condition)

(N) the value of the normal derivative ∂u/∂n is specified (Neumann condition)

(R) the value of ∂u/∂n+ au is specified (Robin condition, a is a function of x, y, z, . . . and t)

These conditions are usually written as equations, for example the Dirichlet condition

u(x, t)|∂D = f(x, t),

or the Robin condition
∂u

n
+ au|∂D = h(x, t).

The condition is called homogeneous, if the right hand side vanishes for all values of the variables.
In one dimensional case, the domain D is an interval (0 < x < l), hence the boundary consists of just

two points x = 0, and x = l. The boundary conditions then take the simple form

(D) u(0, t) = g(t) and u(l, t) = h(t)

(N) ux(0, t) = g(t) and ux(l, t) = h(t)

(R) u(0, t) + a(t)ux(0, t) = g(t) and u(l, t) + b(t)ux(l, t) = h(t)

4.6 Examples of physical boundary conditions

In the case of a vibrating string, one can impose the condition that the endpoints of the string remain
fixed (the case for strings of musical instruments). This gives the Dirichlet conditions u(0, t) = u(l, t) = 0.

If one end is allowed to move freely in the transverse direction, then the lack of any tension force at
this endpoint can be expressed as the Neumann condition ux(l, 0) = 0.

A Robin condition will correspond to the case when one endpoint is allowed to move transversely, but
the motion is restricted by a force proportional to the amplitude u (think of a coiled spring attached to
the endpoint).
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In the case of heat conduction in a rod, the perfect insulation of the rod surface leads to the Neumann
condition ∂u/∂n = 0 (no exchange of heat with the ambient space).

If the endpoints of the rod are kept in a thermal balance with the ambient temperature g(t), then one
has the Dirichlet condition u = g(t) on the boundary.

If one allows thermal exchange between the rod and the ambient space obeying Newton’s law of
cooling, then he boundary condition takes the form of a Robin condition ux(l, t) = −a(u(l, t)− g(t)).

4.7 Conclusion

We derived the wave and heat equations from physical principles, identifying the unknown function with
the amplitude of a vibrating string in the first case and the temperature in a rod in the second case.
Understanding the physical significance of these PDEs will help us better grasp the qualitative behavior
of their solutions, which will be derived by purely mathematical techniques in the subsequent lectures.
The physicality of the initial and boundary conditions will also help us immediately rule out solutions
that do not conform to the physical laws behind the appropriate problems.
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5 Classification of second order linear PDEs

Last time we derived the wave and heat equations from physical principles. We also saw that Laplace’s
equation describes the steady physical state of the wave and heat conduction phenomena. Today we
will consider the general second order linear PDE and will reduce it to one of three distinct types of
equations that have the wave, heat and Laplace’s equations as their canonical forms. Knowing the type
of the equation allows one to use relevant methods for studying it, which are quite different depending
on the type of the equation. One should compare this to the conic sections, which arise as different types
of second order algebraic equations (quadrics). Since the hyperbola, given by the equation x2 − y2 = 1,
has very different properties from the parabola x2−y = 0, it is expected that the same holds true for the
wave and heat equations as well. For conic sections, one uses change of variables to reduce the general
second order equation to a simpler form, which are then classified according to the form of the reduced
equation. We will see that a similar procedure works for second order PDEs as well.

The general second order linear PDE has the following form

Auxx +Buxy + Cuyy +Dux + Euy + Fu = G,

where the coefficients A,B,C,D, F and the free term G are in general functions of the independent vari-
ables x, y, but do not depend on the unknown function u. The classification of second order equations
depends on the form of the leading part of the equations consisting of the second order terms. So, for sim-
plicity of notation, we combine the lower order terms and rewrite the above equation in the following form

Auxx +Buxy + Cuyy + I(x, y, u, ux, uy) = 0. (5.1)

As we will see, the type of the above equation depends on the sign of the quantity

∆(x, y) = B2(x, y)− 4A(x, y)C(x, y), (5.2)

which is called the discriminant for (5.1). The classification of second order linear PDEs is given by the
following.

Definition 5.1. At the point (x0, y0) the second order linear PDE (5.1) is called

i) hyperbolic, if ∆(x0, y0) > 0

ii) parabolic, if ∆(x0, y0) = 0

ii) elliptic, if ∆(x0, y0) < 0

Notice that in general a second order equation may be of one type at a specific point, and of another
type at some other point. In order to illustrate the significance of the discriminant ∆ = B2 − 4AC, we
next describe how one reduces equation (5.1) to a canonical form. Similar to the second order algebraic
equations, we use change of coordinates to reduce the equation to a simpler form. Define the new
variables as {

ξ = ξ(x, y),
η = η(x, y),

with J = det
ξx ξy
ηx ηy

6= 0. (5.3)

We then use the chain rule to compute the terms of the equation (5.1) in these new variables.

ux = uξξx + uηηx,

uy = uξξy + uηηy.

To express the second order derivatives in terms of the (ξ, η) variables, differentiate the above expressions
for the first derivatives using the chain rule again.

uxx = uξξξ
2
x + 2uξηξxηx + uηηη

2
x + l.o.t,

uxy = uξξξxξy + uξη(ξxηy + ηxξy) + uηηηxηy + l.o.t,

uyy = uξξξ
2
y + 2uξηξyηy + uηηη

2
y + l.o.t.
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Here l.o.t. stands for the low order terms, which contain only one derivative of the unknown u. Using
these expressions for the second order derivatives of u, we can rewrite equation (5.1) in these variables as

A∗uξξ +B∗uξη + C∗uηη + I∗(ξ, η, u, uξ, uη) = 0, (5.4)

where the new coefficients of the higher order terms A∗, B∗ and C∗ are expressed via the original coef-
ficients and the change of variables formulas as follows.

A∗ = Aξ2
x +Bξxξy + Cξ2

y , (5.5)

B∗ = 2Aξxηx +B(ξxηy + ηxξy) + 2Cξyηy, (5.6)

C∗ = Aη2
x +Bηxηy + Cη2

y. (5.7)

One can form the discriminant for the equation in the new variables via the new coefficients in the
obvious way,

∆∗ = (B∗)2 − 4A∗C∗.

We need to guarantee that the reduced equation will have the same type as the original equation. Oth-
erwise, the classification given by Definition 5.1 is meaningless, since in that case the same physical
phenomenon will be described by equations of different types, depending on the particular coordinate
system in which one chooses to view them. The following statement provides such a guarantee.

Theorem 5.2. The discriminant of the equation in the new variables can be expressed in terms of the
discriminant of the original equation (5.1) as follows

∆∗ = J2∆,

where J is the Jacobian determinant of the change of variables given by (5.3).
As a simple corollary, the type of the equation is invariant under nondegenerate coordinate transfor-

mations, since the signs of ∆ and ∆∗ coincide.

This theorem can be proved by a straightforward, although somewhat messy, calculation to express
∆∗ in terms of the coefficients of the original equation (5.1). The bottom line of the theorem is that
we can perform any nondegenerate change of variables to reduce the equation, while the type remains
unchanged. Let us now try to construct such transformations, which will make one, or possibly two of
the coefficients of the leading second order terms of equation (5.4) vanish, thus reducing the equation
to a simpler form.

For simplicity, we assume that the coefficients A,B and C are constant. The material of this lecture
can be extended to the variable coefficient case with minor changes, but we will not study variable
coefficient second order PDEs in this class.

Notice that the expressions for A∗ and C∗ in (5.5), respectively (5.7) have the same form, with the
only difference being in that the first equation contains the variable ξ, while the second one has η. Due
to this, we can try to chose a transformation, which will make both A∗ and C∗ vanish. This is equivalent
to the following equation

Aζ2
x +Bζxζy + Cζ2

y = 0. (5.8)

We use ζ (zeta) in place of both ξ and η. The solutions to this equation are called characteristic curves
for the second order PDE (5.1) (compare this to the characteristic curves for first order PDEs, where the
idea was again to reduce the equation to a simpler form, in which only one of the first order derivatives
appears). We divide both sides of the above equation by ζ2

y to get

A

(
ζx
ζy

)2

+B

(
ζx
ζy

)
+ C = 0. (5.9)

Without loss of generality we can assume that A 6= 0. Indeed, if A = 0, but C 6= 0, one can proceed in a
similar way, by considering the ratio ζy/ζx instead of ζx/ζy. Otherwise, if both A = 0, and C = 0, then
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the equation is already in the reduced form, and there is nothing to do. Now recall that we are trying
to find change of variables formulas, which are given as curves ζ(x, y) = const (fix the new variable, e.g.
ξ(x, y) = ξ0). Along such curves we have

dζ = ζxdx+ ζydy = 0.

Hence, the slope of the characteristic curve is given by

dy

dx
= −ζx

ζy
.

Substituting this into equation (5.9), we arrive at the following equation for the slope of the characteristic
curve

A

(
dy

dx

)2

−B
(
dy

dx

)
+ C = 0.

Since the above is a quadratic equation, it has 2, 1, or 0 real solutions, depending on the sign of the
discriminant, B2 − 4AC, and the solutions are given by the quadratic formulas

dy

dx
=
B ±

√
B2 − 4AC

2A
. (5.10)

5.1 Hyperbolic equations

If the discriminant ∆ > 0, then the quadratic formulas (5.10) give two distinct families of characteristic
curves, which will define the change of variables (5.3). To derive these change of variables formulas,
integrate (5.10) to get

y =
B ±

√
B2 − 4AC

2A
x+ c, or

B ±
√
B2 − 4AC

2A
x− y = c.

These equations give the following change of variables{
ξ = B+

√
B2−4AC
2A

x− y
η = B−

√
B2−4AC
2A

x− y
(5.11)

In these new variables A∗ = C∗ = 0, while for B∗ we have from (5.6)

B∗ = 2A

(
B2 − (B2 − 4AC)

4A2

)
+B

(
− B

2A
− B

2A

)
+ 2C = 4C − B2

A
= −∆

A
6= 0.

One can then divide equation (5.4) by B∗, to arrive at the reduced equation

uξη + · · · = 0. (5.12)

This is called the first canonical form for hyperbolic equations. Under the orthogonal transformations{
x′ = ξ + η
y′ = ξ − η

equation (5.12) becomes
ux′x′ − uy′y′ + · · · = 0,

which is the second canonical form for hyperbolic equations. Notice that the last equation has exactly
the same form in its leading terms as the wave equation (with c = 1).
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5.2 Parabolic equations

In the case of parabolic equations ∆ = B2 − 4AC = 0, and the quadratic formulas (5.10) give only
one family of characteristic curves. This means that there is no change of variables that makes both
A∗ and C∗ vanish. However we can make one of this vanish, for example A∗, by choosing ξ to be the
unique solution of equation (5.10). We can then chose η arbitrarily, as long as the change of coordinates
formulas (5.3) define a nondegenerate transformation. Notice that in such a case, according to Theorem

5.2, ∆∗ = (B∗)2 − 4A∗C∗ = 0. But then we have B∗ = ±2
√
A∗C∗ = 0.

We solve equation (5.10) by integration to get ξ, and set η = x to arrive at the following change of
variables formulas {

ξ = B
2A
x− y

η = x
(5.13)

The Jacobian determinant of this transformation is

J =
B/(2A) −1

1 0
= 1 6= 0.

Thus, the transformation (5.13) is indeed nondegenerate, and reduces equation (5.1) to the following
form (after division by C∗)

uηη + · · · = 0,

which is the canonical form for parabolic PDEs. Notice that this equation has the same leading terms
as the heat equation uxx − ut = 0.

5.3 Elliptic equations

In the case of elliptic equations ∆ = B2−4AC < 0, and the quadratic formulas (5.10) give two complex
conjugate solutions. We can formally solve for ξ similar to the hyperbolic case, and arrive at the formula

ξ =

(
B

2A
+

√
B2 − 4AC

2A
i

)
x− y.

We define new variables (α, β) by taking respectively the real and imaginary parts of ξ.{
α = B

2A
x− y

β =
√
B2−4AC

2A
x

(5.14)

In these variables equation (5.1) has the form

A∗∗uαα +B∗∗uαβ + C∗∗uββ + I∗∗(α, β, u, uα, uβ) = 0, (5.15)

in which the coefficients will be given by formulas similar to (5.5)-(5.7) with ξ replaced by α, and η
replaced by β. Computing these new coefficients we get

A∗∗ = A

(
B

2A

)2

− B2

2A
+ C =

4AC −B2

4A
,

B∗∗ = 2A
B

2A

√
4AC −B2

2A
−B
√

4AC −B2

2A
= 0,

C∗∗ = A
4AC −B2

2A2
=

4AC −B2

4A
.

As we can see, A∗∗ = C∗∗, and B∗∗ = 0. This is a direct consequence of the fact that ξ = α + βi and
η = α− βi solve equation (5.8). One can then divide both sides of equation (5.4) by A∗∗ = C∗∗ 6= 0, to
arrive at the reduced equation

uαα + uββ + · · · = 0,

which is the canonical form for elliptic PDEs. Notice that this equation has the same leading terms as
the Laplace’s equation.
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Example 5.1. Determine the regions in the xy plane where the following equation is hyperbolic,
parabolic, or elliptic.

uxx + yuyy +
1

2
uy = 0.

The coefficients of the leading terms in this equation are

A = 1, B = 0, C = y.

The discriminant is then ∆ = B2−4AC = −4y. Hence the equation is hyperbolic when y < 0, parabolic
when y = 0, and elliptic when y > 0.

5.4 Conclusion

The second order linear PDEs can be classified into three types, which are invariant under changes of
variables. The types are determined by the sign of the discriminant. This exactly corresponds to the
different cases for the quadratic equation satisfied by the slope of the characteristic curves. We saw
that hyperbolic equations have two distinct families of (real) characteristic curves, parabolic equations
have a single family of characteristic curves, and the elliptic equations have none. All the three types
of equations can be reduced to canonical forms. Hyperbolic equations reduce to a form coinciding with
the wave equation in the leading terms, the parabolic equations reduce to a form modeled by the heat
equation, and the Laplace’s equation models the canonical form of elliptic equations. Thus, the wave,
heat and Laplace’s equations serve as canonical models for all second order constant coefficient PDEs.
We will spend the rest of the quarter studying the solutions to the wave, heat and Laplace’s equations.
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Problem Set 3

1. (#1.3.5 in [Str]) Derive the equation of one-dimensional diffusion in a medium that is moving
along the x axis to the right at constant speed V .

2. (#1.5.1 in [Str]) Consider the problem

d2u

dx2
+ u = 0

u(0) = 0 and u(L) = 0,

consisting of an ODE and a pair of boundary conditions. Clearly, the function u(x) ≡ 0 is a
solution. Is this solution unique, or not? Does the answer depend on L?

3. (#1.5.2 in [Str]) Consider the problem

u′′(x) + u′(x) = f(x)

u′(0) = u(0) =
1

2
[u′(l) + u(l)],

with f(x) a given function.

(a) Is the solution unique? Explain.

(b) Does a solution necessarily exist, or is there a condition that f(x) must satisfy for existence?
Explain.

4. (#1.6.1 in [Str]) What is the type of each of the following equations?

(a) uxx − uxy + 2uy + uyy − 3uyx + 4u = 0.

(b) 9uxx + 6uxy + uyy + ux = 0.

5. (#1.6.2 in [Str]) Find the regions in the xy plane where the equation

(1 + x)uxx + 2xyuxy − y2uyy = 0

is elliptic, hyperbolic, or parabolic. Sketch them.

6. (#1.6.4 in [Str]) What is the type of the equation

uxx − 4uxy + 4uyy = 0?

Show by direct substitution that u(x, y) = f(y + 2x) + xg(y + 2x) is a solution for arbitrary
functions f and g.

7. Find the general solution of the equation uxx − 2uxy − 3uyy = 0.
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6 Wave equation: solution

In this lecture we will solve the wave equation on the entire real line x ∈ R. This corresponds to a string
of infinite length. Although physically unrealistic, as we will see later, when considering the dynamics
of a portion of the string away from the endpoints, the boundary conditions have no effect for some
(nonzero) finite time. Due to this, one can neglect the endpoints, and make the assumption that the
string is infinite.

The wave equation, which describes the dynamics of the amplitude u(x, t) of the point at position x
on the string at time t, has the following form

utt = c2uxx,

or
utt − c2uxx = 0. (6.1)

As we saw in the last lecture, the wave equation has the second canonical form for hyperbolic equations.
One can then rewrite this equation in the first canonical form, which is

uξη = 0. (6.2)

This is achived by passing to the characteristic variables{
ξ = x+ ct,
η = x− ct. (6.3)

To see that (6.2) is equivalent to (6.1), let us compute the partial derivatives of u with respect to x and
t in the new variables using the chain rule.

ut = cuξ − cuη,
ux = uξ + uη.

We can differentiate the above first order partial derivatives with respect to t, respectively x using the
chain rule again, to get

utt = c2uξξ − 2c2uξη + c2uηη,

uxx = uξξ + 2uξη + uηη.

Substituting this expressions into the left hand side of equation (6.1), we see that

utt − c2uxx = c2uξξ − 2c2uξη + c2uηη − c2(uξξ + 2uξη + uηη) = −4c2uξη = 0,

which is equivalent to (6.2).
Equation (6.2) can be treated as a pair two successive ODEs. Integrating first with respect to the

variable η, and then with respect to ξ, we arrive at the solution

u(ξ, η) = f(ξ) + g(η).

Recalling the definition of the characteristic variables (6.3), we can switch back to the original variables
(x, t), and obtain the general solution

u(x, t) = f(x+ ct) + g(x− ct). (6.4)

Another way to solve equation (6.1) is to realize that the second order linear operator of the wave
equation factors into two first order operators

L = ∂2
t − c2∂2

x = (∂t − c∂x)(∂t + c∂x).
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Hence, the wave equation can be thought of as a pair of transport (advection) equations

(∂t − c∂x)v = 0, (6.5)

(∂t + c∂x)u = v. (6.6)

It is no coincidence, of course, that
x+ ct = constant, (6.7)

and
x− ct = constant, (6.8)

are the characteristic lines for the transport equations (6.5), and (6.6) respectively, hence our choice
of the characteristic coordinates (6.3). We also see that for each point in the xt plane there are two
distinct characteristic lines, each belonging to one of the two families (6.7) and (6.8), that pass through
the point. This is illustrated in Figure 6.1 below.
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x

2
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6

8

t

Figure 6.1: Characteristic lines for the wave equation with c = 0.6.

6.1 Initial value problem

Along with the wave equation (6.1), we next consider some initial conditions, to single out a particular
physical solution from the general solution (6.4). The equation is of second order in time t, so initial
values must be specified both for the initial dispalcement u(x, 0), and the initial velocity ut(x, 0). We
study the following initial value problem, or IVP{

utt − c2uxx = 0 for−∞ < x < +∞,
u(x, 0) = φ(x), ut(x, 0) = ψ(x),

(6.9)

where φ and ψ are arbitrary functions of single variable, and together are called the initial data of the
IVP. The solution to this problem is easily found from the general solution (6.4). All we need to do is find
f and g from the initial conditions of the IVP (6.9). To check the first initial condition, set t = 0 in (6.4),

u(x, 0) = φ(x) = f(x) + g(x). (6.10)

To check the second initial condition, we differentiate (6.4) with respect to t, and set t = 0

ut(x, 0) = ψ(x) = cf ′(x)− cg′(x). (6.11)

Equations (6.10) and (6.11) can be treated as a system of two equations for f and g. To solve this
system, we first integrate both sides of (6.11) from 0 to x to get rid of the derivatives on f and g
(alternatively we could differentiate (6.10) instead), and rewrite the equations as

f(x) + g(x) = φ(x),

f(x)− g(x) =
1

c

ˆ x

0

ψ(s) ds+ f(0)− g(0).
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We can solve this system by adding the equations to eliminate g, snd subtracting them to eliminate f .
This leads to the solution

f(x) =
1

2
φ(x) +

1

2c

ˆ x

0

ψ(s) ds+
1

2
[f(0)− g(0)],

g(x) =
1

2
φ(x)− 1

2c

ˆ x

0

ψ(s) ds− 1

2
[f(0)− g(0)].

Finally, substituting this expressions for f and g back into the solution (6.4), we obtain the solution of
the IVP (6.9)

u(x, t) =
1

2
φ(x+ ct) +

1

2c

ˆ x+ct

0

ψ(s) ds+
1

2
φ(x− ct)− 1

2c

ˆ x−ct

0

ψ(s) ds.

Combining the integrals using additivity, and the fact that flipping the integration limits changes the
sign of the integral, we arrive at the following form for the solution

u(x, t) =
1

2
[φ(x+ ct) + φ(x− ct)] +

1

2c

ˆ x+ct

x−ct
ψ(s) ds. (6.12)

This is d’Alambert’s solution for the IVP (6.9). It implies that as long as φ is twice continuously dif-
ferentiable (φ ∈ C2), and ψ is continuously differentiable (ψ ∈ C1), (6.12) gives a solution to the IVP.
We will also consider examples with discontinuous initial data, which after plugging into (6.12) produce
weak solutions. This notion will be made precise in later lectures.

Example 6.1. Solve the initial value problem (6.9) with the initial data

φ(x) ≡ 0, ψ(x) = sinx.

Substituting φ and ψ into d’Alambert’s formula, we obtain the solution

u(x, t) =
1

2c

ˆ x+ct

x−ct
sin s ds =

1

2c
(− cos(x+ ct) + cos(x− ct)).

Using the trigonometric identities for the cosine of a sum and difference of two angles, we can simplify
the above to get

u(x, t) =
1

c
sinx sin(ct).

You should verify that this indeed solves the wave equation and satisfies the given initial conditions.

6.2 The Box wave

When solving the transport equation, we saw that the initial values simply travel to the right, when the
speed is positive (they propagate along the characteristics (6.8)); or to the left (they propagate along
the characteristics (6.7)), when the speed is negative. Since the wave equation is made up of two of
these type of equations, we expect similar behavior for the solutions of the IVP (6.9) as well. To see
this, let us consider the following example with simplified initial data.

Example 6.2. Find the solution of IVP (6.9), with the initial data

φ(x) =

{
h, |x| ≤ a,
0, |x| > a,

ψ(x) ≡ 0.

(6.13)
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This data corresponds to an initial disturbance of the string centered at x = 0 of height h, and zero
initial velocity. Notice that φ(x) is not continuous, let alone twice differentiable, though one can still
substitute it into d’Alambert’s solution (6.12) and get a function u, which will be a weak solution of the
wave equation.

Since ψ(x) ≡ 0, only the first term in (6.12) is nonzero. We compute this term using the particular
φ(x) in (6.13). First notice that

φ(x+ ct) =

{
h, |x+ ct| ≤ a,
0, |x+ ct| > a,

(6.14)

and

φ(x− ct) =

{
h, |x− ct| ≤ a,
0, |x− ct| > a.

(6.15)

Hence, the solution

u(x, t) =
1

2
[φ(x+ ct) + φ(x− ct)]

is piecewise defined in 4 different regions in the xt half-plane (we consider only positive time t ≥ 0),
which correspond to pairings of the intervals in the expressions (6.14) and (6.15). These regions are

I : {|x+ ct| ≤ a, |x− ct| ≤ a}, u(x, t) = h

II : {|x+ ct| ≤ a, |x− ct| > a}, u(x, t) =
h

2

III : {|x+ ct| > a, |x− ct| ≤ a}, u(x, t) =
h

2
IV : {|x+ ct| > a, |x− ct| > a}, u(x, t) = 0

(6.16)

The regions are depicted in Figure 6.2. Notice that |x+ ct| ≤ a is equivalent to

−a ≤ x+ ct ≤ a, or − 1

c
(x+ a) ≤ t ≤ −1

c
(x− a).

Similarly for the other inequalities.

I

II III
IV IV

IV

-a a
x

t

Figure 6.2: Regions where u has different values.

Using the values for the solution in (6.16), we can draw the graph of u at different times, some of
which are depicted in Figures 6.3-6.6.

We see that the initial box-like disturbance centered at x = 0 splits into two disturbances of half the
size, which travel in opposite directions with speed c.

The graphs hint that the initial disturbance will not be felt at a point x on the string (for |x| > a)
before the time t = 1

c
||x| − a|. You will shortly see that this is a general property for the wave equation.

In this particular case a box-like disturbance appears at the time t = 1
c
||x| − a|, and lasts exactly t = 2a

c
units of time, after which it completely moves along. In general, the initial velocity may slow down the
speed, and subsequently make the disturbance “last” longer, however, the speed cannot exceed c.
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Figure 6.3: The solution at t = 0.
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Figure 6.4: The solution for 0 < t < a/c.

t = a�c

h�2

2a-2a x

t

Figure 6.5: The solution at t = a/c.
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Figure 6.6: The solution for t > a/c.

6.3 Causality

The value of the solution to the IVP (6.9) at a point (x0, t0) can be found from d’Alambert’s formula
(6.12)

u(x0, t0) =
1

2
[φ(x0 + ct0) + φ(x0 − ct0)] +

1

2c

ˆ x0+ct0

x0−ct0
ψ(s) ds. (6.17)

We can see that this value depends on the values of φ at only two points on the x axis, x0 + ct0,
and x0 − ct0, and the values of ψ only on the interval [x0 − ct0, x0 + ct0]. For this reason the interval
[x0− ct0, x0 + ct0] is called interval of dependence for the point (x0, t0). Sometimes the entire triangular
region with vertices at x0− ct0 and x0 + ct0 on the x axis and the vertex (x0, t0) is called the domain of
dependence, or the past history of the point (x0, t0), as depicted in Figure 6.7. The sides of this triangle
are segments of characteristic lines passing through the point (x0, t0). Thus, we see that the initial data
travels along the characteristics to give the values at later times. In the previous example of the box
wave, we saw that the jump discontinuities travel along the characteristic lines as well.

Hx0, t0L

x0 - c t0 x0 +c t0

past history

x

t

Figure 6.7: Domain of dependence for (x0, t0).

x0

t0

Hx0 - c t0, t0L Hx0 + c t0, t0L

domain of influence

x

t

Figure 6.8: Domain of influence of x0.

An inverse notion to the domain of dependence is the notion of domain of influence of the point x0

on the x axis. This is the region in the xt plane consisting of all the points, whose domain of depen-
dence contains the point x0. The region has an upside-down triangular shape, with the sides being the
characteristic lines emanating from the point x0, as shown in Figure 6.8. This also means that the value
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of the initial data at the point x0 effects the values of the solution u at all the points in the domain of
influence. Notice that at a fixed time t0, only the points satisfying x0− ct0 ≤ x ≤ x0 + ct0 are influenced
by the point x0 on the x axis.

Example 6.3 (The hammer blow). Analyze the solution to the IVP (6.9) with the following initial data

φ(x) ≡ 0,

ψ(x) =

{
h, |x| ≤ a,
0, |x| > a.

(6.18)

From d’Alambert’s formula (6.12), we obtain the following solution

u(x, t) =
1

2c

ˆ x+ct

x−ct
ψ(s) ds. (6.19)

Similar to the previous example of the box wave, there are several regions in the xt plane, in which u
has different values. Indeed, since the initial velocity ψ(x) is nonzero only in the interval [−a, a], the
integral in (6.19) must be computed differently according to how the intervals [−a, a] and [x− ct, x+ ct]
intersect. This corresponds to the cases when ψ is zero on the entire integration interval in (6.19), on a
part of it, or is nonzero on the entire integration interval. These different cases are:

I : {x− ct < x+ ct < −a < a}, u(x, t) = 0

II : {x− ct < −a < x+ ct < a}, u(t, x) =
1

2c

ˆ x+ct

−a
h ds = h

x+ ct+ a

2c

III : {x− ct < −a < a < x+ ct}, u(t, x) =
1

2c

ˆ a

−a
h ds = h

a

c

IV : {−a < x− ct < x+ ct < a}, u(t, x) =
1

2c

ˆ x+ct

x−ct
h ds = ht

V : {−a < x− ct < a < x+ ct}, u(t, x) =
1

2c

ˆ a

x−ct
h ds = h

a− (x− ct)
2c

VI : {−a < a < x− ct < x+ ct}, u(x, t) = 0

(6.20)

The regions are depicted in Figure 6.9 below. Notice that it is relatively simple to figure out the value
of the solution at a point (x0, t0) by simply tracing back the point to the x axis along the characteristic
lines, and determining how the interval of dependence intersects the segment [−a, a].

IV

II V
I VI

III

-a a

Hx0, t0L

x0 - c t0 x0 + c t0
x

t

Figure 6.9: Regions where u has different values.
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6.4 Conclusion

The wave equation, being a constant coefficient second order PDE of hyperbolic type, posseses two fam-
ilies of characteristic lines, which correspond to constant values of respective characteristic variables.
Using these variables the equation can be treated as a pair of successive ODEs, integrating which leads to
the general solution. This general solution was used to arrive at d’Alambert’s solution (6.12) for the IVP
on the whole line. Unfortunatelly this simple derivative relies on having two families of characteristics
and does not work for the heat and Laplace equations.

Exploring a few examples of initial data, we established causality between the initial data and the val-
ues of the solution at later times. In particular, we saw that the initial values travel with speeds bounded
by the wave speed c, and that the discountinuities of the initial data travel along the characteristic lines.
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7 The energy method

7.1 Energy for the wave equation

Let us consider an infinite string with constant linear density ρ and tension magnitude T . The wave
equation describing the vibrations of the string is then

ρutt = Tuxx, −∞ < x <∞. (7.1)

Since this equation describes the mechanical motion of a vibrating string, we can compute the kinetic
energy associated with the motion of the string. Recall that the kinetic energy is 1

2
mv2. In this case the

string is infinite, and the speed differs for different points on the string. However, we can still compute
the energy of small pieces of the string, add them together, and pass to a limit in which the lengths of
the pieces go to zero. This will result in the following integral

KE =
1

2

ˆ ∞
−∞

ρu2
t dx.

We will assume that the initial data vanishes outside of a large interval |x| ≤ R, so that the above
integral is convergent due to the finite speed of propagation. We would like to see if the kinetic energy
KE is conserved in time. For this, we differentiate the above integral with respect to time to see whether
it is zero, as is expected for a constant function, or is different from zero.

d

dt
KE =

1

2
ρ

ˆ ∞
−∞

2ututt dx =

ˆ ∞
−∞

ρututt dx.

Using the wave equation (7.1), we can replace the ρutt by Tuxx, obtaining

d

dt
KE = T

ˆ ∞
−∞

utuxx dx.

The last quantity does not seem to be zero in general, thus the next best thing we can hope for, is to
convert the last integral into a full derivative in time. In that case the difference of the kinetic energy and
some other quantity will be conserved. To see this, we perform an integration by parts in the last integral

d

dt
KE = Tutux

∣∣∣∞
−∞
−
ˆ ∞
−∞

Tuxtux dx.

Due to the finite speed of propagation, the endpoint terms vanish. The last integral is a full derivative,
thus we have

d

dt
KE = −

ˆ ∞
−∞

Tuxtux dx = − d

dt

(
1

2

ˆ ∞
−∞

Tu2
x dx

)
.

Defining

PE =
1

2
T

ˆ ∞
−∞

u2
x dx,

we see that
d

dt
KE = − d

dt
PE, or

d

dt
(KE + PE) = 0.

The quantity E = KE+PE is then conserved, which is the total energy of the string undergoing vibra-
tions. Notice that PE plays the role of the potential energy of a stretched string, and the conservation
of energy implies conversion of the kinetic energy into the potential energy and back without a loss.

Another way to see that the energy

E =
1

2

ˆ ∞
−∞

(ρu2
t + Tu2

x) dx (7.2)
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is conserved, is to multiply equation (7.1) by ut and integrate with respect to x over the real line.

0 =

ˆ ∞
−∞

ρuttut dx−
ˆ ∞
−∞

Tuxxut dx.

The first integral above is a full derivative in time. Integrating by parts in the second term, and realizing
that the subsequent integral is a full derivative as well, while the boundary terms vanish, we obtain the
identity

d

dt

(
1

2

ˆ ∞
−∞

ρu2
t + Tu2

x dx

)
= 0,

which is exactly the conservation of total energy.
The conservation of energy provides a straightforward way of showing that the solution to an IVP

associated with the linear equation is unique. We demonstrate this for the wave equation next, while a
similar procedure will be applied to establish uniqueness of solutions for the heat IVP later on.

Example 7.1. Show that the initial value problem{
utt − c2uxx = f(x, t) for−∞ < x < +∞,
u(x, 0) = φ(x), ut(x, 0) = ψ(x),

(7.3)

has a unique solution.
Arguing from the inverse, let as assume that the IVP (7.3) has two distinct solutions, u and v. But

then their difference w = u− v will solve the homogeneous wave equation, and will have the initial data

w(x, 0) = u(x, 0)− v(x, 0) = φ(x)− φ(x) ≡ 0,

wt(x, 0) = ut(x, 0)− vt(x, 0) = ψ(x)− ψ(x) ≡ 0.

Hence the energy associated with the solution w at time t = 0 is

E[w](0) =
1

2

ˆ ∞
−∞

[(wt(x, 0))2 + c2(wx(x, 0))2] dx = 0

This differs from the energy defined above by a constant factor of 1/ρ (recall that T/ρ = c2), and is
thus still a conserved quantity. It will subsequently be zero at any later time as well. Thus,

E[w](t) =
1

2

ˆ ∞
−∞

[(wt(x, t))
2 + c2(wx(x, t))

2] dx = 0, ∀t.

But since the integrand in the expression of the energy is nonnegative, the only way the integral can be
zero, is if the integrand is uniformly zero. That is,

∇w(t, x) = (wt(x, t), wx(x, t)) = 0, ∀x, t.

This implies that w is constant for all values of x and t, but since w(x, 0) ≡ 0, the constant value must
be zero. Thus,

u(x, t)− v(x, t) = w(x, t) ≡ 0,

which is in contradiction with our initial assumption of distinctness of u and v. This implies that the
solution to the IVP (7.3) is unique.

The procedure used in the last example, called the energy method, is quite general, and works for
other linear evolution equations possessing a conserved (or decaying) positive definite energy. The heat
equation, considered next, is one such case.
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7.2 Energy for the heat equation

We next consider the (inhomogeneous) heat equation with some auxiliary conditions, and use the energy
method to show that the solution satisfying those conditions must be unique. Consider the following
mixed initial-boundary value problem, which is called the Dirichlet problem for the heat equation{

ut − kuxx = f(x, t) for 0 ≤ x ≤ l, t > 0
u(x, 0) = φ(x),
u(0, t) = g(t), u(l, t) = h(t),

(7.4)

for given functions f, φ, g, h.

Example 7.2. Show that there is at most one solution to the Dirichlet problem (7.4).

Just as in the case of the wave equation, we argue from the inverse by assuming that there are two
functions, u, and v, that both solve the inhomogeneous heat equation and satisfy the initial and Dirichlet
boundary conditions of (7.4). Then their difference, w = u− v, satisfies the homogeneous heat equation
with zero initial-boundary conditions, i.e.{

wt − kwxx = 0 for 0 ≤ x ≤ l, t > 0
w(x, 0) = 0,
u(0, t) = 0, u(l, t) = 0,

(7.5)

Now define the following “energy”

E[w](t) =
1

2

ˆ l

0

[w(x, t)]2 dx, (7.6)

which is always positive, and decreasing, if w solves the heat equation. Indeed, differentiating the energy
with respect to time, and using the heat equation we get

d

dt
E =

ˆ l

0

wwt dx = k

ˆ l

0

wwxx dx.

Integrating by parts in the last integral gives

d

dt
E = kwwx

∣∣∣l
0
−
ˆ l

0

w2
x dx ≤ 0,

since the boundary terms vanish due to the boundary conditions in (7.5), and the integrand in the last
term is nonnegative.

Due to the initial condition in (7.5), the energy at time t = 0 is zero. But then using the fact that
the energy is a nonnegative decreasing quantity, we get

0 ≤ E[w](t) ≤ E[w](0) = 0.

Hence,
1

2

ˆ l

0

[w(x, t)]2 dx = 0, for all t ≥ 0,

which implies that the nonnegative continuous integrand must be identically zero over the integration
interval, i.e w ≡ 0, for all x ∈ [0, l], t > 0. Hence also

u1 ≡ u2,

which finishes the proof of uniqueness.

The energy (7.6) arises if one multiples the heat equation by w and integrates in x over the interval
[0, l]. Then realizing that the first term will be the time derivative of the energy, and performing the
same integration by parts on the second term as above, we can reprove that this energy is decreasing.

Notice that all of the above arguments hold for the case of the infinite interval −∞ < x <∞ as well.
In this case one ignores the effect of the infinitely far endpoints and considers an IVP.

36



7.3 Conclusion

Using the energy motivated by the vibrating string model behind the wave equation, we derived a con-
served quantity, which corresponds to the total energy of motion for the infinite string. This positive
definite quantity was then used to prove uniqueness of solution to the wave IVP via the energy method,
which essentially asserts that zero initial total energy precludes any (nonzero) dynamics. A similar ap-
proach was used to prove uniqueness for the heat IBVP, concluding that zero initial heat implies steady
zero temperatures at later times.
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Problem Set 4

1. (#2.1.1 in [Str]) Solve utt = c2uxx, u(x, 0) = ex, ut(x, 0) = sin x.

2. (#2.1.5 in [Str]) Let φ(x) ≡ 0 and ψ(x) = 1 for |x| < a and ψ(x) = 0 for |x| ≥ a. Sketch the
string profile (u versus x) at each of the successive instants t = a/2c, a/c, 3a/2c, 2a/c, and 5a/c.
[Hint: Calculate

u(x, t) =
1

2c

ˆ x+ct

x−ct
ψ(s) ds =

1

2c
{length of (x− ct, x+ ct) ∩ (−a, a)}.

Then u(x, a/2c) = (1/2c){length of (x − a/2, x + a/2) ∩ (−a.a)}. This takes on different values
for |x| < a/2, for a/2 < x < 3a/2, and for x > 3a/2. Continue in this manner for each case.]

3. (#2.1.7 in [Str]) If both φ and ψ are odd functions of x, show that the solution u(x, t) of the wave
equation is also odd in x for all t.

4. (#2.1.9 in [Str]) Solve uxx−3uxt−4utt = 0, u(x, 0) = x2, ut(x, 0) = ex. (Hint: Factor the operator
as the textbook does for the wave equation.)

5. (#2.2.3 in [Str]) Show that the wave equation has the following invariance properties.

(a) Any translate u(x− y, t), where y is fixed, is also a solution.

(b) Any derivative, say ux, of a solution is also a solution.

(c) The dilated function u(ax, at) is also a solution, for any constant a.

6. (#2.2.4 in [Str]) If u(x, t) satisfies the wave equation utt = uxx, prove the identity

u(x+ h, t+ k) + u(x− h, t− k) = u(x+ k, t+ h) + u(x− k, t− h)

for all x, t, h and k. Sketch the quadrilateral Q whose vertices are the arguments in the identity.

7. (#2.2.5 in [Str]) For the damped string, utt−c2uxx+rut = 0, r > 0, show that the energy decreases.
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8 Heat equation: properties

We would like to solve the heat (diffusion) equation

ut − kuxx = 0, (8.1)

and obtain a solution formula depending on the given initial data, similar to the case of the wave equa-
tion. However the methods that we used to arrive at d’Alambert’s solution for the wave IVP do not
yield much for the heat equation. To see this, recall that the heat equation is of parabolic type, and
hence, it has only one family of characteristic lines. If we rewrite the equation in the form

kuxx + · · · = 0,

where the dots stand for the lower order terms, then you can see that the coefficients of the leading
order terms are

A = k, B = C = 0.

The slope of the characteristic lines are then

dt

dx
=
B ±

√
∆

2A
=

B

2A
= 0.

Consequently, the single family of characteristic lines will be given by

t = c.

These characteristic lines are not very helpful, since they are parallel to the x axis. Thus, one cannot
trace points in the xt plane along the characteristics to the x axis, along which the initial data is defined.
Notice that there is also no way to factor the heat equation into first order equations, either, so the
methods used for the wave equation do not shed any light on the solutions of the heat equation.

Instead, we will study the properties of the heat equation, and use the gained knowledge to devise a
way of reducing the heat equation to an ODE, as we have done for every PDE we have solved so far.

8.1 The maximum principle

The first properties that we need to make sure of, are the uniqueness and stability for the solution of the
problem with certain auxiliary conditions. This would guarantee that the problem is wellpossed, and
the chosen auxiliary conditions do not break the physicality of the problem. We begin by establishing
the following property, that will be later used to prove uniqueness and stability.

Maximum Principle. If u(x, t) satisfies the heat equation (8.1) in the rectangle R = {0 ≤ x ≤ l, 0 ≤
t ≤ T} in space-time, then the maximum value of u(x, t) over the rectangle is assumed either initially
(t = 0), or on the lateral sides (x = 0, or x = l).

Mathematically, the maximum principle asserts that the maximum of u(x, t) over the three sides must
be equal to the maximum of the u(x, t) over the entire rectangle. If we denote the set of points com-
prising the three sides by Γ = {(x, t) ∈ R | t = 0 or x = 0 or x = l}, then the maximum principle
can be written as

max
(x,t)∈Γ

{u(x, t)} = max
(x,t)∈R

{u(x, t)}. (8.2)

If you think of the heat conduction phenomena in a thin rod, then the maximum principle makes
physical sense, since the initial temperature, as well as the temperature at the endpoints will dissipate
through conduction of heat, and at no point the temperature can rise above the highest initial or end-
point temperature. In fact, a stronger version of the maximum principle holds, which asserts that the
maximum over the rectangle R can not be attained at a point not belonging to Γ, unless u ≡ constant,
i.e. for nonconstant solutions the following strict inequality holds

max
(x,t)∈R\Γ

{u(x, t)} < max
(x,t)∈R

{u(x, t)},
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where R \ Γ is the set of all points of R that are not in Γ (difference of sets). This makes physical sense
as well, since the heat from the point of highest initial or boundary temperature will necessarily transfer
to points of lower temperature, thus decreasing the highest temperature of the rod.

We finally note, that the maximum principle also implies a minimum principle, since one can apply
it to the function −u(x, t), which also solves the heat equation, and make use of the fact that

min{u(x, t)} = −max{−u(x, t)}.

Thus, the minima points of the function u(x, t) will exactly coincide with the maxima points of −u(x, t),
of which, by the maximum principle, there must necessarily be in Γ.

Proof of the maximum principle. If the maximum of the function u(x, t) over the rectangle
R is assumed at an internal point (x0, t0), then the gradient of u must vanish at that point, i.e.
ut(x0, t0) = ux(x0, t0) = 0. If in addition we had the strict inequality uxx(x0, t0) < 0, then one would
get a contradiction by plugging the point (x0, t0) into the heat equation. Indeed, we would have

ut(x0, t0)− kuxx(x0, t0) = −kuxx(x0, t0) > 0.

This contradicts the heat equation (8.1), which must hold for all values of x and t. Thus, the contra-
diction would imply that the maximum point (x0, t0) cannot be an internal point. However, from the
second derivative test we have the weaker inequality uxx(x0, t0) ≤ 0 (the point would not be a maximum
if uxx(x0, t0) > 0), which is not enough for this argument to go through.

The way out, is to recycle the above argument with a slight modification to the function u. Define a
new function

v(x, t) = u(x, t) + εx2, (8.3)

where ε > 0 is a constant that can be taken as small as one wants. Now let M be the maximum value
of u over the three sides, which we denoted by Γ above. That is

M = max
(x,t)∈Γ

{u(x, t)}.

To prove the maximum principle, we need to establish (8.2). The maximum over Γ is always less than
or equal to the maximum over R, since Γ ⊂ R. So we only need to show the opposite inequality, which
would follow from showing that

u(x, t) ≤M, for all the points (x, t) ∈ R. (8.4)

Notice that from the definition of v, we have that at the points of Γ, v(x, t) ≤ M + εl2, since the
maximum value of εx2 on Γ is εl2. Then, instead of proving inequality (8.4), we will prove that

v(x, t) ≤M + εl2, for all the points (x, t) ∈ R, (8.5)

which implies (8.4). Indeed, from the definition of v in (8.3), we have that in the rectangle R

u(x, t) ≤ v(x, t)− εx2 ≤M + ε(l2 − x2),

where we used (8.5) to bound v(x, t). Now, since the point (x, t) is taken from the rectangle R, we have
that 0 ≤ x ≤ l, and the difference l2−x2 is bounded. But then the right hand side of the above inequality
can be made as close to M as possible by taking ε small enough, which implies the bound (8.4).

If we formally apply the heat operator to the function v, and use the definition (8.3), we will get

vt − kvxx = ut − k(uxx + 2ε) = (ut − kuxx)− 2kε < 0,

since both k, ε > 0, and u satisfies the heat equation (8.1) on R. Thus, v satisfies the heat inequality in R

vt − kvxx < 0. (8.6)

40



We now recycle the above argument, which barely failed for u, applying it to v instead. Suppose
v(x, t) attains its maximum value at an internal point (x0, t0). Then necessarily vt(x0, t0) = 0, and
vxx(x0, t0) ≤ 0. Hence, at this point we have

vt(x0, t0)− kvxx(x0, t0) = −kvxx(x0, t0) ≥ 0,

which contradicts the heat inequality (8.6). Thus, v cannot have an internal maximum point in R.
Similarly, suppose that v(x, t) attains its maximum value at a point (x0, t0) on the fourth side of the

rectangle R, i.e. when t0 = T . Then we still have that vx(x0, t0) = 0, and vxx(x0, t0) ≤ 0, but vt(x0, t0)
does not have to be zero, since t0 = T is an endpoint in the t direction. However, from the definition of
the derivative, and our assumption that (x0, t0) is a point of maximum, we have

vt(x0, t0) = lim
δ→0+

v(x0, t0)− v(x0, t0 − δ)
δ

≥ 0.

So at this point we still have
vt(x0, t0)− kvxx(x0, t0) ≥ 0,

which again contradicts the heat inequality (8.6).
Now, since the continuous function v(x, t) must attain its maximum value somewhere in the closed

rectangle R, this must happen on one of the remaining three sides, which comprise the set Γ. Hence,

v(x, t) ≤ max
(x,t)∈R

{v(x, t)} = max
(x,t)∈Γ

{v(x, t)} ≤M + εl2,

which finishes the proof of (8.5).

8.2 Uniqueness

Consider the Dirichlet problem for the heat equation,{
ut − kuxx = f(x, t) for 0 ≤ x ≤ l, t > 0
u(x, 0) = φ(x),
u(0, t) = g(t), u(l, t) = h(t),

(8.7)

for given functions f, φ, g, h. We will use the maximum principle to show uniqueness and stability for
the solutions of this problem (recall that last time we used the energy method to prove uniqueness for
this problem).

Uniqueness of solutions. There is at most one solution to the Dirichlet problem (8.7).

Indeed, arguing from the inverse, suppose that there are two functions, u, and v, that both solve the in-
homogeneous heat equation and satisfy the initial and Dirichlet boundary conditions of (8.7). Then their
difference, w = u−v, satisfies the homogeneous heat equation with zero initial-boundary conditions, i.e.{

wt − kwxx = 0 for 0 ≤ x ≤ l, t > 0
w(x, 0) = 0,
u(0, t) = 0, u(l, t) = 0,

(8.8)

But from the maximum principle, we know that w assumes its maximum and minimum values on one
of the three sides t = 0, x = 0, and x = l. And since w = 0 on all of these three sides from the initial
and boundary conditions in (8.8), we have that for x ∈ [0, l], t > 0

0 ≤ w ≤ 0 ⇒ w(x, t) ≡ 0.

Hence,
u− v = w ≡ 0, or u ≡ v,

and the solution must indeed be unique.
Notice again that all of the above arguments hold for the case of the infinite interval −∞ < x < ∞

as well. In this case one ignores the effect of the infinitely far endpoints and considers an IVP. And the
maximum principle simply asserts that the maximum of the solutions must be attained initially. We
will use this in the next lecture when deriving the solution for the IVP for the heat equation on the
entire real line x ∈ R.
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8.3 Stability

Stability of solutions with respect to the auxiliary conditions is the third ingredient of well-posedness,
after existence and uniqueness. It asserts that close auxiliary conditions lead to close solutions. One
may have different ways of measuring the closeness of the solutions, and the initial and boundary data.
Consider two solutions, u1, u2, of the heat equation (8.1) for x ∈ [0, l], t > 0, which satisfy the following
initial-boundary conditions{

u1(x, 0) = φ1(x),
u1(0, t) = g1(t), u1(l, t) = h1(t),

{
u2(x, 0) = φ2(x),
u2(0, t) = g2(t), u2(l, t) = h2(t).

(8.9)

Stability of solutions means that closeness of φ1 to φ2, g1 to g2 and h1 to h2 implies the closeness of u1

to u2. Notice that the difference w = u1−u2 solves the heat equation as well, and satisfies the following
initial-boundary conditions{

w1(x, 0) = φ1(x)− φ2(x),
w(0, t) = g1(t)− g2(t), w(l, t) = h1(t)− h2(t).

But then the maximum and minimum principles imply

− max
(x,t)∈Γ

{|w(x, t)|} ≤ max
0≤x≤l
t≥0

{w(x, t)} ≤ max
(x,t)∈Γ

{|w(x, t)|},

and hence, the absolute value of the difference u1 − u2 will be bounded by

max
0≤x≤l
t≥0

{|u1(x, t)− u2(x, t)|} = max
0≤x≤l
t≥0

{|w(x, t)|} ≤ max
(x,t)∈Γ

{|w(x, t)|}

= max
0≤x≤l
t≥0

{|φ1(x)− φ2(x)|, |g1(t)− g2(t)|, |h1(t)− h2(t)|}.

Thus, the smallness of the maximum of the differences |φ1 − φ2|, |g1 − g2| and |h1 − h2| implies the
smallness of the maximum of the difference of solutions |u1 − u2|. In this case the stability is said to be
in the uniform sense, i.e. smallness is understood to hold uniformly in the (x, t) variables.

An alternate way of showing the stability is provided by the energy method. Suppose u1 and u2 solve
the heat equation with initial data φ1 and φ2 respectively, and zero boundary conditions. This would
be the case for the problem over the entire real line x ∈ R, or if g1 = g2 = h1 = h2 = 0 in (8.9). In this
case the energy method for the difference w = u1 − u2 implies that E[w](t) ≤ E[w](0) for all t ≥ 0, or

ˆ l

0

[u1(x, t)− u2(x, t)]2 dx ≤
ˆ l

0

[φ1(x)− φ2(x)]2 dx, for all t ≥ 0.

Thus the closeness of φ1 to φ2 in the sense of the square integral of the difference implies the closeness
of the respective solutions in the same sense. This is called stability in the square integral (L2) sense.

8.4 Conclusion

As expected, the method of characteristics is inefficient for solving the heat equation. We then need to
find an alternative method of reducing the equation to an ODE. But before embarking on this path, we
first study the properties of the heat equation, which will serve as beacons in the later reduction to an
ODE. Today we established the maximum principle for the heat equation, which immediately implied
the uniqueness and stability for the solution. Next time we will look at the invariance properties of the
equation and derive the solution using these properties.
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9 Heat equation: solution

Equipped with the uniqueness property for the solutions of the heat equation with appropriate auxiliary
conditions, we will next present a way of deriving the solution to the heat equation

ut − kuxx = 0. (9.1)

Considering the equation on the entire real line x ∈ R simplifies the problem by eliminating the effect
of the boundaries, we will first concentrate on this case, which corresponds to the dynamics of the
temperature in a rod of infinite length. We want to solve the IVP{

ut − kuxx = 0 (−∞ < x <∞, 0 < t <∞),
u(x, 0) = φ(x).

(9.2)

Since the solution to the above IVP is not easy to derive directly, unlike the case of the wave IVP,
we will first derive a particular solution for a special simple initial data, and try to produce solutions
satisfying all other initial conditions by exploiting the invariance properties of the heat equation.

9.1 Invariance properties of the heat equation

The heat equation (9.1) is invariant under the following transformations

(a) Spatial translations: If u(x, t) is a solution of (9.1), then so is the function u(x−y, t) for any fixed y.

(b) Differentiation: If u is a solution of (9.1), then so are ux, ut, uxx and so on.

(c) Linear combinations: If u1, u2, . . . , un are solutions of (9.1), then so is u = c1u1 + c2u2 + . . . cnun
for any constants c1, c2, . . . , cn.

(d) Integration: If S(x, t) is a solution of (9.1), then so is the integral

v(x, t) =

ˆ ∞
−∞

S(x− y, t)g(y) dy

for any function g(y), as long as the improper integral converges (we will ignore the issue of the
convergence for the time being).

(e) Dilation (scaling): If u(x, t) is a solution of (9.1), then so is the dilated function v(x, t) = u(
√
ax, at)

for any constant a > 0 (compare this to the scaling property of the wave equation, which is in-
variant under the dilation u(x, t) 7→ u(ax, at) for all a ∈ R).

Properties (a), (b) and (c) are trivial (check by substitution), while property (d) is the limiting case
of property (c). Indeed, if we use the notation uy(x, t) = S(x − y, t), and cy = g(y)∆y, then uy is also
a solution by property (a), and we have the formal limitˆ ∞

−∞
S(x− y, t)g(y) dy = lim

∆y→0

∑
y

cyuy.

To make this precise, we need to consider a finite interval of integration, which is partitioned by points
{yi}ni=1 into subintervals of length ∆y, and use the definition of the integral as the limit of the corre-
sponding Riemann sum to writeˆ ∞

−∞
S(x− y, t)g(y) dy = lim

b→∞

ˆ b

−b
S(x− y, t)g(y) dy = lim

b→∞
lim
n→∞

n∑
i=1

S(x− yi)g(yi)∆y,

where −b = y1 < y2 < . . . yn = b is a partition of the interval [−b, b].
Finally, property (e) can be checked by direct substitution as well. Notice that we cannot formally

reverse the time by dilating with the factor a = −1, as was the case for the wave equation, since the√
a factor in front of the x argument would make the dilated function complex, which is not allowed in

the theory of real PDEs (what is the meaning of complex valued temperature?!). We will later see that
the heat equation is indeed time irreversible.
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9.2 Solving a particular IVP

As a special initial data we take the following function

H(x) =

{
1, x > 0,
0, x < 0,

(9.3)

which is called the Heaviside step function. We consider the IVP{
Qt − kQxx = 0 (−∞ < x <∞, 0 < t <∞),
Q(x, 0) = H(x).

(9.4)

We will solve this IVP in successive steps.

Step 1: Reduction to an ODE. Notice that the Heaviside function (9.3) is invariant under the
dilation x 7→

√
ax, i.e. H(

√
ax) = H(x). From the dilation property of the heat equation, we know

that Q(
√
ax, at) also solves the heat equation. But Q(

√
ax, 0) = H(

√
ax) = H(x), thus Q(

√
ax, at) and

Q(x, t) both solve the IVP (9.4). The uniqueness of solutions then implies that Q(
√
ax, at) = Q(x, t)

for all x ∈ R, t > 0, so Q is invariant under the dilation (x, t) 7→ (
√
ax, at) as well.

Due to this invariance, Q can depend only on the ratio x√
t
, that is Q(x, t) = q( x√

t
). To see this, define

the function q in the following way q(z) = Q(z, 1). But then for fixed (x, t), we have

Q(x, t) = Q

(
1√
t
x,

1

t
t

)
= Q

(
x√
t
, 1

)
= q

(
x√
t

)
.

Thus Q is completely determined by the function of one variable q.
For convenience of future calculations we pass to the function g(z) = q(

√
4kz), so that

Q(x, t) = q

(
x√
t

)
= g

(
x√
4kt

)
= g(p),

where we used the notation p = x/
√

4kt. We next compute the derivatives of Q in terms of g, and
substitute them into the heat equation in order to obtain an ODE for g. Using the chain rule, one gets

Qt =
dg

dp

∂p

∂t
= −4k

2

x

(
√

4kt)3
g′(p) = − 1

2t

x√
4kt

g′(p),

Qx =
dg

dp

∂p

∂x
=

1√
4kt

g′(p),

Qxx =
dQx

dp

∂p

∂t
=

1

4kt
g′′(p).

The heat equation then implies

0 = Qt − kQxx =
1

4t
[−2pg′(p)− g′′(p)],

which gives the following equation for g
g′′ + 2pg′ = 0. (9.5)

Step 2: Solving the ODE. Using the integrating factor exp(
´

2p dp) = ep
2
, the ODE (9.5) reduces to

[ep
2

g′(p)]′ = 0.
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Thus, we have
ep

2

g′(p) = c1.

Solving for g′(p), and integrating, we obtain

g(p) = c1

ˆ
e−p

2

dp+ c2.

Step 3: Checking the initial condition. Recalling that Q(x, t) = g(p), where p = x/
√

4kt, we
obtain the following explicit formula for Q

Q(x, t) = c1

ˆ x/
√

4kt

0

e−p
2

dp+ c2. (9.6)

Notice that we chose a particular antiderivative, which we are free to do due to the presence of the
arbitrary constants. Also note that the above formula is only valid for t > 0, so to check the initial
condition, we need to take the limit t→ 0+. Recalling the initial condition from (9.4), we have that,

if x > 0, 1 = lim
t→0+

Q(x, t) = c1

ˆ +∞

0

e−p
2

dp+ c2 = c1

√
π

2
+ c2,

if x < 0, 0 = lim
t→0+

Q(x, t) = c1

ˆ −∞
0

e−p
2

dp+ c2 = −c1

√
π

2
+ c2,

where we used the fact that
´∞

0
e−p

2
dp =

√
π/2 to compute the improper integrals. The above identities

give

c1

√
π

2
+ c2 = 1, −c1

√
π

2
+ c2 = 0.

Solving for c1 and c2, we get c1 = 1/
√
π and c2 = 1/2. Substituting these into (9.6) gives the unique

solution of the IVP (9.4),

Q(x, t) =
1

2
+

1√
π

ˆ x/
√

4kt

0

e−p
2

dp, for t > 0. (9.7)

9.3 Solving the general IVP

Returning to the general IVP (9.2), we would like to derive a solution formula, which will express the
solution to the IVP in terms of the initial data (similar to d’Alambert’s solution for the wave equation).

We first define the function

S(x, t) =
∂Q

∂x
(x, t), (9.8)

where Q(x, t) is the solution to the particular IVP (9.4), and is given by (9.7). Then, by the invariance
properties of the heat equation, S(x, t) also solves the heat equation, and so does

u(x, t) =

ˆ ∞
−∞

S(x− y, t)φ(y) dy, for t > 0. (9.9)

We claim that this u is the unique solution of the IVP (9.2). To verify this claim one only needs to
check the initial condition of (9.2). Notice that using S = Qx, we can rewrite u as follows

u(x, t) =

ˆ ∞
−∞

∂Q

∂x
(x− y, t)φ(y) dy = −

ˆ ∞
−∞

∂

∂y
[Q(x− y, t)]φ(y) dy
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Integrating by parts in the last integral, we get

u(x, t) = −Q(x− y, t)φ(y)
∣∣∣y=∞

y=−∞
+

ˆ ∞
−∞

Q(x− y, t)φ′(y) dy.

We assume that the boundary terms vanish, which can be guaranteed for example by assuming that φ(y)
vanishes for large |y| (this is not strictly necessary, since S(x − y, t) decays rapidly as |y − x| becomes
large, as we will shortly see). Now plugging in t = 0, and using that Q has the Heaviside function (9.3)
as its initial data, we have

u(x, 0) =

ˆ ∞
−∞

Q(x− y, 0)φ′(y) dy =

ˆ x

−∞
φ′(y) dy = φ(y)

∣∣∣y=x

y=−∞
= φ(x).

So u(x, t) indeed satisfies the initial condition of (9.2).
We can compute S(x, t) from (9.8), which will give

S(x, t) =
1√

4πkt
e−x

2/4kt, (9.10)

Using this expression of S(x, t), we can now rewrite the solution given by (9.9) in the following explicit
form

u(x, t) =
1√

4πkt

ˆ ∞
−∞

e−(x−y)2/4ktφ(y) dy, for t > 0. (9.11)

The function S(x, t) is known as the heat kernel, fundamental solution, source function, Green’s func-
tion, or propagator of the heat equation. Notice that it gives a way of propagating the initial data φ to
later times, giving the solution at any time t > 0.

It is clear that formula (9.11) does not make sense for t = 0, although one can compute the limit of
u(t, x) as t → 0+ in that formula, which will give an alternate way of checking the initial condition of
(9.2).

9.4 Conclusion

We derived the solution to the heat equation by first looking at a particular initial data, which was
invariant under dilation. This guaranteed that the solution corresponding to this initial data is also
dilation invariant, which reduced the heat equation to an ODE. After solving this ODE, and obtaining
the solution, we saw that the solution to the general heat IVP can be written in an integral form using
this particular solution. Next time we will explore the solution given by formula (9.11), and will study
its qualitative behavior.
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Problem Set 5

1. (#2.3.1 in [Str]) Consider the solution 1 − x2 − 2kt of the diffusion equation. Find the locations
of its maximum and its minimum in the closed rectangle {0 ≤ x ≤ 1, 0 ≤ t ≤ T}.

2. (#2.3.5 in [Str]) The purpose of this exercise is to show that the maximum principle is not true
for the equation ut = xuxx, which has a variable coefficient.

(a) Verify that u = −2xt − x2 is a solution. Find the location of its maximum in the closed
rectangle {−2 ≤ x ≤ 2, 0 ≤ t ≤ 1}.

(b) Where precisely does the proof of the maximum principle break down for this equation?

3. (#2.3.6 in [Str]) Prove the comparison principle for the diffusion equation: If u and v are two
solutions, and if u ≤ v for t = 0, for x = 0, and for x = l, then u ≤ v for 0 ≤ t <∞, 0 ≤ x ≤ l.

4. (#2.3.8 in [Str]) Consider the diffusion equation on (0, l) with the Robin boundary conditions
ux(0, t)− a0u(0, t) = 0, and ux(l, t) + alu(l, t) = 0. If a0 > 0, and al > 0, use the energy method to

show that the endpoints contribute to the decrease of
´ l

0
u2(x, t) dx. (This is interpreted to mean

that part of the “energy” is lost at the boundary, so we call the boundary conditions “radiating”
or “dissipative.”)

5. (#2.4.1 in [Str]) Solve the diffusion equation with the initial condition

φ(x) = 1 for |x| < l and φ(x) = 0 for |x| > l.

Write your answer in terms of Erf(x).

6. (#2.4.6 in [Str]) Compute
´∞

0
e−x

2
dx. (Hint: This is a function that cannot be integrated by

formula. So use the following trick. Transform the double integral
´∞

0
e−x

2
dx ·
´∞

0
e−y

2
dy into

polar coordinates and you’ll end up with a function that can be integrated easily.)

7. (#2.4.9 in [Str]) Solve the diffusion equation ut = kuxx with the initial condition u(x, 0) = x2 by the
following special method. First show that uxxx satisfies the diffusion equation with zero initial con-
dition. Therefore, by uniqueness, uxxx ≡ 0. Integrating this result thrice, obtain u(x, t) = A(t)x2+
B(t)x+ C(t). Finally, it’s easy to solve for A,B, and C by plugging into the original problem.
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10 Heat equation: interpretation of the solution

Last time we considered the IVP for the heat equation on the whole line{
ut − kuxx = 0 (−∞ < x <∞, 0 < t <∞),
u(x, 0) = φ(x),

(10.1)

and derived the solution formula

u(x, t) =

ˆ ∞
−∞

S(x− y, t)φ(y) dy, for t > 0, (10.2)

where S(x, t) is the heat kernel,

S(x, t) =
1√

4πkt
e−x

2/4kt. (10.3)

Substituting this expression into (10.2), we can rewrite the solution as

u(x, t) =
1√

4πkt

ˆ ∞
−∞

e−(x−y)2/4ktφ(y) dy, for t > 0. (10.4)

Recall that to derive the solution formula we first considered the heat IVP with the following particular
initial data

Q(x, 0) = H(x) =

{
1, x > 0,
0, x < 0.

(10.5)

Then using dilation invariance of the Heaviside step function H(x), and the uniqueness of solutions to
the heat IVP on the whole line, we deduced that Q depends only on the ratio x/

√
t, which lead to a

reduction of the heat equation to an ODE. Solving the ODE and checking the initial condition (10.5),
we arrived at the following explicit solution

Q(x, t) =
1

2
+

1√
π

ˆ x/
√

4kt

0

e−p
2

dp, for t > 0. (10.6)

The heat kernel S(x, t) was then defined as the spatial derivative of this particular solution Q(x, t), i.e.

S(x, t) =
∂Q

∂x
(x, t), (10.7)

and hence it also solves the heat equation by the differentiation property.
The key to understanding the solution formula (10.2) is to understand the behavior of the heat kernel

S(x, t). To this end some technical machinery is needed, which we develop next.

10.1 Dirac delta function

Notice that, due to the discontinuity in the initial data of Q, the derivative Qx(x, t), which we used in
the definition of the function S in (10.7), is not defined in the traditional sense when t = 0. So how can
one make sense of this derivative, and what is the initial data for S(x, t)?

It is not difficult to see that the problem is at the point x = 0. Indeed, using that Q(x, 0) = H(x)
is constant for any x 6= 0, we will have S(x, 0) = 0 for all x different from zero. However, H(x) has a
jump discontinuity at x = 0, as is seen in Figure 10.1, and one can imagine that at this point the rate
of growth of H is infinite. Then the “derivative”

δ(x) = H ′(x) (10.8)
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1

x

H

Figure 10.1: The graph of the Heaviside step func-
tion.

x

∆

Figure 10.2: The sketch of the Dirac δ function.

is zero everywhere, except at x = 0, where it has a spike of zero width and infinite height. Refer to
Figure 10.2 below for an intuitive sketch of the graph of δ. Of course, δ is not a function in the tra-
ditional sense, but is rather a generalized function, or distribution. Unlike regular functions, which are
characterized by their finite values at every point in their domains, distributions are characterized by
how they act on regular functions.

To make this rigorous, we define the set of test functions D = C∞c , the elements of which are smooth
functions with compact support. So φ ∈ D, if and only if φ has continuous derivatives of any order
k ∈ N, and the closure of the support of φ,

supp(φ) = {x ∈ R | φ(x) 6= 0},

is compact. Recall that compact sets in R are those that are closed and bounded. In particular for any
test function φ there is a rectangle [−R,R], outside of which φ vanishes. Notice that derivatives of test
functions are also test functions, as are sums, scalar multiples and products of test functions.

Distributions are continuous linear functionals on D, that is, they are continuous linear maps from D
to the real numbers R. Notice that for any regular function f , we can define the functional

f [φ] =

ˆ ∞
−∞

f(x)φ(x) dx, (10.9)

which makes f into a distribution, since to every φ ∈ D it assigns the number
´∞
−∞ f(x)φ(x) dx. This

integral will converge under very weak conditions on f (f ∈ L1
loc), due to the compact support of φ. In

particular, f can certainly have jump discontinuities. Notice that we committed an abuse of notation
to identify the distribution associated with f by the same letter f . The particular notion in which we
use the function will be clear from the context.

One can also define the distributional derivative of f to be the distribution, which acts on the test
functions as follows

f ′[φ] = −
ˆ ∞
−∞

f(x)φ′(x) dx.

Notice that integration by parts and the compact support of test functions makes this definition con-
sistent with the regular derivative for differentiable functions (check that the distribution formed as in
(10.9) by the derivative of f coincides with the distributional derivative of f).

We can also apply the notion of the distributional derivative to the Heaviside step function H(x),
and think of the definition (10.8) in the sense of distributional derivatives. Let us now compute how δ,
called the Dirac delta function, acts on test functions. By the definition of the distributional derivative,

δ[φ] = −
ˆ ∞
−∞

H(x)φ′(x) dx.

Recalling the definition of H(x) in (10.5), we have that

δ[φ] = −
ˆ ∞

0

φ′(x) dx = −φ(x)
∣∣∣∞
0

= φ(0). (10.10)
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Thus, the Dirac delta function maps test functions to their values at x = 0. We can make a translation
in the x variable, and define δ(x − y) = H ′(x − y), i.e. δ(x − y) is the distributional derivative of the
distribution formed by the function H(x − y). Then it is not difficult to see that δ(x − y)[φ] = φ(y).
That is, δ(x−y) maps test functions to their values at y. We will make the abuse of notation mentioned
above, and write this as ˆ ∞

−∞
δ(x− y)φ(x) dx = φ(y).

We also note that δ(x − y) = δ(y − x), since δ is even, if we think of it as a regular function with a
centered spike (one can prove this from the definition of δ as a distribution).

Using these new notions, we can make sense of the initial data for S(x, y). Indeed,

S(x, 0) = δ(x). (10.11)

Since the initial data is a distribution, one then thinks of the equation to be in the sense of distribu-
tions as well, that is, treat the derivatives appearing in the equation as distributional derivatives. This
requires the generalization of the idea of a distribution to two dimensions. We call this type of solutions
weak solutions (recall the solutions of the wave equation with discontinuous data). Thus S(x, t) is a
week solution of the heat equation, if

ˆ ∞
−∞

ˆ ∞
−∞

S(x, t)[φt(x, t)− kφxx(x, t)] dxdt = 0,

for any test function φ of two variables. This means that the distribution (∂t − k∂2
x)S, with the deriva-

tives taken in the distributional sense, is the zero distribution. Notice that the weak solution S(x, t)
arising from the initial data (10.11) has the form (10.3), which is an infinitely differentiable function
of x and t. This is in stark contrast to the case of the wave equation, where, as we have seen in the
examples, the discontinuity of the initial data is preserved in time.

Having the δ function in our arsenal of tools, we can now give an alternate proof that (10.2) satisfies
the initial conditions of (10.1). Directly plugging in t = 0 into (10.2), which we are now allowed to do
by treating it as a distribution, and using (10.11), we get

u(x, 0) =

ˆ ∞
−∞

δ(x− y)φ(y) dy = φ(x).

10.2 Interpretation of the solution

Let us look at the solution (10.4) in detail, and try to understand how the heat kernel S(x, t) propagates
the initial data φ(x). Notice that S(x, t), given by (10.3), is a well-defined function of (x, t) for any
t > 0. Moreover, S(x, t) is positive, is even in the x variable, and for a fixed t has a bell-shaped graph.
In general, the function

1√
2πσ2

e−
(x−µ)2

2σ2

is called Gaussian function or Gaussian. In the probability theory, it gives the density of the normal
distribution with mean µ and standard deviation σ. The graph of the Gaussian is a bell-curve with its
peak of height 1/

√
2πσ2 at x = µ and the width of the bell at mid-height roughly equal to 2σ. Thus,

for some fixed time t the height of S(x, t) at its peak x = 0 is 1√
4πkt

, which decays as t grows.

Notice that as t→ 0+, the height of the peak becomes arbitrarily large, and the width of the bell-curve,√
2kt goes to zero. This, of course, is expected, since S(x, t) has the initial data (10.11). One can think

of S(x, t) as the temperature distribution at time t that arises from the initial distribution given by the
Dirac delta function. With passing time the highest temperature at x = 0 gets gradually transferred to
the other points of the rod. It also makes sense, that points closer to x = 0 will have higher temperature
than those farther away. Graphs of S(x, t) for three different times are sketched in Figure 10.3 below.
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x

S

Figure 10.3: The graphs of the heat kernel at different times.

From the initial condition (10.11), we see that initially the temperature at every point x 6= 0 is zero,
but S(x, t) > 0 for any x and t > 0. This means that heat is instantaneously transferred to all points of
the rod (closer points get more heat), so the speed of heat conduction is infinite. Compare this to the
finite speed of propagation for the wave equation. One can also compute the area below the graph of
S(x, t) at any time t > 0 to get

ˆ ∞
−∞

S(x, t) dx =
1√
π

ˆ ∞
−∞

e−p
2

dp = 1,

where we used the change of variables p = x/
√

4kt. At t = 0, we have

ˆ ∞
−∞

S(x, 0) dx =

ˆ ∞
−∞

δ(x) dx = 1,

where we think of the last integral as the δ distribution applied to the constant function 1 (more pre-
cisely, a test function that is equal to 1 in some open interval around x = 0). This shows that the area
below the graph of S(x, t) is preserved in time and is equal to 1, so for any fixed time t ≥ 0, S(x, t) can
be thought of as a probability density function. At time t = 0 its the probability density that assigns
probability 1 to the point x = 0, as was seen in (10.10), and for times t > 0 it is a normal distribution

with mean x = 0 and standard deviation σ =
√

2kt that grows with time. As we mentioned earlier,
S(x, t) is smooth, in spite of having a discontinuous initial data. We will see in the next lecture that
this is true for any solution of the heat IVP (10.1) with general initial data.

We now look at the solution (10.4) with general data φ(x). First, notice that the integrand in (10.2),

S(x− y, t)φ(y),

measures the effect of φ(y) (the initial temperature at the point y) felt at the point x at some later time
t. The source function S(x − y, t), which has its peak precisely at y, weights the contribution of φ(y)
according to the distance of y from x and the elapsed time t.

Since the value of u(x, t) (temperature at the point x at time t) is the total sum of contributions from
the initial temperature at all points y, we have the formal sum

u(x, t) ≈
∑
y

S(x− y, t)φ(y),

which in the limit gives formula (10.2). So, the heat kernel S(x, t) gives a way of propagating the
initial data φ to later times. Of course the contribution from a point y1 closer to x has a bigger weight
S(x− y1, t), than the contribution from a point y2 farther away, which gets weighted by S(x− y2, t).

The function S(x, t) appears in various other physical situations. For example in the random (Brown-
ian) motion of a particle in one dimension. If the probability of finding the particle at position x initially
is given by the density function φ(x), then the density defining the probability of finding the particle at
position x at time t is given by the same formula (10.2).
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Example 10.1. Solve the heat equation with the initial condition u(x, 0) = ex.
Using the solution formula (10.4), we have

u(x, t) =
1√

4πkt

ˆ ∞
−∞

e−(x−y)2/4ktey dy =
1√

4πkt

ˆ ∞
−∞

e[−x2+2xy−y2+4kty]/4kt dy

We can complete the squares in the numerator of the exponent, writing it as

−x2 + 2xy − y2 + 4kty

4kt
=
−x2 + 2(x+ 2kt)y − y2

4kt

=
−(y − 2kt− x)2 + 4ktx+ 4k2t2

4kt
=−

(
y − 2kt− x√

4kt

)2

+ x+ kt.

We then have

u(x, t) =
1√

4πkt

ˆ ∞
−∞

ex+kte[(y−2kt−x)/
√

4kt]2 dy =
1√
π
ex+kt

ˆ ∞
−∞

e−p
2

dp = ekt+x.

Notice that u(x, t) grows with time, which may seem to be in contradiction with the maximum prin-
ciple. However, thinking in terms of heat conduction, we see that the initial temperature u(x, 0) = ex is
itself infinitely large at the far right end of the rod x = +∞. So the temperature does not grow out of
nowhere, but rather gets transferred from right to left with the “speed” k. Thus the initial exponential
distribution of the temperature “travels” from right to left with the speed k as t grows. Compare this
to the example in Strauss, where the initial temperature u(x, 0) = e−x “travels” from left to right, since
the initial temperature peaks at the far left end x = −∞.

In the above example we were able to compute the solution explicitly, however, the integral in (10.4)
may be impossible to evaluate completely in terms of elementary functions for general initial data φ(x).
Due to this, the answers for particular problems are usually written in terms of the error function in
statistics,

Erf(x) =
2√
π

ˆ x

0

e−p
2

dp.

Notice that Erf(0) = 0, and limx→∞ Erf(x) = 1. Using this function, we can rewrite the function Q(x, t)
given by (10.6), which solves the heat IVP with Heaviside initial data, as follows

Q(x, t) =
1

2
+

1

2
Erf

(
x√
4kt

)
.

10.3 Conclusion

Using the notions of distribution and distributional derivative, we can make sense of the heat kernel
S(x, t) that has the Dirac δ function as its initial data. Comparing the expression of the heat kernel
(10.3) with the density function of the normal (Gaussian) distribution, we saw that the solution formula
(10.2) essentially weights the initial data by the bell-shaped curve S(x, t), thus giving the contribution
from the initial heat at different points towards the temperature at point x at time t.
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11 Comparison of wave and heat equations

In the last several lectures we solved the initial value problems associated with the wave and heat equa-
tions on the whole line x ∈ R. We would like to summarize the properties of the obtained solutions,
and compare the propagation of waves to conduction of heat.

Recall that the solution to the wave IVP on the whole line{
utt − c2uxx = 0,
u(x, 0) = φ(x),
ut(x, 0) = ψ(x),

(11.1)

is given by d’Alambert’s formula

u(x, t) =
1

2
[φ(x+ ct) + φ(x− ct)] +

1

2c

ˆ x+ct

x−ct
ψ(s) ds. (11.2)

Most of the properties of this solution can be deduced from the solution formula, which can be un-
derstood fairly well, if one thinks in terms of the characteristic coordinates. This is how we arrived
at the properties of finite speed of propagation, propagation of discontinuities of the data along the
characteristics, and others.

On the other hand, the solution to the heat IVP on the whole line{
ut − kuxx = 0,
u(x, 0) = φ(x),

(11.3)

is given by the formula

u(x, t) =
1√

4πkt

ˆ ∞
−∞

e−(x−y)2/4ktφ(y) dy. (11.4)

We saw some of the properties of the solutions to the heat IVP, for example the smoothing property, in
the case of the fundamental solution or the heat kernel

S(x, t) =
1√

4πkt
e−x

2/4kt, (11.5)

which had the Dirac delta function as its initial data. The solution u given by (11.4) can be written in
terms of the heat kernel, and we use this to prove the properties for solutions to the general IVP (11.3).
In terms of the heat kernel the solution is given by

u(x, t) =

ˆ ∞
−∞

S(x− y, t)φ(y) dy =

ˆ ∞
−∞

S(z, t)φ(x− z) dz,

where we made the change of variables z = x− y to arrive at the last integral. Making a further change
of variables p = z/

√
kt, the above can be written as

u(x, t) =
1√
4π

ˆ ∞
−∞

e−p
2/4φ(x− p

√
kt) dp. (11.6)

This last form of the solution will be handy when proving the smoothing property of the heat equation,
the precise statement of which is contained in the following.

Theorem 11.1. Let φ(x) be a bounded continuous function for −∞ < x <∞. Then (11.4) defines an
infinitely differentiable function u(x, t) for all x ∈ R and t > 0, which satisfies the heat equation, and
limt→0+ u(x, t) = φ(x), ∀x ∈ R.
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The proof is rather straightforward, and amounts to pushing the derivatives of u(x, t) onto the heat
kernel inside the integral. All one needs to guarantee for this procedure to go through is the uniform
convergence of the resulting improper integrals. Let us first take a look at the solution itself given by
(11.4). Notice that using the form in (11.6), we have

|u(x, t)| ≤ 1√
4π

ˆ ∞
−∞

∣∣∣e−p2/4φ(x− p
√
kt)
∣∣∣ dp ≤ 1√

4π
(max |φ|)

ˆ ∞
−∞

e−p
2/4 dp = max |φ|,

which shows that u, given by the improper integral, is well-defined, since φ is bounded. One can also
see the maximum principle in the above inequality. We will use similar logic to show that the improper
integrals appearing in the derivatives of u converge uniformly in x and t.

Notice that formally
∂u

∂x
=

ˆ ∞
−∞

∂S

∂x
(x− y, t)φ(y) dy. (11.7)

To make this rigorous, one must prove the uniform convergence of the integral. For this, we use expres-
sion (11.5) for the heat kernel to writeˆ ∞

−∞

∂S

∂x
(x− y, t)φ(y) dy =

1√
4πkt

ˆ ∞
−∞

∂

∂x

[
e−(x−y)2/4kt

]
φ(y) dy

= − 1√
4πkt

ˆ ∞
−∞

x− y
2kt

e−(x−y)2/4ktφ(y) dy.

Making the change of variables p = (x− y)/
√
kt in the above integral, we getˆ ∞

−∞

∂S

∂x
(x− y, t)φ(y) dy =

1

4
√
πkt

ˆ ∞
−∞

pe−p
2/4φ(x− p

√
kt) dp ≤ c√

t
(max |φ|)

ˆ ∞
−∞
|p|e−p2/4 dp,

where c = 1/(4
√
πk) is a constant. The last integral is finite, so the integral in the formal derivative

(11.7) converges uniformly and absolutely for all x ∈ R and t > ε > 0, where ε can be taken arbitrarily
small. So the derivative ux = ∂u/∂x exists and is given by (11.7).

The above argument works for the t derivative, and all the higher order derivatives as well, since for
the nth order derivatives one will end up with the integral

´∞
−∞ |p|

ne−p
2/4 dp, which is finite for all n ∈ N.

This proves the infinite differentiability of the solution, even though the initial data is only continuous.
We have already seen that u given by (11.4) solves the heat equation, due to the invariance properties.

It then only remains to prove that limt→0+ u(x, t) = φ(x), ∀x. Recall that our previous proofs of this
used the derivative of φ(x), or the language of distributions to employ the Dirac δ, where we assumed
that φ is a test function, i.e. infinitely differentiable with compact support. To prove that u(x, t) satisfies
the initial condition in (11.3) in the case of continuous initial data φ as well, one can either use a density
argument, in which φ(x) is uniformly approximated by smooth functions, and make a use of our earlier
proofs, or provide a direct proof. The basic idea behind the direct proof is given next. We need to show
that the difference u(x, t)− φ(x) becomes arbitrarily small when t→ 0+. First notice that

u(x, t)− φ(x) =

ˆ ∞
−∞

S(x− y, t)[φ(y)− φ(x)] dy =
1√
4π

ˆ ∞
−∞

e−p
2/4[φ(x− p

√
kt)− φ(x)] dp, (11.8)

where we used the same change of variables as before, p = (x − y)/
√
kt. To see that the last integral

becomes arbitrarily small as t goes to zero, notice that if p
√
kt is small, then |φ(x−p

√
kt)−φ(x)| is small

due to the continuity of φ, and the rest of the integral is finite. Otherwise, when p
√
kt is large, then

p is large, and the exponential in the integral becomes arbitrarily small, while the φ term is bounded.
Thus, one estimates the above integral by breaking it into the following two integrals

1√
4π

ˆ ∞
−∞

e−p
2/4[φ(x− p

√
kt)− φ(x)] dp

=
1√
4π

ˆ
|p|<δ/

√
kt

e−p
2/4[φ(x− p

√
kt)− φ(x)] dp+

1√
4π

ˆ
|p|≥δ/

√
kt

e−p
2/4[φ(x− p

√
kt)− φ(x)] dp.
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For some small δ, the first integral is small due to the continuity of φ, while for arbitrarily small t the
second integral is the tail of a converging improper integral, and is hence small. You should try to fill
in the rigorous details. This completes the proof of Theorem 11.1.

It turns out, that the result in the above theorem can be proved even if the assumption of continuity
of φ is relaxed to piecewise continuity. One then has the following.

Theorem 11.2. Let φ(x) be a bounded piecewise-continuous function for −∞ < x < ∞. Then (11.4)
defines an infinitely differentiable function u(x, t) for all x ∈ R and t > 0, which satisfies the heat
equation, and

lim
t→0+

u(x, t) =
1

2
[φ(x+) + φ(x−)], for all x ∈ R, (11.9)

where φ(x+) and φ(x−) stand for the right hand side and left hand side limits of φ at x.

Of course the fact that φ has jump discontinuities will not effect the convergence of the improper
integrals encountered in the proof of Theorem 11.1. To see why (11.9) holds, notice that the integral in
the right hand side of (11.6) can be broken into integrals over positive and negative half-lines

u(x, t) =
1√
4π

ˆ 0

−∞
e−p

2/4φ(x− p
√
kt) dp+

1√
4π

ˆ ∞
0

e−p
2/4φ(x− p

√
kt) dp.

Then, since p < 0 in the first integral, φ(x − p
√
kt) goes to φ(x+) as t → 0+, while it goes to φ(x−)

in the second integral, due to p being positive. So one can make the obvious changes in the proof of
the previous theorem to show (11.9). This curious fact is one of the reasons why some people prefer to
define the value of the Heaviside step function at x = 0 to be H(0) = 1

2
. Then one has

lim
t→0+

Q(x, t) = H(x) for all x ∈ R (including x = 0!),

where Q(x, t) was the solution arising from the initial data given by H(x).

11.1 Comparison of wave to heat

We now summarize and compare the fundamental properties of the wave and heat equations in the table
below. Brief discussion of each of the properties will follow.

Property Wave (utt − c2uxx = 0) Heat (ut − kuxx = 0)

(i) Speed of propagation Finite (speed ≤ c) Infinite

(ii) Singularities for t > 0 Transported along characteris-
tics (speed = c)

Lost immediately

(iii) Well-posed for t > 0 Yes Yes (for bounded solutions)

(iv) Well-posed for t < 0 Yes No

(v) Maximum principle No Yes

(vi) Behaviour as t→∞ Does not decay Decays to zero (if φ is inte-
grable)

(vii) Information Transported Lost gradually

Let us now recall why each of the properties listed in the table holds or does not for each equation.

(i) Finite speed of propagation for the wave equation is immediately seen from d’Alambert’s formula
(11.2).

The infinite speed of propagation for the heat equation was seen in the example of the heat kernel,
which is strictly positive for all x ∈ R for t > 0, but has Dirac δ function as its initial data, and
hence is zero for all x 6= 0 initially.
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(ii) We saw in the box-wave (initial displacement in the form of a box, no initial velocity) and the
“hammer blow” (no initial displacement, initial box-shaped velocity) that singularities are pre-
served and are transported along the characteristics. The same is seen from (11.2).

For the heat equation we saw in the last section that the solution (11.4) is infinitely differentiable
even for piecewise continuous initial data (this is true for even weaker conditions on φ).

(iii) Well-posedness for the wave IVP is seen immediately from d’Alambert’s formula.

In the case of the heat equation, we proved uniqueness and stability using either the maximum
principle, or alternatively, the energy method. Existence follows from our construction of the
explicit solution (11.4).

(iv) For the wave equation, this follows from the invariance under time reversion. Indeed, if u(x, t) is
a solution, then so is u(x,−t), which has data (φ(x),−ψ(x)).

If we reverse the time in the heat equation, we get ut+kuxx = 0, t > 0. One can solve this equation
in much the same way as the heat equation, and due to the symmetry in t, will get the solution

u(x, t) =
1√

4πkt

ˆ ∞
−∞

e(x−y)2/4ktφ(y) dy,

which diverges for all x ∈ R (unless φ decays to zero faster than e−p
2
). So the heat equation is

not well-posed backward in time. This makes physical sense as well, since the processes described
by the heat equation, namely diffusion, heat flow and random motion are irreversible processes.

(v) The fact that there is no maximum principle for the wave equation is apparent from the “hammer
blow” example, where the solution was everywhere zero initially, but due to the nonzero initial
velocity, had nonzero displacement for any time t > 0. For the heat equation, the maximum
principle was proved rigorously in a previous lecture.

(vi) We saw that the energy is conserved for the wave equation, so the solutions do not decay. We also
saw this in the box-wave example, in which the initial box-shaped data split into two box-shaped
waves of half the height that traveled in opposite directions without changing the shape.

For the heat equation, the decay is seen from formula (11.4), since S(x− y, t)→ 0 as t→∞, and
the integral will be bounded if φ is integrable. Notice that in the example we considered in the
last lecture, with φ(x) = ex, the solution did not decay, but rather “traveled” from right to left.
This was due to φ being non-integrable.

(vii) The fact that information is transported by the solutions of the wave equation is seen from the
fact that the initial data is propagated along the characteristics. So the information will travel
along the characteristics as well.

In the case of the heat equation, the information is gradually lost, which can be seen from the
graph of a typical solution (think of the heat kernel). The heat from the higher temperatures gets
dissipated and after a while it is not clear what the original temperatures were.

11.2 Conclusion

Although the wave and heat equations are both second order linear constant coefficient PDEs, their
respective solutions posses very different properties. By now we have learned how to solve the initial
value problems on the whole line for both of these equations, and understood these solutions in terms
of the physics behind the corresponding problems. We also saw that the properties of the solutions of
the respective equations correspond to our intuition for each of the physical phenomena described by
the equations.
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Problem Set 6

1. (#2.4.4 in [Str]) Solve the heat equation if φ(x) = e−x for x > 0, and φ(x) = 0 for x < 0.

2. (#2.4.11 (a) in [Str]) Consider the heat equation on the whole line with the usual initial condition
u(x, 0) = φ(x). If φ(x) is an odd function, show that the solution u(x, t) is also an odd function
of x. (Hint: Consider u(−x, t) + u(x, t) and use the uniqueness.)

3. (#2.4.15 in [Str]) Prove the uniqueness of the heat problem with Neumann boundary conditions:{
ut − kuxx = f(x, t) for 0 < x < l, t > 0,
u(x, 0) = φ(x),
ux(0, t) = g(t), ux(l, t) = h(t),

by the energy method.

4. (#2.4.16 in [Str]) Solve the initial value problem for the diffusion equation with constant dissipa-
tion: {

ut − kuxx + bu = 0 for −∞ < x <∞,
u(x, 0) = φ(x),

where b > 0 is a constant. (Hint: Make the change of variables u(x, t) = e−btv(x, t).)

5. (#2.5.4 in [Str]) Here is a direct relationship between the wave and diffusion equations. Let u(x, t)
solve the wave equation on the whole line with bounded second derivatives. Let

v(x, t) =
c√

4πkt

ˆ ∞
−∞

e−s
2c2/4ktu(x, s) ds.

(a) Show that v(x, t) solves the diffusion equation!

(b) Show that limt→0 v(x, t) = u(x, 0).

(Hint: (a) Write the formula as v(x, t) =
´∞
−∞H(s, t)u(x, s) ds, where H(x, t) solves the diffusion

equation with constant k/c2 for t > 0. Then differentiate v(x, t), assuming that you can freely
differentiate inside the integral. (b) Use the fact that H(s, t) is essentially the diffusion (heat)
kernel with the spatial variable s. You can use the fact that the diffusion kernel has the Dirac
delta function as its initial data.)

6. Solve the heat equation with the initial data φ(x) = δ(x− 2) + 3δ(x).

7. Show that the distributional derivative of the Dirac delta function acts on test functions as

δ′[f ] = −f ′(0).
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12 Heat conduction on the half-line

In previous lectures we completely solved the initial value problem for the heat equation on the whole
line, i.e. in the absence of boundaries. Next, we turn to problems with physically relevant boundary
conditions. Let us first add a boundary consisting of a single endpoint, and consider the heat equation on
the half-line D = (0,∞). The following initial/boundary value problem, or IBVP, contains a Dirichlet
boundary condition at the endpoint x = 0.{

vt − kvxx = 0, 0 < x <∞, 0 < t <∞,
v(x, 0) = φ(x), x > 0,
v(0, t) = 0, t > 0.

(12.1)

If the solution to the above mixed initial/boundary value problem exists, then we know that it must
be unique from an application of the maximum principle. In terms of the heat conduction, one can
think of v in (12.1) as the temperature in an infinite rod, one end of which is kept at a constant zero
temperature. The initial temperature of the rod is then given by φ(x).

Our goal is to solve the IBVP (12.1), and derive a solution formula, much like what we did for the heat
IVP on the whole line. But instead of constructing the solution from scratch, it makes sense to try to
reduce this problem to the IVP on the whole line, for which we already have a solution formula. This is
achieved by extending the initial data φ(x) to the whole line. We have a choice of how exactly to extend
the data to the negative half-line, and one should try to do this in such a fashion that the boundary
condition of (12.1) is automatically satisfied by the solution to the IVP on the whole line that arises from
the extended data. This is the case, if one chooses the odd extension of φ(x), which we describe next.

By the definition a function ψ(x) is odd, if ψ(−x) = −ψ(x). But then plugging in x = 0 into this
definition, one gets ψ(0) = 0 for any odd function. Recall also that the solution u(x, t) to the heat
IVP with odd initial data is itself odd in the x variable. This follows from the fact that the sum
[u(x, t) + u(−x, t)] solves the heat equation and has zero initial data, hence, it is the identically zero
function by the uniqueness of solutions. Then, by our above observation for odd functions, we would
have that u(0, t) = 0 for any t > 0, which is exactly the boundary condition of (12.1).

This shows that if one extends φ(x) to an odd function on the whole line, then the solution with the
extended initial data automatically satisfies the boundary condition of (12.1). Let us then define

φodd(x) =

{
φ(x) for x > 0,
−φ(−x) for x < 0,
0 for x = 0.

(12.2)

It is clear that φodd is an odd function, since we defined it for negative x by reflecting the φ(x) with respect
to the vertical axis, and then with respect to the horizontal axis. This procedure produces a function
whose graph is symmetric with respect to the origin, and thus it is odd. One can also verify this directly
from the definition of odd functions. Now, let u(x, t) be the solution of the following IVP on the whole line{

ut − kuxx = 0, −∞ < x <∞, 0 < t <∞,
u(x, 0) = φodd(x).

(12.3)

From previous lectures we know that the solution to (12.3) is given by the formula

u(x, t) =

ˆ ∞
−∞

S(x− y, t)φodd(y) dy, t > 0. (12.4)

Restricting the x variable to only the positive half-line produces the function

v(x, t) = u(x, t)
∣∣
x≥0

. (12.5)
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We claim that this v(x, t) is the unique solution of IBVP (12.1). Indeed, v(x, t) solves the heat equation
on the positive half-line, since so does u(x, t). Furthermore,

v(x, 0) = u(x, 0)
∣∣∣
x>0

= φodd(x)
∣∣∣
x>0

= φ(x),

and v(0, t) = u(0, t) = 0, since u(x, t) is an odd function of x. So v(x, t) satisfies the initial and boundary
conditions of (12.1).

Returning to formula (12.4), we substitute the expressions for φodd from (12.2) and write

u(x, t) =

ˆ ∞
0

S(x− y, t)φodd(y) dy +

ˆ 0

−∞
S(x− y, t)φodd(y) dy

=

ˆ ∞
0

S(x− y, t)φ(y) dy −
ˆ 0

−∞
S(x− y, t)φ(−y) dy.

Making the change of variables y 7→ −y in the second integral on the right, and flipping the integration
limits gives

u(x, t) =

ˆ ∞
0

S(x− y, t)φ(y) dy −
ˆ ∞

0

S(x+ y, t)φ(y) dy.

Using (12.5) and the above expression for u(x, t), as well as the expression of the heat kernel S(x, t), we
can write the solution formula for the IBVP (12.1) as follows

v(x, t) =
1√

4πkt

ˆ ∞
0

[
e−(x−y)2/4kt − e−(x+y)2/4kt

]
φ(y) dy. (12.6)

The method used to arrive at this solution formula is called the method of odd extensions or the reflection
method. We can make a physical sense of formula (12.6) by interpreting the integrand as the contribution
from the point y minus the heat loss from this point due to the constant zero temperature at the endpoint.

Example 12.1. Solve the IBVP (12.1) with the initial data φ(x) = ex.

Using the solution formula (12.6), we have

v(x, t) =
1√

4πkt

ˆ ∞
0

[
e−(x−y)2/4ktey − e−(x+y)2/4ktey

]
dy. (12.7)

Combining the exponential factors of the first product under the integral, we will get an exponential
with the following exponent

−[y2 − 2(x+ 2kt)y + x2]

4kt
= −

(
y − (x+ 2kt)√

4kt

)2

+ kt− x = −p2 + kt+ x,

where we made the obvious notation

p =
y − x− 2kt√

4kt
.

Similarly, the exponent of the combined exponential from the second product under integral (12.7) is

−[y2 + 2(x− 2kt)y + x2]

4kt
= −

(
y + x− 2kt√

4kt

)2

+ kt− x = −q2 + kt− x,

with

q =
y + x− 2kt√

4kt
.
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Braking integral (12.7) into a difference of two integrals, and making the changes of variables y 7→ p,
and y 7→ q in the respective integrals, we will get

v(x, t) = ekt+x
1√
π

ˆ ∞
−x−2kt√

4kt

e−p
2

dp− ekt−x 1√
π

ˆ ∞
x−2kt√

4kt

e−q
2

dq. (12.8)

Notice that

1√
π

ˆ ∞
−x−2kt√

4kt

e−p
2

dp =
1√
π

ˆ ∞
0

e−p
2

dp+
1√
π

ˆ 0

−x−2kt√
4kt

e−p
2

dp =
1

2
+

1

2
Erf

(
x+ 2kt√

4kt

)
,

and similarly for the second integral. Putting this back into (12.8), we will arrive at the solution

v(x, t) = ekt+x
[

1

2
+

1

2
Erf

(
x+ 2kt√

4kt

)]
− ekt−x

[
1

2
− 1

2
Erf

(
x− 2kt√

4kt

)]
.

12.1 Neumann boundary condition

Let us now turn to the Neumann problem on the half-line,{
wt − kwxx = 0, 0 < x <∞, 0 < t <∞,
w(x, 0) = φ(x), x > 0
wx(0, t) = 0, t > 0.

(12.9)

To find the solution of (12.9), we employ a similar idea used in the case of the Dirichlet problem. That
is, we seek to reduce the IBVP to an IVP on the whole line by extending the initial data φ(x) to the
negative half-axis in such a fashion that the boundary condition is automatically satisfied.

Notice that if ψ(s) is an even function, i.e. ψ(−x) = ψ(x), then its derivative function will be odd.
Indeed, differentiating in the definition of the even function, we get −ψ′(−x) = ψ′(x), which is the
same as ψ′(−x) = −ψ′(x). Hence, for an arbitrary even function ψ(x), ψ′(0) = 0. It is now clear that
extending the initial data so that the resulting function is even will produce solutions to the IVP on the
whole line that automatically satisfy the Neumann condition of (12.9).

We define the even extension of φ(x),

φeven =

{
φ(x) for x ≥ 0,
φ(−x) for x ≤ 0,

(12.10)

and consider the following IVP on the whole line{
ut − kuxx = 0, −∞ < x <∞, 0 < t <∞,
u(x, 0) = φeven(x).

(12.11)

It is clear that the solution u(x, t) of the IVP (12.11) will be even in x, since the difference [u(−x, t)−
u(x, t)] solves the heat equation and has zero initial data. We then use the solution formula for the IVP
on the whole line to write

u(x, t) =

ˆ ∞
−∞

S(x− y, t)φeven(y) dy, t > 0, (12.12)

and take
w(x, t) = u(x, t)

∣∣
x≥0

,
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similar to the case of the Dirichlet problem. One can show that this w(x, t) solves the IBVP (12.9), and
use the expression for the heat kernel, as well as the definition (12.10), to write the solution formula as
follows

w(x, t) =
1√

4πkt

ˆ ∞
0

[
e−(x−y)2/4kt + e−(x+y)2/4kt

]
φ(y) dy. (12.13)

Notice that the formulas (12.6) and (12.13) differ only by the sign between the two exponential terms
inside the integral.

In terms of heat conduction, the Neumann condition in (12.9) means that there is no heat exchange
between the rod and the environment (recall that the heat flux is proportional to the spatial derivative
of the temperature). The physical interpretation of formula (12.13) is that the integrand is the contri-
bution of φ(y) plus an additional contribution, which comes from the lack of heat transfer to the points
of the rod with negative coordinates.

Example 12.2. Solve the IBVP (12.9) with the initial data φ(x) ≡ 1.

Using the formula (12.13), we can write the solution as

w(x, t) =
1√

4πkt

ˆ ∞
0

[
e−(x−y)2/4kt + e−(x+y)2/4kt

]
dy

=
1√
π

ˆ ∞
−x√
4kt

e−p
2

dp+
1√
π

ˆ ∞
x√
4kt

e−q
2

dq,

where we made the changes of variables

p =
y − x√

4kt
, and q =

y + x√
4kt

.

Using the same idea as in the previous example, we can write the solution in terms of the Erf function
as follows

w(x, t) =

[
1

2
+

1

2
Erf

(
x√
4kt

)]
+

[
1

2
− 1

2
Erf

(
x√
4kt

)]
≡ 1.

So the solution is identically 1, which is clear if one thinks in terms of heat conduction. Indeed, problem
(12.9) describes the temperature dynamics with identically 1 initial temperature, and no heat loss at the
endpoint. Obviously there is no heat transfer between points of equal temperature, so the temperatures
remain steady along the entire rod. .

12.2 Conclusion

We derived the solution to the heat equation on the half-line by reducing the initial/boundary value
problem to the initial value problem over the whole line through appropriate extension of the initial
data. In the case of zero Dirichlet boundary condition the odd extension of the initial data automatically
guarantees that the solution will satisfy the boundary condition. While for the case of zero Neumann
boundary condition the appropriate choice is the even extension. This reflection method relies on the
fact that the solution to the heat equation on the whole line with odd initial data is odd, while the
solution with even initial data is even.
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13 Waves on the half-line

Similar to the last lecture on the heat equation on the half-line, we will use the reflection method to
solve the boundary value problems associated with the wave equation on the half-line 0 < x <∞. Let
us start with the Dirichlet boundary condition first, and consider the initial boundary value problem{

vtt − c2vxx = 0, 0 < x <∞, 0 < t <∞,
v(x, 0) = φ(x), vt(x, 0) = ψ(x), x > 0,
v(0, t) = 0, t > 0.

(13.1)

For the vibrating string, the boundary condition of (13.1) means that the end of the string at x = 0 is
held fixed. We reduce the Dirichlet problem (13.1) to the whole line by the reflection method. The idea
is again to extend the initial data, in this case φ, ψ, to the whole line, so that the boundary condition
is automatically satisfied for the solutions of the IVP on the whole line with the extended initial data.
Since the boundary condition is in the Dirichlet form, one must take the odd extensions

φodd(x) =

{
φ(x) for x > 0,
0 for x = 0,
−φ(−x) for x < 0.

ψodd(x) =

{
ψ(x) for x > 0,
0 for x = 0,
−ψ(−x) for x < 0.

(13.2)

Consider the IVP on the whole line with the extended initial data{
utt − c2uxx = 0, −∞ < x <∞, 0 < t <∞,
u(x, 0) = φodd(x), ut(x, 0) = ψodd(x).

(13.3)

Since the initial data of the above IVP are odd, we know from a homework problem that the solution
of the IVP, u(x, t), will also be odd in the x variable, and hence u(0, t) = 0 for all t > 0. Then defining
the restriction of u(x, t) to the positive half-line x ≥ 0,

v(x, t) = u(x, t)
∣∣
x≥0

, (13.4)

we automatically have that v(0, t) = u(0, t) = 0. So the boundary condition of the Dirichlet problem
(13.1) is satisfied for v. Obviously the initial conditions are satisfied as well, since the restrictions of
φodd(x) and ψodd(x) to the positive half-line are φ(x) and ψ(x) respectively. Finally, v(x, t) solves the
wave equation for x > 0, since u(x, t) satisfies the wave equation for all x ∈ R, and in particular for
x > 0. Thus, v(x, t) defined by (13.4) is a solution of the Dirichlet problem (13.1). It is clear that the
solution must be unique, since the odd extension of the solution will solve IVP (13.3), and therefore
must be unique.

Using d’Alambert’s formula for the solution of (13.3), and taking the restriction (13.4), we have that
for x ≥ 0,

v(x, t) =
1

2
[φodd(x+ ct) + φodd(x− ct)] +

1

2c

ˆ x+ct

x−ct
ψodd(s) ds. (13.5)

Notice that if x ≥ 0 and t > 0, then x+ct > 0, and φodd(x+ct) = φ(x+ct). If in addition x−ct > 0, then
φodd(x−ct) = φ(x−ct), and over the interval s ∈ [x−ct, x+ct], ψodd(s) = ψ(s). Thus, for x > ct, we have

v(x, t) =
1

2
[φ(x+ ct) + φ(x− ct)] +

1

2c

ˆ x+ct

x−ct
ψ(s) ds, (13.6)

which is exactly d’Alambert’s formula.
For 0 < x < ct, the argument x− ct < 0, and using (13.2) we can rewrite the solution (13.5) as

v(x, t) =
1

2
[φ(x+ ct)− φ(ct− x)] +

1

2c

[ˆ 0

x−ct
−ψ(−s) ds+

ˆ x+ct

0

ψ(s) ds

]
.
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Making the change of variables s 7→ −s in the first integral on the right, we get

v(x, t) =
1

2
[φ(x+ ct)− φ(ct− x)] +

1

2c

[ˆ 0

ct−x
ψ(s) ds+

ˆ x+ct

0

ψ(s) ds

]
=

1

2
[φ(x+ ct)− φ(ct− x)] +

1

2c

ˆ x+ct

ct−x
ψ(s) ds.

One could also use the fact that the integral of the odd function ψodd(s) over the symmetric interval

[x− ct, ct− x] is zero, thus
´ x+ct

x−ct ψodd(s) ds =
´ x+ct

ct−x ψ(s) ds.
The two different cases giving different expressions are illustrated in Figures 13.1 and 13.2 below.

Notice how one of the characteristics from a point with x0 < ct0 gets reflected from the “wall” at x = 0
in Figure 13.2.

Hx0, t0L

x0 - c t0 x0 + c t0

x > c t

x < c t

x

t

Figure 13.1: The case with x0 > ct0.

x < c t

x > c t

Hx0, t0L

x0 - c t0 x0 + c t0c t0 - x0
x

t

Figure 13.2: The case with x0 < ct0.

Combining the two expressions for v(t, x) over the two regions, we arrive at the solution

v(x, t) =


1

2
[φ(x+ ct) + φ(x− ct)] +

1

2c

ˆ x+ct

x−ct
ψ(s) ds, for x > ct

1

2
[φ(x+ ct)− φ(ct− x)] +

1

2c

ˆ x+ct

ct−x
ψ(s) ds, for 0 < x < ct.

(13.7)

The minus sign in front of φ(ct − x) in the second expression above, as well as the reduction of the
integral of ψ to the smaller interval are due to the cancellation stemming from the reflected wave. The
next example illustrates this phenomenon.

Example 13.1. Solve the Dirichlet problem (13.1) with the following initial data

φ(x) =

{
h for a < x < 2a,
0 otherwise,

and ψ(x) ≡ 0.

The initial data defines a box-like displacement over the interval (a, 2a) and zero initial velocity for
the string. It is clear that for some small time the wave will propagate just like in the case of the IVP
on the whole line, i.e. without “seeing” the boundary. This is due to the finite speed of propagation
property of the wave equation, according to which it takes some time, specifically a/c time for the
initial displacement to reach the boundary. Thus, we expect that the box-like wave will break into two
box-waves, each with half the height of the initial box-like displacement, which travel with speed c in
opposite directions. The box-wave traveling in the right direction will never hit the boundary at x = 0,
and will continue traveling unaltered for all time. However, the left box-wave hits the wall (the fixed
end of the vibrating string), and gets reflected in an odd fashion, that is the displacement gets the minus
sign in the second expression of (13.7).

To find the values of the solution at any point (x0, t0), we draw the backward characteristics from that
point and trace the point back to the x axis, where the initial data is defined. Since the initial data is
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Figure 13.3: The values of v(x, t) carried forward in time by the characteristics.

nonzero only over the interval (a, 2a), only those characteristics that hit the x axis between the points
a and 2a will carry nonzero values forward in time. Notice also that if a characteristic hits the interval
(a, 2a) after being reflected from the wall x = 0, then the value it gets must be taken with a minus sign.

The different values determined by this method are illustrated in Figure 13.3 above. Notice how the
left box-wave with height h/2 flips after hitting the boundary, and travels in the opposite direction with
negative height −h/2.

One can then use the values from Figure 13.3 to draw the profile of the string at any time t.

13.1 Neumann boundary condition

For the Neumann problem on the half-line,{
wtt − c2wxx = 0, 0 < x <∞, 0 < t <∞,
w(x, 0) = φ(x), wt(x, 0) = ψ(x), x > 0,
wx(0, t) = 0, t > 0,

(13.8)

we use the reflection method with even extensions to reduce the problem to an IVP on the whole line.
Define the even extensions of the initial data

φeven =

{
φ(x) for x ≥ 0,
φ(−x) for x ≤ 0,

ψeven =

{
ψ(x) for x ≥ 0,
ψ(−x) for x ≤ 0.

(13.9)

and consider the following IVP on the whole line{
utt − c2uxx = 0, −∞ < x <∞, 0 < t <∞,
u(x, 0) = φeven(x), ut(x, 0) = ψeven(x).

(13.10)

Clearly, the solution u(x, t) to the IVP (13.10) will be even in x, and since the derivative of an even
function is odd, ux(x, t) will be odd in x, and hence ux(0, t) = 0 for all t > 0. Similar to the case of the
Dirichlet problem, the restriction

w(x, t) = u(x, t)
∣∣
x≥0

will be the unique solution of the Neumann problem (13.8).
Using d’Alambert’s formula for the solution u(x, t) of (13.10), and taking the restriction to x ≥ 0, we

get

w(x, t) =
1

2
[φeven(x+ ct) + φeven(x− ct)] +

1

2c

ˆ x+ct

x−ct
ψeven(s) ds. (13.11)

One again needs to consider the two cases x > ct and 0 < x < ct separately. Notice that with the even
extensions we will get additions, rather than cancellations. Using the definitions (13.9), the solution
(13.11) can be written as

w(x, t) =



1

2
[φ(x+ ct) + φ(x− ct)] +

1

2c

ˆ x+ct

x−ct
ψ(s) ds, for x > ct

1

2
[φ(x+ ct) + φ(ct− x)]

+
1

2c

[ˆ ct−x

0

ψ(s) ds+

ˆ x+ct

0

ψ(s) ds

]
, for 0 < x < ct.
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The Neumann boundary condition corresponds to a vibrating string with a free end at x = 0, since
the string tension, which is proportional to the derivative vx(x, t), vanishes at x = 0. In this case the
reflected wave adds to the original wave, rather than canceling it.

Example 13.2. Solve the Neumann problem (13.8) with the following initial data

φ(x) =

{
h for a < x < 2a,
0 otherwise,

ψ(x) ≡ 0.

The initial data is exactly the same as in the previous example for the Dirichlet problem. The only
difference from the Dirichlet case is that the free end reflects the wave with a plus sign. The values
carried forward in time by the characteristics are determined in the same way as before. Figure 13.4
illustrates this method. Notice that the reflected wave has the same (positive) height h/2 as the wave
right before the reflection.

Hx0, t0L

c t0 - x0 x0 + c t0

x < c t
x > c t

0h0

h�2
h�2

h 0
0

h�20

h�2

a 2a
x

t

Figure 13.4: The values of v(x, t) carried forward in time by the characteristics.

One can again use the values from Figure 13.4 to draw the profile of the string at any time t.

13.2 Conclusion

We derived the solution to the wave equation on the half-line in much the same way as was done for the
heat equation. That is, we reduced the initial/boundary value problem to the initial value problem over
the whole line through appropriate extension of the initial data. In this case the characteristics nicely
illustrate the reflection phenomenon. We saw that the characteristics that hit the initial data after re-
flection from the boundary wall x = 0 carry the values of the initial data with a minus sign in the case of
the Dirichlet boundary condition, and with a plus sign in the case of the Neumann boundary condition.
This corresponds to our intuition of reflected waves from a fixed end, and free end respectively.
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14 Waves on the finite interval

In the last lecture we used the reflection method to solve the boundary value problem for the wave
equation on the half-line. We would like to apply the same method to the boundary value problems
on the finite interval, which correspond to the physically realistic case of a finite string. Consider the
Dirichlet wave problem on the finite line{

vtt − c2vxx = 0, 0 < x < l, 0 < t <∞,
v(x, 0) = φ(x), vt(x, 0) = ψ(x), x > 0,
v(0, t) = v(l, t) = 0, t > 0.

(14.1)

The homogeneous Dirichlet conditions correspond to the vibrating string having fixed ends, as is the
case for musical instruments. Using our intuition from the half-line problems, where the wave reflects
from the fixed end, we can imagine that in the case of the finite interval the wave bounces back and
forth infinitely many times between the endpoints. In spite of this, we can still use the reflection method
to find the value of the solution to problem (14.1) at any point (x, t).

Recall that the idea of the reflection method is to extend the initial data to the whole line in such a
way, that the boundary conditions are automatically satisfied. For the homogeneous Dirichlet data the
appropriate choice is the odd extension. In this case, we need to extend the initial data φ, ψ, which are
defined only on the interval 0 < x < l, in such a way that the resulting extensions are odd with respect
to both x = 0, and x = l. That is, the extensions must satisfy

f(−x) = −f(x) and f(l − x) = −f(l + x). (14.2)

Notice that for such a function f(0) = −f(0) from the first condition, and f(l) = −f(l) from the second
condition, hence, f(0) = f(l) = 0. Subsequently, the solution to the IVP with such data will be odd
with respect to both x = 0 and x = l, and the boundary conditions will be automatically satisfied.
Notice that the conditions (14.2) imply that functions that are odd with respect to both x = 0 and
x = l satisfy f(2l+ x) = −f(−x) = f(x), which means that such functions must be 2l−periodic. Using
this we can define the extensions of the initial data φ, ψ as

φext(x) =

{
φ(x) for 0 < x < l,
−φ(−x) for − l < x < 0,
extended to be 2l − periodic,

ψext(x) =

{
ψ(x) for 0 < x < l,
−ψ(−x) for − l < x < 0,
extended to be 2l − periodic.

(14.3)

Now, consider the IVP on the whole line with the extended initial data{
utt − c2uxx = 0, −∞ < x <∞, 0 < t <∞,
u(x, 0) = φext(x), ut(x, 0) = ψext(x).

(14.4)

For the solution of this IVP we automatically have u(0, t) = u(l, t) = 0, and the restriction

v(x, t) = u(x, t)
∣∣
0≤x≤l,

will solve the boundary value problem (14.1). By d’Alambert’s formula, the solution will be given as

v(x, t) =
1

2
[φext(x+ ct) + φext(x− ct)] +

1

2c

ˆ x+ct

x−ct
ψext(s) ds (14.5)

for 0 < x < l. Although formula (14.5) contains all the information about our solution, we would like to
have an expression in terms of the original initial data, so that the values of the solution can be directly
computed using the given functions φ(x) and ψ(x). For this, we need to “bring” the points x− ct and
x + ct into the interval (0, l) using the periodicity and oddity of the extended data. To illustrate how
this is done, let us fix a point (x, t) and try to find the value of the solution at this point by tracing it
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Figure 14.1: The backwards characteristics from the point (x, t).

back in time along the characteristics to the initial data. The sketch of the backwards characteristics
from this point appears in Figure 14.1 above.

In general, the points x+ct and x−ct will end up either in the interval (0, l) or (−l, 0) after finitely many
translations by the period 2l. If the point ends up in (0, l) (even number of reflections), then the value of
the initial data picked up by the reflected characteristic will be taken with a positive sign. If, however,
the point ends up in the interval (−l, 0) (odd number of reflections), then we need to reflect this point
with respect to x = 0, and the corresponding value of the initial data will be taken with a negative sign.

From Figure 14.1 we see that x + ct goes into the interval (0, l) (2 reflections) after translating it to
the left by one period 2l, but the point x− ct goes into the interval (−l, 0) (3 reflections) after a right
translation by 2l, so we need to reflect the resulting point x− ct+ 2l to arrive at the point ct− x− 2l
in the interval (0, l). The solution will then be

u(x, t) =
1

2
[φ(x+ ct− 2l)− φ(ct− x− 2l)] +

1

2c

ˆ x+ct

x−ct
ψext(s) ds.

For the integral term, we can break it into two integrals as follows

1

2c

ˆ x+ct

x−ct
ψext(s) ds =

1

2c

ˆ ct−x

x−ct
ψext(s) ds+

1

2c

ˆ x+ct

ct−x
ψext(s) ds.

Notice that from the oddity of ψext, the integral over the interval [x − ct, ct − x] will be zero, while by
periodicity, we can bring the interval [ct− x, x+ ct] into the interval (0, l) by subtracting one period 2l.
Thus, the solution can be written as

u(x, t) =
1

2
[φ(x+ ct− 2l)− φ(ct− x− 2l)] +

1

2c

ˆ x+ct−2l

ct−x−2l

ψ(s) ds. (14.6)

Clearly, the derivation of the above expression for the solution depends on the chosen point, which in
turn determines how many reflections the backward characteristics undergo before arriving at the x axis.
Hence, the solution will be given by different expressions, depending on the region from which the point
is taken. These different regions are depicted in Figure 14.2, where the labels (m,n) show how many
times each of the two backward characteristics gets reflected before reaching the x axis. Expression
(14.6) will be valid for all the points in the region (3, 2).
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Figure 14.2: Regions of (x, t) ∈ (0, l)× (0,∞) with the different number of reflections.

The method used to arrive at the expression (14.6) can be used to find the value of the solution at
any point (x, t), although it is quite impractical to derive the expression for each of the regions depicted
in Figure 14.2. Furthermore, it does not generalize to higher dimensions, nor does it apply to the heat
equation (no characteristics to trace back). Later we will study another method, which allows for a
more general way of approaching boundary value problems on finite intervals.

Example 14.1. Consider the Dirichlet wave problem on the finite interval{
utt − uxx = 0, for 0 < x < 1,
u(x, 0) = x(1− x), ut(x, 0) = x2,
u(0, t) = u(1, t) = 0.

Find the value of the solution at the point (3
4
, 5

2
).

Notice that in this problem c = 1, and l = 1, so the period of the extended data will be 2l = 2. The
sketch of the backward characteristics from the point (x, t) = (3

4
, 5

2
) appears in the figure below.
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Figure 14.3: The backwards characteristics from the point (3
4
, 5

2
).

The characteristics intersect the x axis at the points

x− t = 3
4
− 5

2
= −13

4
and x+ t = 3

4
+ 5

2
= 31

4
.

The point −13
4

goes to the point 1
4

after a right translation by one period, while the point 31
4

goes to

the point 11
4

after a left translation by one period. After a reflection with respect to x = 1, this point
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will end up at 3
4
, thus, the value of the initial data must be taken with a negative sign at this point.

Also, the integral over the interval [3
4
, 11

4
] of ψext will be zero due to its oddity with respect to x = 1.

The value of the solution is then

u(3
4
, 5

2
) =

1

2
[−φ(3

4
) + φ(1

4
)] +

1

2

ˆ 3
4

1
4

ψ(s) ds =
1

2

[
−3

4
· 1

4
+

1

4
· 3

4

]
+

1

2

ˆ 3
4

1
4

x2 dx

=
x3

6

∣∣∣∣
3
4

1
4

=
1

6

(
27

64
− 1

64

)
=

13

192
.

14.1 The parallelogram rule

Recall from a homework problem, that for the vertices of a characteristic parallelogram A, B, C and D
as for example in Figure 14.4, the values of the solution of the wave equation are related as follows

u(A) + u(C) = u(B) + u(D).

Hence, we can find the value at the vertex A from the values at the three other vertices.

u(A) = u(B) + u(D)− u(C).

Notice that the values at the vertices B and C in Figure 14.4 can be found from the expression of the
solution for the region (0, 0), while the value at D comes from the boundary data. Thus we reduced
finding the value at a point in the region (1, 0) to finding values in the region (0, 0). One can always
follow this procedure to evaluate the solution in the regions (m+ 1, n) and (m,n+ 1) via the values in
the region (m,n), provided the boundary condition is in the Dirichlet form.

H1, 0L H0, 1L

H0, 0L
l

A

B

C

D

x

t

Figure 14.4: The parallelogram rule.

14.2 Conclusion

We applied the reflection method to derive expressions for the solution to the Dirichlet wave problem
on the finite interval. However, the method yields infinitely many expressions for different regions in
(x, t) ∈ (0, l)× (0,∞), depending on the number of times the backward characteristics from a point get
reflected before reaching the x axis, where the initial data is defined. This makes the method impractical
in applications, and is not generalizable to higher dimensions and other PDEs. An alternative method
(separation of variables) of solving boundary value problems on the finite interval will be described later
in the course.
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Problem Set 7

1. (#3.1.1 in [Str]) Solve ut = kuxx; u(x, 0) = e−x; u(0, t) = 0 on the half-line 0 < x <∞.

2. (#3.1.2 in [Str]) Solve ut = kuxx; u(x, 0) = 0; u(0, t) = 1 on the half-line 0 < x <∞.

3. Solve the following Neumann problem for the heat equation on the half-line{
ut − kuxx = 0 in 0 < x <∞, t > 0,
u(x, 0) = δ(x− 2),
ux(0, t) = 0,

with δ being the Dirac delta function. Explain your solution in terms of heat propagation.

4. (#3.2.5 in [Str]) Solve utt = 4uxx for 0 < x < ∞, u(0, t) = 0, u(x, 0) ≡ 1, ut(x, 0) ≡ 0 using the
reflection method. This solution has a singularity; find its location.

5. Consider the Dirichlet problem for the “hammer blow” on the half line{
utt − c2uxx = 0 in 0 < x <∞,
u(x, 0) = φ(x), ut(x, 0) = ψ(x),
u(0, t) = 0,

with
φ(x) ≡ 0,

ψ(x) =

{
h, a < x < 2a,
0, otherwise.

Sketch the regions in the xt plane corresponding to the different expressions for the solution. Draw
the profile of the string at several times a/2c, a/c, 3a/2c, 5a/2c to understand how the wave gets
reflected from the boundary.

6. (#3.2.9 in [Str])

(a) Find u(2
3
, 2) if utt = uxx in 0 < x < 1, u(x, 0) = x2(1 − x), ut(x, 0) = (1 − x)2, u(0, t) =

u(1, t) = 0.

(b) Find u(1
4
, 7

2
).

7. (#3.2.10 in [Str]) Solve the initial boundary value problem on the finite interval (Neumann con-
dition at the left endpoint, Dirichlet condition at the right endpoint){

utt = 9uxx in 0 < x < π/2,
u(x, 0) = cos x, ut(x, 0) = 0,
ux(0, t) = 0, u(π/2, t) = 0.
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15 Heat with a source

So far we considered homogeneous wave and heat equations and the associated initial value problems
on the whole line, as well as the boundary value problems on the half-line and the finite line (for wave
only). The next step is to extend our study to the inhomogeneous problems, where an external heat
source, in the case of heat conduction in a rod, or an external force, in the case of vibrations of a string,
are also accounted for. We first consider the inhomogeneous heat equation on the whole line,{

ut − kuxx = f(x, t), −∞ < x <∞, t > 0,
u(x, 0) = φ(x),

(15.1)

where f(x, t) and φ(x) are arbitrary given functions. The right hand side of the equation, f(x, t) is
called the source term, and measures the physical effect of an external heat source. It has units of heat
flux (left hand side of the equation has the units of ut, i.e. change in temperature per unit time), thus
it gives the instantaneous temperature change due to an external heat source.

From the superposition principle, we know that the solution of the inhomogeneous equation can
be written as the sum of the solution of the homogeneous equation, and a particular solution of the
inhomogeneous equation. We can thus break problem (15.1) into the following two problems{

uht − kuhxx = 0,
uh(x, 0) = φ(x),

(15.2)

and {
upt − kupxx = f(x, t),
up(x, 0) = 0.

(15.3)

Obviously, u = uh + up will solve the original problem (15.1).
Notice that we solve for the general solution of the homogeneous equation with arbitrary initial data

in (15.2), while in the second problem (15.3) we solve for a particular solution of the inhomogeneous
equation, namely the solution with zero initial data. This reduction of the original problem to two
simpler problems (homogeneous, and inhomogeneous with zero data) using the superposition principle
is a standard practice in the theory of linear PDEs.

We have solved problem (15.2) before, and arrived at the solution

uh(x, t) =

ˆ ∞
−∞

S(x− y, t)φ(y) dy, (15.4)

where S(x, t) is the heat kernel. Notice that the physical meaning of expression (15.4) is that the heat
kernel averages out the initial temperature distribution along the entire rod.

Since f(x, t) plays the role of an external heat source, it is clear that this heat contribution must be
averaged out, too. But in this case one needs to average not only over the entire rod, but over time as
well, since the heat contribution at an earlier time will effect the temperatures at all later times. We
claim that the solution to (15.3) is given by

up(x, t) =

ˆ t

0

ˆ ∞
−∞

S(x− y, t− s)f(y, s) dy ds. (15.5)

Notice that the time integration is only over the interval [0, t], since the heat contribution at later times
can not effect the temperature at time t. Combining (15.4) and (15.5) we obtain the following solution
to the IVP (15.1)

u(x, t) =

ˆ ∞
−∞

S(x− y, t)φ(y) dy +

ˆ t

0

ˆ ∞
−∞

S(x− y, t− s)f(y, s) dy ds, (15.6)
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or, substituting the expression of the heat kernel,

u(x, t) =
1√

4πkt

ˆ ∞
−∞

e−(x−y)2/4ktφ(y) dy +

ˆ t

0

ˆ ∞
−∞

e−(x−y)2/4k(t−s)√
4πk(t− s)

f(y, s) dy ds.

One can draw parallels between formula (15.6) and the solution to the inhomogeneous ODE analogous
to the heat equation. Indeed, consider the IVP for the following ODE.{

d
dt
u(t)− Au(t) = f(t),

u(0) = φ,
(15.7)

where A is a constant (more generally, for vector valued u, the equation will be a system of ODEs for
the components of u, and A will be a matrix with constant entries). Using an integrating factor e−At,
the ODE in (15.7) yields

d

dt

(
e−Atu

)
= e−At

du

dt
− Ae−Atu = e−At(u′ − Au) = e−Atf(t).

But then

e−Atu =

ˆ t

0

e−Asf(s) ds+ e−A·0u(0),

and multiplying both sides by eAt gives

u(t) = eAtφ+

ˆ t

0

eA(t−s)f(s) ds. (15.8)

The operator S (t)φ = eAtφ, called the propagator operator, maps the initial value φ to the solution of
the homogeneous equation at later times. In terms of this operator, we can rewrite solution (15.8) as

u(t) = S (t)φ+

ˆ t

0

S (t− s)f(s) ds. (15.9)

In the case of the heat equation, the heat propagator operator is

S (t)φ =

ˆ ∞
−∞

S(x− y, t)φ(t) dy,

which again maps the initial data φ to the solution of the homogeneous equation at later times. Using
the heat propagator, we can rewrite formula (15.6) in exactly the same form as (15.9).

We now show that (15.6) indeed solves the problem (15.1) by a direct substitution. Since we have
solved the homogeneous equation before, it suffices to show that up given by (15.5) solves problem (15.3).
Differentiating (15.5) with respect to t gives

∂tu
p =

ˆ ∞
−∞

S(x− y, 0)f(y, t) dy +

ˆ t

0

ˆ ∞
−∞

∂

∂t
S(x− y, t− s)f(y, s) dy ds.

Recall that the heat kernel solves the heat equation and has the Dirac delta function as its initial data,
i.e. St = kSxx, and S(x− y, 0) = δ(x− y). Hence,

∂tu
p =

ˆ ∞
−∞

δ(x− y)f(y, t) dy +

ˆ t

0

ˆ ∞
−∞

k
∂2

∂x2
S(x− y, t− s)f(y, s) dy ds

= f(x, t) dy + k
∂2

∂x2

ˆ t

0

ˆ ∞
−∞

S(x− y, t− s)f(y, s) dy ds = f(x, t) + kupxx,
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which shows that up solves the inhomogeneous heat equation. It is also clear that

lim
t→0

up(x, t) = lim
t→0

ˆ t

0

ˆ ∞
−∞

S(x− y, t− s)f(y, s) dy ds = 0.

Thus, up given by (15.5) indeed solves problem (15.3), which finishes the proof that (15.6) solves the
original IVP (15.1).

Example 15.1. Find the solution of the inhomogeneous heat equation with the source f(x, t) =
δ(x− 2)δ(t− 1) and zero initial data.

Using formula (15.6), and substituting the expression for f(x, t), and φ(x) = 0, we get

u(x, t) =

ˆ t

0

ˆ ∞
−∞

S(x− y, t− s)δ(y − 2)δ(s− 1) dy ds =

ˆ t

0

S(x− 2, t− s)δ(s− 1) ds.

For the last integral, notice that if t < 1, then δ(s− 1) = 0 for all s ∈ [0, t], and if t > 1, then the delta
function will act on the heat kernel by assigning its value at s = 1. Hence,

u(x, t) =

{
0 for 0 < t < 1,
S(x− 2, t− 1) for t > 1.

This, of course, coincides with our intuition of heat conduction, since the external heat source in this
case gives an instantaneous temperature boost to the point x = 1 at time t = 1. Henceforth, the
temperature in the rod will remain zero till the time t = 1, and afterward the heat will transfer exactly
as in the case of the homogeneous heat equation with data given at time t = 1 as u(x, 1) = δ(x−2).

15.1 Source on the half-line

We will use the reflection method to solve the inhomogeneous heat equation on the half-line. Consider
the Dirichlet heat problem {

vt − kvxx = f(x, t), for 0 < x <∞,
v(x, 0) = φ(x),
v(0, t) = h(t).

(15.10)

Notice that in the above problem not only the equation is inhomogeneous, but the boundary data is
given by an arbitrary function h(t). In this case the Dirichlet condition is called inhomogeneous. We can
reduce the above problem to one with zero initial data by the following subtraction method. Defining
the new quantity

V (x, t) = v(x, t)− h(t), (15.11)

we have that

Vt − kVxx = vt − h′(t)− kvxx = f(x, t)− h′(t),
V (x, 0) = v(x, 0)− h(0) = φ(x)− h(0),

V (0, t) = v(0, t)− h(t) = h(t)− h(t) = 0.

Thus, v(x, t) solves problem (15.10) if and only if V (x, t) solves the Dirichlet problem{
Vt − kVxx = f(x, t)− h′(t), for 0 < x <∞,
V (x, 0) = φ(x)− h(0),
V (0, t) = 0.

(15.12)

With this procedure, we essentially combined the heat source given as the boundary data at the endpoint
x = 0 with the external heat source f(x, t). Notice that h(t) has units of temperature, so its derivative
will have units of heat flux, which matches the units of f(x, t). We will denote the combined source
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in the last problem by F (x, t) = f(x, t) − h′(t), and the initial data by Φ(x) = φ(x) − h(0). Since the
Dirichlet boundary condition for V is homogeneous, we can extend F (x, t) and Φ(x, t) to the whole line
in an odd fashion, and use the reflection method to solve (15.12). The extensions are

Φodd(x) =

{
φ(x)− h(0) forx > 0,
0 forx = 0,
−φ(−x) + h(0) forx < 0,

Fodd(x, t) =

{
f(x, t)− h′(t) forx > 0,
0 for x = 0,
−f(−x, t) + h′(t) for x < 0.

Clearly, the solution to the problem{
Ut − kUxx = Fodd(x, t), for −∞ < x <∞,
U(x, 0) = Φodd(x),

is odd, since U(x, t) + U(−x, t) will solve the homogeneous heat equation with zero initial data. Then
U(0, t) = 0, and the restriction to x ≥ 0 will solve the Dirichlet problem (15.12) on the half-line. Thus,
for x > 0,

V (x, t) =

ˆ ∞
−∞

S(x− y, t)Φodd(y) dy +

ˆ t

0

ˆ ∞
−∞

S(x− y, t− s)Fodd(y, s) dy ds.

Proceeding exactly as in the case of the (homogeneous) heat equation on the half-line, we will get

V (x, t) =

ˆ ∞
0

[S(x− y, t)− S(x+ y, t)](φ(y)− h(0)) dy

+

ˆ t

0

ˆ ∞
0

[S(x− y, t− s)− S(x+ y, t− s)](f(y, s)− h′(s)) dy ds.

Finally, using that v(x, t) = V (x, t) + h(t), we have

v(x, t) = h(t) +

ˆ ∞
0

[S(x− y, t)− S(x+ y, t)](φ(y)− h(0)) dy

+

ˆ t

0

ˆ ∞
0

[S(x− y, t− s)− S(x+ y, t− s)](f(y, s)− h′(s)) dy ds.

15.2 Conclusion

Using our intuition of heat conduction as an averaging process with the weight given by the heat kernel,
we guessed formula (15.6) for the solution of the inhomogeneous heat equation, treating the inhomogene-
ity as an external heat source. Employing the propagator operator, this formula coincided exactly with
the solution formula for the analogous inhomogeneous ODE, which further hinted at the correctness of
the formula. However, to obtain a rigorous proof that formula (15.6) indeed gives the unique solution,
we verified that the function given by the formula satisfies the equation and the initial condition by a
direct substitution. One can then use this formula along with the reflection method to also find the
solution for the inhomogeneous heat equation on the half-line.
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16 Waves with a source

Consider the inhomogeneous wave equation{
utt − c2uxx = f(x, t), −∞ < x <∞, t > 0,
u(x, 0) = φ(x), ut(x, 0) = ψ(x),

(16.1)

where f(x, t), φ(x) and ψ(x) are arbitrary given functions. Similar to the inhomogeneous heat equation,
the right hand side of the equation, f(x, t), is called the source term. In the case of the string vibrations
this term measures the external force (per unit mass) applied on the string, and the equation again
arises from Newton’s second law, in which one now also has a nonzero external force.

As was done for the inhomogeneous heat equation, we can use the superposition principle to break
problem (16.1) into two simpler ones:{

uhtt − c2uhxx = 0,
uh(x, 0) = φ(x), uht (x, t) = ψ(x),

(16.2)

and {
uptt − c2upxx = f(x, t),
up(x, 0) = 0, upt (x, t) = 0.

(16.3)

Obviously, u = uh + up will solve the original problem (16.1). uh solves the homogeneous equation, so
it is given by d’Alambert’s formula. Thus, we only need to solve the inhomogeneous equation with zero
data, i.e. problem (16.3). We will show that the solution to the original IVP (16.1) is

u(x, t) =
1

2
[φ(x+ ct) + φ(x− ct)] +

1

2c

ˆ x+ct

x−ct
ψ(y) dy +

1

2c

ˆ t

0

ˆ x+c(t−s)

x−c(t−s)
f(y, s) dy ds. (16.4)

The first two terms in the above formula come from d’Alambert’s formula for the homogeneous solution
uh, so to prove formula (16.4), it suffices to show that the solution to the IVP (16.3) is

up(x, t) =
1

2c

ˆ t

0

ˆ x+c(t−s)

x−c(t−s)
f(y, s) dy ds. (16.5)

For simplicity, we will seize specifying the superscript and write u = up (this corresponds to the as-
sumption φ(x) ≡ ψ(x) ≡ 0, which is the only remaining case to solve).

Recall that we have already solved inhomogeneous hyperbolic equations by the method of character-
istics, which we will apply to the inhomogeneous wave equation as well. The change of variables into
the characteristic variables and back are given by the following formulas{

ξ = x+ ct,
η = x− ct,

{
t = ξ−η

2c
,

x = ξ+η
2
.

(16.6)

To write the equation in the characteristic variables, we compute utt and uxx in terms of (ξ, η) using the
chain rule.

ut = cuξ − cuη,
utt = c2uξξ − 2c2uξη + c2uηη,

ux = uξ + uη,
uxx = uξξ + 2uξη + uηη,

so
utt − c2uxx = −4c2uξη. (16.7)

Notice that u(x, t) = u( ξ+η
2
, ξ−η

2c
), and we made an abuse of notation above to identify u with the func-

tion U(ξ, η) = u( ξ+η
2
, ξ−η

2c
). In the same way, we will identify f with the function F (ξ, η) = f( ξ+η

2
, ξ−η

2c
),

and will implicitly understand that the functions in terms of (ξ, η) depend on ( ξ+η
2
, ξ−η

2c
).
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Using (16.7), we can rewrite the inhomogeneous wave equation in terms of the characteristic variables
as

uξη = − 1

4c2
f(ξ, η). (16.8)

To solve this equation, we need to successively integrate in terms of η and then ξ. Recall that in pre-
vious examples of inhomogeneous hyperbolic equations we performed these integrations explicitly, then
changed the variables back to (x, t), and determined the integration constants from the initial conditions.
In our present case, however, we would like to obtain a formula for the general function f , so explicit
integration is not an option. Thus, to determine the constants of integration, we need to rewrite the
initial conditions in terms of the characteristic variables.

Notice that from (16.6), t = 0 is equivalent to (ξ − η)/2c = 0, or ξ = η. The initial conditions of
(16.3) then imply

u(ξ, ξ) = 0,

cuξ(ξ, ξ)− cuη(ξ, ξ) = 0,

uξ(ξ, ξ) + uη(ξ, ξ) = 0,

where the last identity is equivalent to the identity ux(x, 0) = 0, which can be obtained by differ-
entiating the first initial condition of (16.3). From the last two conditions above, it is clear that
uξ(ξ, ξ) = uη(ξ, ξ) = 0, so the initial conditions in terms of the characteristic variables are

u(ξ, ξ) = uξ(ξ, ξ) = uη(ξ, ξ) = 0. (16.9)

Ξ = x + c t

Η = x - c t

x0 + c t0x0 - c t0

Hx0, t0L

Ξ = Ξ0

HΞ0, Η0L

HΞ0, Ξ0L

Ξ =  Η

HΗ0, Η0L

Η = Η0

Ξ

 Η

HΞ, ΞL
x

t

Figure 16.1: The triangle of dependence of the point (x0, t0).

Now fix a point (x0, t0) for which we will show formula (16.5). This point has the coordinates (ξ0, η0)
in the characteristic variables. To find the value of the solution at this point, we first integrate equation
(16.8) in terms of η from ξ to η0 ˆ η0

ξ

uξη dη = − 1

4c2

ˆ η0

ξ

f(ξ, η) dη.

But ˆ η0

ξ

uξη dη = uξ(ξ, η0)− uξ(ξ, ξ) = uξ(ξ, η0)

due to (16.9) (this is precisely the reason for the choice of the lower limit), so we have

uξ(ξ, η0) =
1

4c2

ˆ ξ

η0

f(ξ, η) dη.
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Integrating this identity with respect to ξ from η0 to ξ0 gives

ˆ ξ0

η0

uξ(ξ, η0) dξ =
1

4c2

ˆ ξ0

η0

ˆ ξ

η0

f(ξ, η) dη dξ.

Similar to the previous integral,

ˆ ξ0

η0

uξ(ξ, η0) dξ = u(ξ0, η0)− uξ(η0, η0) = u(ξ0, η0)

due to (16.9). We then have

u(ξ0, η0) =
1

4c2

ˆ ξ0

η0

ˆ ξ

η0

f(ξ, η) dη dξ =
1

4c2

¨
4
f(ξ, η) dξ dη, (16.10)

where the double integral is taken over the triangle of dependence of the point (x0, t0), as depicted in
Figure 16.1. Using the change of variables (16.6), and computing the Jacobian,

J =
∂(ξ, η)

∂(x, t)
=

1 c
1 −c = −2c,

we can transform the double integral in (16.10) to a double integral in terms of the (x, t) variables to get

u(x0, t0) =
1

4c2

¨
4
f(x, t)|J | dx dt =

1

2c

¨
4
f(x, t) dx dt.

Finally, rewriting the last double integral as an iterated integral, we will arrive at formula (16.5). This
finishes the proof that (16.4) is the unique solution of the IVP (16.1). One can alternatively show that for-
mula (16.4) gives the solution by directly substituting it into (16.1), which is left as a homework problem.

Example 16.1. Solve the inhomogeneous wave IVP{
utt − c2uxx = ex,
u(x, 0) = ut(x, 0) = 0.

Using formula (16.4) with φ = ψ = 0, we get

u(x, t) =
1

2c

ˆ t

0

ˆ x+c(t−s)

x−c(t−s)
ey dy ds =

1

2c

ˆ t

0

[ex+c(t−s) − ex−c(t−s)] ds

=
ex

2c

(
−1

c
ec(t−s)

∣∣∣t
0
− 1

c
e−c(t−s)

∣∣∣t
0

)
=

ex

2c2
(ect + e−ct − 2).

16.1 Source on the half-line

Consider the following inhomogeneous Dirichlet wave problem on the half-line{
vtt − c2vxx = f(x, t), for 0 < x <∞, t > 0,
v(x, 0) = φ(x), vt(x, t) = ψ(x),
v(0, t) = h(t).

(16.11)

One can employ the subtraction method that we used for the heat equation to reduce the problem to one
with zero Dirichlet data, and then use the reflection method to derive a solution formula for the reduced
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problem. An alternative simple way, however, is to derive the solution from scratch as follows. Since we
know how to find the solution for zero Dirichlet data (use the standard reflection method), we treat the
complementary case, that is, assume that the boundary data is nonzero, while f(x, t) ≡ φ(x) ≡ ψ(x) ≡ 0.

From the method of characteristics, we know that the solution can be written as

v(x, t) = j(x+ ct) + g(x− ct). (16.12)

The zero initial conditions then give

v(x, 0) = j(x) + g(x) = 0,

vt(x, 0) = cj′(x)− cg′(x) = 0,

for x > 0. Differentiating the first identity, and dividing the second identity by c, we arrive at the
following system for j′ and g′{

j′(x) + g′(x) = 0,
j′(x)− g′(x) = 0,

⇒ j′(x) = g′(x) = 0.

This means that for s > 0,
j(s) = −g(s) = a

for some constant a. On the other hand, the boundary condition for v(x, t) implies

v(0, t) = j(ct) + g(−ct) = h(t).

But since ct > 0, we have j(ct) = a, and

g(−ct) = h(t)− a, or g(s) = h(−s/c)− a

for s < 0. Returning to (16.12), notice that the argument of the j term is always positive, so

v(x, t) =

{
a− a for x > ct,
a+ h

(
t− x

c

)
− a for x < ct.

=

{
0 for x > ct,
h
(
t− x

c

)
for x < ct.

Thus, for x > ct the solution of (16.11) will be given by (16.4), while for x < ct we have

u(x, t) =
1

2
[φ(x+ ct)− φ(ct− x)] +

1

2c

ˆ x+ct

ct−x
ψ(y) dy + h

(
t− x

c

)
+

1

2c

¨
D

f(y, s) dy ds,

where D is the domain of dependence of the point (x, t).

16.2 Conclusion

The superposition principle was again used to write the solution to the IVP for the inhomogeneous wave
equation as a sum of the general homogeneous solution, and the inhomogeneous solution with zero initial
data. The inhomogeneous solution was obtained by the method of characteristics through a successive
integration in terms of the characteristic variables. One can also derive the solution formula for the
inhomogeneous wave equation by simply integrating the equation over the domain of dependence, and
using Green’s theorem to compute the integral of the left hand side. Yet another way is to approach
the solution of the inhomogeneous equation by studying the propagator operator of the wave equation,
similar to what we did for the heat equation. These methods are discussed in the appendix.
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17 Waves with a source: the operator method

In the previous lecture we used the method of characteristics to solve the initial value problem for the
inhomogeneous wave equation,{

utt − c2uxx = f(x, t), −∞ < x <∞, t > 0,
u(x, 0) = φ(x), ut(x, 0) = ψ(x),

(17.1)

and obtained the formula

u(x, t) =
1

2
[φ(x+ ct) + φ(x− ct)] +

1

2c

ˆ x+ct

x−ct
ψ(y) dy +

1

2c

ˆ t

0

ˆ x+c(t−s)

x−c(t−s)
f(y, s) dy ds. (17.2)

Another way to derive the above solution formula is to integrate both sides of the inhomogeneous wave
equation over the triangle of dependence and use Green’s theorem.

Hx0, t0L

x0 - c t0
x0 + c t0

x0 + c t0L0

L1L2

D

x

t

Figure 17.1: The triangle of dependence of the point (x0, t0).

Fix a point (x0, t0), and integrate both sides of the equation in (17.1) over the triangle of dependence
for this point. ¨

4
(utt − c2uxx) dx dt =

¨
4
f(x, t) dx dt. (17.3)

Recall that by Green’s theorem

¨
D

(Qx − Pt) dx dt =

‰
∂D

P dx+Qdt,

where ∂D is the boundary of the region D with counterclockwise orientation. We thus have

¨
4

(utt − c2uxx) dx dt =

¨
4

(−c2ux)x − (−ut)t dx dt =

‰
∂4
−ut dx− c2ux dt.

The boundary of the triangle of dependence consists of three sides, ∂4 = L0 + L1 + L2, as can be seen
in Figure 17.1, so ¨

4
(utt − c2uxx) dx dt =

ˆ
L0+L1+L2

−ut dx− c2ux dt,

and we have the following relations on each of the sides

L0 : dt = 0

L1 : dx = −cdt
L2 : dx = cdt
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Using these, we get

ˆ
L0

−c2ux dt− ut dx = −
ˆ x0+ct0

x0−ct0
ut(x, 0) dx = −

ˆ x0+ct0

x0−ct0
ψ(x) dx,

ˆ
L1

−c2ux dt− ut dx = c

ˆ
L1

du = c[u(x0, t0)− u(0, x0 + ct0)] = cu(x0, t0)− cφ(x0 + ct0),

ˆ
L2

−c2ux dt− ut dx = −c
ˆ
L2

du = −c[u(0, x0 − ct0)− u(x0, t0)] = cu(x0, t0)− cφ(x0 − ct0).

Putting all the sides together gives

¨
4

(utt − c2uxx) dx dt = 2cu(x0, t0)− c[φ(x0 + ct0) + φ(x0 − ct0)]−
ˆ x0+ct0

x0−ct0
ψ(x) dx,

and using (17.3), we obtain

u(x0, t0) =
1

2
[φ(x0 + ct0) + φ(x0 − ct0)] +

1

2c

ˆ x0+ct0

x0−ct0
ψ(x) dx+

1

2c

¨
4
f(x, t) dx dt,

which is equivalent to formula (17.2).

17.1 The operator method

For the inhomogeneous heat equation we interpreted the solution formula in terms of the heat propaga-
tor, which also showed the parallels between the heat equation and the analogous ODE. We would like
to obtain such a description for the solution formula (17.2) as well. For this, consider the ODE analog
of the wave equation with the associated initial conditions{

d2u
dt2

+ A2u = f(t),
u(0) = φ, u′(0) = ψ,

(17.4)

where A is a constant (a matrix, if we allow u to be vector valued). To find the solution of the inhomo-
geneous ODE, we need to first solve the homogeneous equation, and then use variation of parameters to
find a particular solution of the inhomogeneous equation. The solution of the homogeneous equation is

uh(t) = c1 cos(At) + c2 sin(At),

and the initial conditions imply that c1 = φ, and c2 = A−1ψ. To obtain a particular solution of the
inhomogeneous equation we assume that c1 and c2 depend on t,

up(t) = c1(t) cos(At) + c2(t) sin(At),

and substitute up into the equation to solve for c1(t) and c2(t). This procedure leads to

c1(t) = −
ˆ t

0

A−1 sin(As)f(s) dt, c2(t) =

ˆ t

0

A−1 cos(As)f(s) ds.

Putting everything together, the solution to (17.4) will be

u(t) = cos(At)φ+ A−1 sin(At)ψ +

ˆ t

0

A−1 sin(A(t− s))f(s) ds.

If we now define the propagator
S (t)ψ = A−1 sin(At)ψ,
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then the solution to (17.4) can be written as

u(t) = S ′(t)φ+ S (t)ψ +

ˆ t

0

S (t− s)f(s) ds. (17.5)

For the wave equation, similarly denoting the operator acting on ψ from d’Alambert’s formula by

S (t)ψ =

ˆ x+ct

x−ct
ψ(y) dy,

we can rewrite formula (17.2) in exactly the same form as (17.4). The moral of this story is that having
solved the homogeneous equation and found the propagator, we have effectively derived the solution of
the inhomogeneous equation as well. The rigorous connection between the solution of the homogeneous
equation and that of the inhomogeneous wave equation is contained in the following statement.

Duhamel’s Principle. Consider the following 1-parameter family of wave IVPs{
utt(x, t; s)− c2uxx(x, t; s) = 0,
u(x, s; s) = 0, ut(x, s; s) = f(x, s),

(17.6)

then the function

v(x, t) =

ˆ t

0

u(x, t; s) ds

solves the inhomogeneous wave equation with vanishing data, i.e.{
vtt(x, t)− c2vxx(x, t) = f(x, t),
v(x, 0) = 0, vt(x, 0) = 0.

Note that the initial conditions of the s-IVP (17.6) are given at time t = s, and the initial velocity
is ψ(x; s) = f(x, s). Duhamel’s principle has the physical description of replacing the external force by
its effect on the velocity. From Newton’s second law, the force is responsible for acceleration, or change
in velocity per unit time. So if we can account for the effect of the external force on the instantaneous
velocity, then the the solution of the equation with the external force can be found by solving the ho-
mogeneous equations with the effected velocities, namely (17.6), and “summing” these solutions over
the instances t = s.

We prove Duhamel’s principle by direct substitution. The derivatives of v are

vt(x, t) = u(x, t; t) +

ˆ t

0

ut(x, t; s) ds =

ˆ t

0

ut(x, t; s) ds,

vtt(x, t) = ut(x, t; t) +

ˆ t

0

utt(x, t; s) ds = f(x, t) +

ˆ t

0

utt(x, t; s) ds,

vxx(x, t) =

ˆ t

0

uxx(x, t; s) ds,

where we used the initial conditions of (17.6). Substituting this into the wave equation gives

(∂2
t − c2∂2

x)v =

ˆ t

0

[utt(x, t; s)− c2uxx(x, t; s)] ds+ f(x, t) = f(x, t),

and v indeed solves the inhomogeneous wave equation. It is also clear that v has vanishing initial data.
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Duhamel’s principle gives an alternative way of proving that (17.2) solves the inhomogeneous wave
equation. Indeed, from d’Alambert’s formula for (17.6) and a time shift t 7→ t− s, we have

u(x, t; s) =
1

2c

ˆ x+c(t−s)

x−c(t−s)
f(y, s) dy.

Thus, the solution of the inhomogeneous wave equation with zero initial data is

v(x, t) =

ˆ t

0

u(x, t; s) ds =
1

2c

ˆ t

0

ˆ x+c(t−s)

x−c(t−s)
f(y, s) dy ds.

17.2 Conclusion

We defined the wave propagator as the operator that maps the initial velocity to the solution of the
homogeneous wave equation with zero initial displacement. Using this operator, the solution of the
inhomogeneous wave equation can be written in exactly the same form as the solution of the analogous
inhomogeneous ODE in terms of its propagator. The significance of this observation is in the connection
between the solution of the homogeneous and that of the inhomogeneous wave equations, which is the
substance of Duhamel’s principle. Hence, to solve the inhomogeneous wave equation, all one needs is to
find the propagator operator for the homogeneous equation.
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Problem Set 8

1. Solve the initial value problem for the following inhomogeneous heat equation{
ut − 1

4
uxx = e−t in −∞ < x <∞, t > 0,

u(x, 0) = x2.

2. Solve the following Dirichlet problem for the inhomogeneous heat equation on the half-line{
vt − kvxx = δ(t− 1), for 0 < x <∞, 0 < t <∞,
v(0, t) = 0; v(x, 0) = δ(x− 2).

Explain in terms of heat conduction how the external heat source effects the temperature in the rod.

3. (#3.3.3 in [Str]) Solve the inhomogeneous Neumann diffusion problem on the half-line{
wt − kwxx = 0, for 0 < x <∞, 0 < t <∞,
wx(0, t) = h(t); w(x, 0) = φ(x),

by the subtraction method indicated in the text.

4. (#3.4.1 in [Str]) Solve utt = c2uxx + xt, u(x, 0) = 0, ut(x, 0) = 0.

5. (#3.4.3 in [Str]) Solve utt = c2uxx + cosx, u(x, 0) = sinx, ut(x, 0) = 1 + x.

6. (#3.4.5 in [Str]) Let f(x, t) be any function and let u(x, t) = (1/2c)
˜
4 f , where 4 is the triangle

of dependence. Written as an iterated integral,

u(x, t) =
1

2c

ˆ t

0

ˆ x+ct−cs

x−ct+cs
f(y, s) dy ds.

Verify directly by differentiation that

utt = c2uxx + f(x, t) and u(x, 0) ≡ ut(x, 0) ≡ 0.

7. (#3.4.13 in [Str]) Solve the Dirichlet wave problem on the half-line{
utt = c2uxx for 0 < x <∞,
u(0, t) = t2; u(x, 0) = x, ut(x, 0) = 0.
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18 Separation of variables: Dirichlet conditions

Earlier in the course we solved the Dirichlet problem for the wave equation on the finite interval 0 < x < l
using the reflection method. This required separating the domain (x, t) ∈ (0, l) × (0,∞) into different
regions according to the number of reflections that the backward characteristic originating in the regions
undergo before reaching the x axis. In each of these regions the solution was given by a different ex-
pression, which is impractical in applications, and the method does not generalize to higher dimensions
or other equations. We now study a different method of solving the boundary value problems on the
finite interval, called separation of variables.

18.1 Wave equation

Let us start by considering the wave equation on the finite interval with homogeneous Dirichlet condi-
tions. {

utt − c2uxx = 0, 0 < x < l,
u(x, 0) = φ(x), ut(x, 0) = ψ(x),
u(0, t) = u(l, t) = 0.

(18.1)

The idea of the separation of variables method is to find the solution of the boundary value problem
as a linear combination of simpler solutions (compare this to finding the simpler solution S(x, t) of the
heat equation, and then expressing any other solution in terms of the heat kernel). The building blocks
in this case will be the separated solutions, which are the solutions that can be written as a product of
two functions, one of which depends only on x, and the other only on t, i.e.

u(x, t) = X(x)T (t). (18.2)

Let us try to find all the separated solutions of the wave equation. Substituting (18.2) into the equation
gives

X(x)T ′′(t) = c2X ′′(x)T (t).

Dividing both sides of these identity by −c2X(x)T (t), we get

− X ′′(x)

X(x)
= − T ′′(t)

c2T (t)
= λ. (18.3)

Clearly λ is a constant, since it is independent of x from λ = −T ′′/(c2T ), and is independent of t from
λ = −X ′′/X. We will shortly see that the boundary conditions force λ to be positive, so let λ = β2, for
some β > 0. One can then rewrite (18.3) as a pair of separate ODEs for X(x) and T (t)

T ′′ + c2β2T = 0, and X ′′ + β2X = 0.

The solutions of these ODEs are

T (t) = A cos βct+B sin βct, and X(x) = C cos βx+D sin βx, (18.4)

where A, B, C and D are arbitrary constants. From the boundary conditions in (18.1), we have

X(0)T (t) = X(l)T (t) = 0, ∀t ⇒ X(0) = X(l) = 0,

since T (t) ≡ 0 would result in the trivial solution u(x, t) ≡ 0 (our goal is to find all separated solutions).
With this boundary condition for X(x), we have from (18.4)

X(0) = C = 0, and X(l) = D sin βl = 0.

The solution with D = 0 will again lead to the trivial zero solution, so we consider the case when
sin βl = 0. But this implies that βl = nπ for n = 1, 2, . . . , and

λn =
(nπ
l

)2

, Xn(x) = sin
nπx

l
for n = 1, 2, . . .
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These formulas give distinct solutions for X(x), and multiplying these by the T (t) corresponding to λn,
we find infinitely many separated solutions

un(x, t) =

(
An cos

nπct

l
+Bn sin

nπct

l

)
sin

nπx

l
for n = 1, 2, . . . ,

where An, Bn are arbitrary constants as before. Since a linear combination of solutions of the wave
equation is also a solution, any finite sum

u(x, t) =
∑
n

(
An cos

nπct

l
+Bn sin

nπct

l

)
sin

nπx

l
, (18.5)

will also solve the wave equation.
Returning to our boundary value problem (18.1), we would like to find the solution as a linear combi-

nation of separated solutions. However, finite sums in the form (18.5) are very special, since not every
function is a finite sum of sines and cosines. Checking the initial conditions, we have

φ(x) =
∑
n

An sin
nπx

l
,

ψ(x) =
∑
n

nπc

l
Bn sin

nπx

l
.

(18.6)

Obviously, not all initial data φ, ψ can be written as finite sums of sine functions. So instead of re-
stricting ourselves to finite sums, we allow infinite sums, and ask the question whether any functions
φ, ψ can be written as infinite sums of sine functions. This question was first studied by Fourier, and
these infinite sums have the name of Fourier series (Fourier sine series in this case). It turns out that
practically any function defined on 0 < x < l can be expressed in the form (18.6). Leaving the question
of convergence of such sums, we see that if the initial data can be expressed in the form (18.6), then
the solution is given by (18.5).

The coefficients of t inside the series (18.5), nπc
l

, are called the frequencies. For a violin string of

length l, we had c2 = T
ρ
, so the frequencies are

nπ
√
T

l
√
ρ

n = 1, 2, . . .

The smallest frequency, π
√
T

l
√
ρ

, is the fundamental note, while the double, triple, and so on of the fun-

damental note are the overtones. Notice that by shortening the length l of the vibrating portion of the
string with a finger, a violinist produces notes of higher frequency.

18.2 Heat equation

For the Dirichlet heat problem on the finite interval,{
ut − kuxx = 0, for 0 < x < l,
u(x, 0) = φ(x),
u(0, t) = u(l, t) = 0,

(18.7)

we similarly search for all the separated solutions in the form u(x, t) = X(x)T (t). In this case the
equation gives

−X
′′

X
= −T

′

kt
= β2,

and the resulting ODEs are

T ′ = −β2kT, and X ′′ + β2X = 0.
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The solution for the T equation is then T (t) = Ae−β
2kt, while the function X(x) satisfies the same

equation and boundary conditions as before. This yields the same values βn = nπ/l. We thus have that

u(x, t) =
∞∑
n=1

Ane
−(nπ/l)2kt sin

nπx

l
(18.8)

is the solution to problem (18.7), provided that the initial data is given as

φ(x) =
∞∑
n=1

An sin
nπx

l
. (18.9)

Notice that as t grows, all the terms in the series (18.8) decay exponentially, so the solution itself
will decay, which makes sense in terms of heat conduction, since in the absence of a heat source, the
temperatures in the rod will equalize with the zero temperature of the environment.

Example 18.1. Solve the following Dirichlet problem for the heat equation by separation of variables.{
ut − kuxx = 0, for 0 < x < π/2,
u(x, 0) = 3 sin 4x,
u(0, t) = u(π

2
, t) = 0,

In this problem l = π/2, so βn = 2n. We can write the initial data in the form (18.9),

3 sin 4x =
∞∑
n=1

An sin 2nx,

which implies that A2 = 3, and An = 0 for n 6= 2. But then from (18.8) the solution will be

u(x, t) = 3e−16kt sin 4x.

18.3 Eigenvalues

The numbers λ =
(
nπ
l

)2
are called eigenvalues, and the functions Xn(x) = sin nπx

l
are called eigenfunc-

tions. Notice that we can think of the equation −X ′′ = λX as an eigenvalue problem for the operator
− d2

dx2
in the space of functions that satisfy the Dirichlet conditions X(0) = X(l) = 0. An eigenfunction

is then a solution of the equation which is not identically zero, i.e. X(x) 6≡ 0.
However, unlike the operators in linear algebra, which have finitely many eigenvalues, in our case we

have an infinite number of eigenvalues. This is due to the fact that the space of functions is infinite
dimensional.

We return to the question of the sign of the eigenvalues. Suppose λ = 0, then we would have X ′′ = 0,
which leads to X(x) = C + Dx. The boundary conditions then imply that C = 0, and Dl = 0, giving
X(x) ≡ 0.

If, on the other hand, we assume that λ < 0, and write λ = −γ2 for some γ > 0, then the equation
for X becomes X ′′ = γ2X, which has the solution

X(x) = Ceγx +De−γx.

The boundary conditions then give{
C +D = 0
Ceγl +De−γl = 0

⇒
{
C = −D
Ce2γl = C

⇒ C = D = 0,

which again results in the identically zero solution X(x) ≡ 0. So there are no nonpositive eigenvalues.
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18.4 Conclusion

Returning to the Dirichlet problems for the wave and heat equations on a finite interval, we solved them
with the method of separation of variables. That is, we looked for the solution in the form of an infi-
nite linear combination of separated solutions. This lead to infinite series, which solve the appropriate
initial-boundary value problems, as long as the initial data can be expanded in corresponding series,
which in the case of Dirichlet conditions are the Fourier sine series. The question of convergence of such
series will be discussed next quarter, while the case of Neumann conditions will be considered next time.
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19 Separation of variables: Neumann conditions

The same method of separation of variables that we discussed last time for boundary problems with
Dirichlet conditions can be applied to problems with Neumann, and more generally, Robin boundary
conditions. We illustrate this in the case of Neumann conditions for the wave and heat equations on the
finite interval.

19.1 Wave equation

Substituting the separated solution u(x, t) = X(x)T (t) into the wave Neumann problem{
utt − c2uxx = 0, 0 < x < l,
u(x, 0) = φ(x), ut(x, 0) = ψ(x),
ux(0, t) = ux(l, t) = 0,

(19.1)

gives the same equations for X and T as in the Dirichlet case,

−X ′′ = λX, and − T ′′ = cλ2T.

However, the boundary conditions now imply

X ′(0)T (t) = X ′(l)T (t) = 0, ∀t ⇒ X ′(0) = X ′(l) = 0.

To find all the separated solutions, we need to find all the eigenvalues and eigenfunctions satisfying these
boundary conditions. To do this, we need to consider the cases λ = 0, λ < 0 and λ > 0 separately.

Assume λ = 0, then the equation for X is X ′′ = 0, which has the solution X(x) = C + Dx. The
derivative is then X ′(x) = D, and the boundary conditions imply that D = 0. So every constant
function, X(x) = C, is an eigenfunction for the eigenvalue λ0 = 0.

Next, we assume that λ = −γ2 < 0, in which case the equation for X takes the form

X ′′ = γ2X.

The solution to this equation is X(x) = Ceγx + Deγx, so X ′(x) = Cγeγx − Dγe−γx. Checking the
boundary conditions gives{

Cγ −Dγ = 0
Cγeγl −Dγe−γl = 0

⇒
{
C = D
Cγ(e2γl − 1) = 0

⇒ C = D = 0,

since γ 6= 0, and hence, also e2γl − 1 6= 0. This leads to the identically zero solution X(x) ≡ 0, which
means that there are no negative eigenvalues.

For the remaining case, λ = β2 > 0, the equation is X ′′ = −β2X, which as we saw last time when
discussing Dirichlet boundary conditions, has the solution

X(x) = C cos βx+D sin βx.

The derivative of this function is

X ′(x) = −Cβ sin βx+Dβ cos βx,

so the boundary conditions give

X ′(0) = Dβ = 0, and X ′(l) = −Cβ sin βl = 0.

Since β 6= 0, and C and D cannot be both zero, we have sin βl = 0, which implies that βl = nπ for
n = 1, 2, . . . . Then the eigenvalues and the corresponding eigenfunctions are

λn =
(nπ
l

)2

, Xn(x) = cos
nπx

l
, for n = 0, 1, 2, . . . (19.2)
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Notice that we have also included n = 0, which gives the zero eigenvalue λ0 = 0 with the eigenfunction
X0 = 1. The set of all eigenvalues, called the spectrum, for the Neumann conditions differs from that
for the Dirichlet conditions by this additional eigenvalue.

In the case of λ0 = 0 the T equation becomes T ′′ = 0, which has the solution T (t) = 1
3
A0 + 1

2
B0t. The

factors of 1
2

are included for future convenience (to have a single formula for the Fourier coefficients).
The solutions Tn corresponding to λn = (nπ/l)2 for n = 1, 2, . . . , were found in the last lecture to be

Tn(t) = An cos
nπct

l
+Bn sin

nπct

l
.

Putting everything together gives the following series expansion for the solution of problem (19.1),

u(x, t) =
1

2
A0 +

1

2
B0t+

∞∑
n=1

(
An cos

nπct

l
+Bn sin

nπct

l

)
cos

nπx

l
, (19.3)

as long as the initial data can be expanded into cosine Fourier series

φ(x) =
1

2
A0 +

∑
n

An cos
nπx

l
,

ψ(x) =
1

2
B0 +

∑
n

nπc

l
Bn cos

nπx

l
.

(19.4)

These series for the data come from plugging in t = 0 into the solution formula (19.3), and its derivative
with respect to t. We notice that in the case of the Neumann conditions we end up with cosine Fourier
series for the data, while in the Dirichlet case we had sine Fourier series. This is in agreement with
the reflection method, since one needs to take the odd extensions of the data in the case of Dirichlet
conditions, and even extensions in the case of Neumann conditions. But odd functions (extended data)
have only sines in their Fourier expansions, while even functions have only cosines.

Example 19.1. Solve the following Neumann problem for the wave equation by separation of variables.{
utt − 4uxx = 0, for 0 < x < π,
u(x, 0) = 3 cosx, ut(x, 0) = 1− cos 4x
ux(0, t) = ux(π, t) = 0,

In this problem l = π, so βn = n. Notice also that c = 2, and we can write the initial data in the
form (19.4) as follows,

3 cosx =
1

2
A0 +

∞∑
n=1

An cosnx,

1− cos 4x =
1

2
B0 +

∞∑
n=1

2nBn cosnx.

These identities imply that A1 = 3, and An = 0 for n 6= 1, and B0 = 2, B4 = −1
8
, and Bn = 0 for

n 6= 0, 4. Then solution (19.3) will take the form

u(x, t) = t+ 3 cos 2t cosx− 1

8
sin 8t cos 4x.
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19.2 Heat equation

For the Neumann heat problem on the finite interval,{
ut − kuxx = 0, for 0 < x < l,
u(x, 0) = φ(x),
ux(0, t) = ux(l, t) = 0,

(19.5)

the equations for X and T factors of the separated solution u(x, t) = X(x)T (t) are

X ′′ = −λX, and T ′ = −λkT.

The boundary conditions are the same as in the wave problem (19.1), so one gets the same eigenvalues
and eigenfunctions (19.2). For the eigenvalue λ0 = 0, the T equation is T ′ = 0, so T0(t) = 1

2
A0. For the

positive eigenvalues we found the solutions for T in the last lecture to be

Tn(t) = Ane
−(nπ/l)2kt.

Thus, the solution to the heat Neumann problem is given by the series

u(x, t) =
1

2
A0 +

∞∑
n=1

Ane
−(nπ/l)2kt cos

nπx

l
,

as long as the initial data can be expanded into the cosine Fourier series

φ(x) =
1

2
A0 +

∞∑
n=1

An cos
nπx

l
.

19.3 Mixed boundary conditions

Sometimes one needs to consider problems with mixed Dirichlet-Neumann boundary conditions, i.e.
Dirichlet conditions at one end of the finite interval, and Neumann conditions at the other. Examples of
such problems are vibrations of a finite string with one free and one fixed end, and the heat conduction
in a finite rod with one insulated end and the other end kept at a constant zero temperature.

In such cases the method of separation of variables leads to the eigenvalue problem{
X ′′ = −λX,
X(0) = X ′(l) = 0,

or

{
X ′′ = −λX,
X ′(0) = X(l) = 0.

One can then show that the eigenvalues are λn = [(n + 1
2
)π/l]2, and the corresponding eigenfunctions

for the respective problems are

Xn(x) = sin
(n+ 1

2
)πx

l
, and Xn(x) = cos

(n+ 1
2
)πx

l
, for n = 0, 1, 2, . . . ,

which is left as a homework exercise.

19.4 Conclusion

Similar to the case of the Dirichlet problems for heat and wave equations, the method of separation of
variables applied to the Neumann problems on a finite interval leads to an eigenvalue problem for the
X(x) factor of the separated solution. In this case, however, we discovered a new eigenvalue λ = 0 in
addition to the eigenvalues found for the Dirichlet problems. Then the general solutions of the Neumann
problems for wave and heat equations can be written in series forms, as (infinite) linear combinations
of all separated solutions, as long as the initial data can be expanded in cosine Fourier series. We will
discuss in detail the questions on whether and how a given function can be expanded into Fourier series
next quarter.
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Problem Set 9

1. Find the solution to the following Dirichlet problem by separation of variables{
utt = uxx for 0 < x < π,
u(x, 0) = sin 3x, ut(x, 0) = 0,
u(0, t) = u(π, t) = 0.

2. (#4.1.2 in [Str]) Consider a metal rod (0 < x < l), insulated along its sides but not at its ends,
which is initially at temperature = 1. Suddenly both ends are plunged into a bath of temperature
= 0. Write the differential equation, boundary conditions, and initial condition. Write the formula
for the temperature u(x, t) at later times. In this problem, assume the infinite series expansion

1 =
4

π

(
sin

πx

l
+

1

3
sin

3πx

l
+

1

5
sin

5πx

l
+ · · ·

)
.

3. (#4.1.4 in [Str]) Consider waves in a resistant medium that satisfy the problem

utt = c2uxx − rut for 0 < x < l
u = 0 at both ends

u(x, 0) = φ(x), ut(x, 0) = ψ(x),

where r is constant, 0 < r < 2πc/l. Write down the series expansion of the solution.

4. (#4.1.6 in [Str]) Separate the variables for the equation tut = uxx + 2u with the boundary con-
ditions u(0, t) = u(π, t) = 0. Show that there are an infinite number of solutions that satisfy the
initial condition u(x, 0) = 0. So uniqueness is false for this equation!

5. Use separation of variables to solve the equation uxx = 2
k
ut + u, with boundary conditions

u(1, t) = 0, ux(0, t) = −be−kt, where k, b are constants.

6. (#4.2.1 in [Str]) Solve the diffusion problem ut = kuxx in 0 < x < l, with the mixed boundary
conditions u(0, t) = ux(l, t) = 0.

7. (#4.2.2 in [Str]) Consider the equation utt = c2uxx for 0 < x < l, with the boundary conditions
ux(0, t) = 0, u(l, t) = 0.

(a) Show that the eigenfunctions are cos[(n+ 1
2
)πx/l].

(b) Write the series expansion for a solution u(x, t).
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