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Preface

The authors ran a seminar on Integral Quadratic Forms at the
Institute for Advanced Study in the Spring of 1982, and worked on a
book-length manuscript reporting on the topic throughout the 1980’s
and early 1990’s. Some new results which are proved in the manuscript
were announced in two brief papers in the Proceedings of the Japan
Academy of Sciences in 1985 and 1986.

We are making this preliminary version of the manuscript available
at this time in the hope that it will be useful. Still to do before the
manuscript is in final form: final editing of some portions, completion
of the bibliography, and the addition of a chapter on the application
to K3 surfaces.

Rick Miranda
David R. Morrison

Fort Collins and Santa Barbara
November, 2009
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CHAPTER I

Quadratic Forms and Orthogonal Groups

1. Symmetric Bilinear Forms

Let R be a commutative ring with identity, and let F be an R-
module.

Definition 1.1. An F -valued symmetric bilinear form over R is a
pair
(L, 〈−,−〉), where L is an R-module, and 〈−,−〉 : L × L → F is a
symmetric function which is R-linear in each variable. We will often
abuse language and refer to 〈 , 〉 as the bilinear form, and say that 〈 , 〉
is a symmetric bilinear form over R on L.

A symmetric bilinear form is also sometimes referred to as an inner
product.

Let Symm2 L be the quotient of L⊗RL by the submodule generated
by all tensors of the form x⊗ y− y⊗ x; Symm2 L is the 2nd symmetric
power of L. An F -valued symmetric bilinear form over R on L can also
be defined as an R-linear map from Symm2 L to F .

The first example of such a form is the R-valued symmetric bilinear
form on R, which is the multiplication map.

Definition 1.2. Let (L, 〈 , 〉) be an F -valued symmetric bilinear
form overR. The adjoint map to (L, 〈 , 〉) (or to 〈 , 〉), denoted by Ad, is
the R-linear map from L to HomR(L, F ) defined by Ad(x)(y) = 〈x, y〉.
We will say that

〈 , 〉 is nondegenerate if Ad is injective, and
〈 , 〉 is unimodular if Ad is an isomorphism.

The kernel of 〈 , 〉, denoted by Ker〈 , 〉 (or KerL if no confusion is
possible) is the kernel of Ad.

Note that 〈 , 〉 is nondegenerate if and only if Ker〈 , 〉 = (0). If
L̄ = L/Ker〈 , 〉, then 〈 , 〉 descends to a nondegenerate form on L̄. In
this book we will deal primarily with nondegenerate forms, and we will
largely ignore questions involving nondegeneracy. By modding out the
kernel, one can usually reduce a problem to the nondegenerate case, so
we feel that this is not a serious limitation.

1



2 I. QUADRATIC FORMS AND ORTHOGONAL GROUPS

In this book we will often deal with the special case of an R-valued
bilinear form on a free R-module. We give this type of form a special
name.

Definition 1.3. An inner product R-module, or inner product mod-
ule overR, is a nondegenerateR-valued symmetric bilinear form (L, 〈−,−〉)
over R such that L is a finitely generated free R-module. If R is a field,
this is usually referred to as a inner product vector space over R. We
sometimes abuse notation and refer to L as the inner product module;
the bilinear form 〈−,−〉 is assumed to be given.

2. Quadratic Forms

Let R be a commutative ring, and let F be an R-module.

Definition 2.1. An F -valued quadratic form over R is a pair
(L,Q), where L is an R-module and Q : L → F is a function sat-
isfying

(i) Q(r`) = r2Q(`) for all r ∈ R and ` ∈ L
(ii) the function 〈 , 〉Q : L× L→ F defined by

〈x, y〉Q = Q(x+ y)−Q(x)−Q(y)

is an F -valued symmetric bilinear form on L.

Again we often refer to Q as the form on L. The adjoint map AdQ
of Q is simply the adjoint map of 〈 , 〉Q. We say Q is nondegenerate
(respectively, unimodular) if 〈 , 〉Q is. The bilinear form 〈 , 〉Q is called
the associated bilinear form to Q.

We denote the kernel of 〈 , 〉Q by Ker(L,Q) (or just by Ker(L) or
Ker(Q) when that is convenient). The kernel of a quadratic form has
a refinement called the q-radical of (L,Q). This is defined to be

Radq(L,Q) = {x ∈ Ker(L,Q)|Q(x) = 0}.
(We denote the q-radical by Radq(L) or Radq(Q) when convenient.)
Notice that 2Q(x) = 〈x, x〉Q = 0 for x ∈ Ker(L,Q), so that if multi-
plication by 2 is injective in F , then the q-radical coincides with the
kernel.

When restricted to the kernel of Q, Q is Z-linear, and its q-radical
is just the kernel of Q|Ker(Q). Also, since 2Q(x) = 0 for x ∈ Ker(Q), the
image of Q|Ker(Q) is contained in the kernel of multiplication by 2 on
F . If this kernel is finite of order N , then the “index” of the q-radical
of Q in the kernel of Q is a divisor of N .

Note that if ¯̄L = L/Radq(L), then Q descends to a quadratic form

on ¯̄L with trivial q-radical.
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The reader will note the difference between our definition of 〈 , 〉Q
and the more usual 1

2
[Q(x+ y)−Q(x)−Q(y)]; this definition requires

multiplication by 2 to be an isomorphism on F , and we do not want
to restrict ourselves to this case. The price we pay is that not every
symmetric bilinear form can occur as the associated bilinear form to
some quadratic form.

Definition 2.2. An F -valued symmetric bilinear form (L, 〈 , 〉)
over R is even if there exists an F -valued quadratic form Q over R on
L such that 〈 , 〉 = 〈 , 〉Q.

The reason for this terminology is that if 〈 , 〉 is an even form, then
〈x, x〉 is divisible by 2 in F .

Lemma 2.3. Let 〈 , 〉 be an even F -valued symmetric bilinear form
over R on L. Assume that r2 ≡ r mod 2R for all r in R. Let R̄ =
R/2R and L̄ = L/2L. Let K = {f ∈ F | 2f = 0}. Then the set of
F -valued quadratic forms Q over R on L such that 〈 , 〉 = 〈 , 〉Q is in
1-1 correspondence with HomR̄(L̄,K).

Proof. Fix an F -valued quadratic form Q0 on L such that 〈 , 〉 =
〈 , 〉Q0 . Let φ ∈ HomR̄(L̄,K), and let π : L → L̄ be the quotient
map. Then Q0 + π ◦ φ = Q1 is an F -valued quadratic form on L,
and 〈 , 〉Q0 = 〈 , 〉Q1 . Conversely, if Q is an F -valued quadratic
form on L with 〈 , 〉 = 〈 , 〉Q, then α = Q − Q0 : L → F is Z-
linear. Moreover, 2α(x) = α(2x) = 4α(x), so 2α(x) = 0 for all x
in L; hence α maps L to K. Since α(2L) = 0, α factors through a
group homomorphism φ : L̄ → K. Finally, if x̄ ∈ L̄, and r ∈ R, then
φ(rx̄) = r2φ(x̄) = rφ(x̄) by our assumption on R. Hence, φ is R-linear
and R̄-linear also. Q.E.D.

Most of the rings occurring in this book satisfy the hypothesis of
the previous lemma. In particular, any field of characteristic 6= 2 does,
Z does, Zp does (for any p), etc.

Corollary 2.4. Let 〈 , 〉 be an even F -valued symmetric bilinear
form over R on L. Assume that multiplication by 2 is injective on F .
Then there is a unique F -valued quadratic form Q over R on L such
that 〈 , 〉 = 〈 , 〉Q.

Proof. In this case K = {f ∈ F | 2f = 0} is trivial. Let Q1

and Q2 be two F -valued quadratic forms over R on L with associated
bilinear forms 〈 , 〉. Then α = Q1−Q2 is a Z-linear map from L to F ,
and as in the proof of the previous lemma α has values in K. Hence
α = 0 and Q1 = Q2. Q.E.D.



4 I. QUADRATIC FORMS AND ORTHOGONAL GROUPS

Corollary 2.5. Assume that 2 is a unit in R. Then any F -valued
symmetric bilinear form 〈 , 〉 over R is even, and there is a unique F -
valued quadratic form Q over R such that 〈 , 〉 = 〈 , 〉Q.

Proof. 〈 , 〉 is even, since Q(x) = 1
2
〈x, x〉 is the required quadratic

form. Q is unique by the previous corollary. Q.E.D.

3. Quadratic Modules

In this book we will be dealing with the following special case of
the previous definitions. Let R be a commutative ring with identity.

Definition 3.1. A quadratic R-module, or quadratic module over
R, is a nondegenerate R-valued quadratic form (L,Q) over R such that
L is a finitely generated free R-module. If R is a field, this is usually
referred to as a quadratic vector space over R. We sometimes abuse
notation and refer to L as the quadratic module; the form Q is assumed
to be given.

Note that if (L,Q) is a quadratic R-module, and if 〈−,−〉 is the as-
sociated bilinear form to Q, then (L, 〈−,−〉) is an (even) inner product
module over R.

As is usual with free modules, many of the concepts can be ex-
pressed in terms of matrices. Let us review this part of the theory
now.

Let Q be a quadratic form on RN , with values in R, endowing
RN with the structure of a quadratic R-module. Let 〈 , 〉 = 〈 , 〉Q
be the associated bilinear form. The matrix of Q (or of 〈 , 〉) is the
N×N symmetric matrix A over R, whose i−jth entry is 〈ei, ej〉, where
{e1, . . . , eN} is the standard basis of RN . With this notation, if X and
Y are column vectors in RN , then 〈X, Y 〉 = X>AY . Note that since
〈 , 〉 is even, the diagonal entries of A are in 2R.

In more generality, let (L,Q) be a quadratic R-module, and let
S = {s1, . . . , sN} be a basis for L over R. The matrix of Q (or of 〈 , 〉)
with respect to S is the N ×N symmetric matrix A = (〈si, sj〉).

Of course, giving an ordered basis S for L is equivalent to giving
an isomorphism α : L→ RN (sending si to ei). With this notation, we
have 〈x, y〉 = α(x)>Aα(y).

Note that for a quadratic R-module (L,Q), the adjoint map AdQ
maps L to its dual L# = HomR(L,R), and by our convention AdQ is
injective.

If L has basis S = {s1, . . . , sN}, then L# has dual basis S# =

{s#
1 , . . . , s

#
N}, defined by s#

i (sj) = δij, the Kronecker delta.
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Lemma 3.2. Let (L,Q) be a quadratic R-module with basis S. Let A
be the matrix of Q with respect to S. Then the matrix of AdQ : L→ L#

with respect to S and S# is also A.

Proof. Let C = (cij) denote the matrix of AdQ, so that AdQ(ej) =∑
k ckj

e#k . Then AdQ(ej)(ei) =
∑

k ckj
e#k (ei) = cij, so that 〈ei, ej〉 =

〈ej, ei〉 = AdQ(ej)(ei) = cij, proving that A = C. Q.E.D.

Corollary 3.3. With the notations of Lemma 3.2, we have:

(3.3.1) det(A) is not a zero divisor in R,
(3.3.2) Q is unimodular if and only if det(A) is a unit in R.

Let us assume that (L,Q) is a quadratic R-module with two bases
S and T , inducing isomorphisms αS and αT : L → RN . Let AS and
AT be the matrices of Q with respect to S and T , respectively, and let
P be the matrix of the isomorphism αS ◦ α−1

T : RN → RN .

Lemma 3.4. With the above notations, AT = P>ASP .

Proof. For any x in L, αS(x) = PαT (x), or αT (x) = P−1αS(x).
Hence 〈x, y〉 = αS(x)

>ASαS(y) = αS(x)
>(P−1)>P>ASPP

−1αS(x) =
αT (x)>(P>ASP )αT (x), so that AT = P>ASP . Q.E.D.

We will use the notation R× for the units of a ring R. The above
lemma leads us to the following.

Definition 3.5. Let (L,Q) be a quadratic R-module. The discri-
minant of (L,Q) (or of L, or of Q) is the class of det(A) in R/(R×)2,
where A is the matrix of Q with respect to some basis of L.

A few remarks are in order. Firstly, the discriminant of L (denoted
by disc(L), or disc(Q)) is well defined by Lemma 3.4. Secondly, by
Corollary (3.3.1), disc(L) in fact lies in {non-zero divisors of R}/(R×)2.
In particular, ifR is an integral domain, then disc(L) ∈ (R−{0})/(R×)2.
Furthermore, if R is a field, then disc(L) ∈ R×/(R×)2. In this case,
the values for disc(L) form a group.

In general, Q is unimodular if and only if disc(Q) ∈ R×/(R×)2.
Note that any quadratic R-module is unimodular when R is a field.

The value group R×/(R×)2 occurs so often in this book that we will
use the following notation for it. If R is any commutative ring with
identity, define D(R) = R×/(R×)2; D(R) is an abelian group, every
nontrivial element having order 2.

It will be useful to collect these value sets for the discriminant in
the following important cases.

Lemma 3.6.
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(3.6.1) Z− {0}/(Z×)2 = Z− {0}.
Hence any quadratic Z-module has a nonzero rational integer
as discriminant.

(3.6.2) D(Q) is a free Z/2-module on the set {−1} ∪ {p > 1 | p is a
prime in Z}.

(3.6.3) D(R) is a cyclic group of order 2, generated by the class of −1.
(3.6.4) D(C) is a trivial group.
(3.6.5) Recall that Z×

p = {u ∈ Zp | ‖u‖p = 1}. Then:
(a) If p is odd, D(Zp) is a cyclic group of order two, generated

by the class of a non-square mod p. In this case, a unit
u ∈ Z×

p is a square if and only if u is a square mod p.
(b) If p = 2, D(Z2) is a Klein 4-group, consisting of the

classes of 1, 3, 5 and 7. A unit u ∈ Z×
2 is a square if

and only if u = 1 mod 8.
Since every element of Zp−{0} can be uniquely written as
peu, with e ≥ 0 and u ∈ Z×

p , the discriminants of quadra-

tic Zp-modules lie in Zp−{0}/(Z×
p )2 ∼= N×(Z×

p )/(Z×
p )2 ∼={

N× Z/2 if p is odd
N× Z/2× Z/2 if p = 2.

(3.6.6) Every element of Q×
p can be uniquely written as peu, with e ∈ Z

and u ∈ Z×
p . Hence

D(Qp) =

{
Z/2× Z/2 if p is odd
Z/2× Z/2× Z/2 if p = 2.

(3.6.7) (a) If p is odd, D(Z/pe) is a cyclic group of order 2, generated
by the class of a nonsquare mod p. Again, a unit u ∈ (Z/pe)×
is a square if and only if u is a square mod p.

(b) If p = 2, we have

D(Z/2e) =

 trivial if e = 1
cyclic of order 2 if e = 2
a Klein 4-group if e ≥ 3.

We leave the elementary proofs of these computations to the reader.
Because of its pervasive usage, we will often use the notation Up for

Z×
p .

We would like to identify these value groups in the p-adic and p-
primary cases with “standard” groups. We do this via the following
isomorphisms, all of which we call χ.
For R = R, χ : D(R) → {±1} is the obvious isomorphism.
For R = Zp, p odd, χ : D(Zp) → {±1} is the Legendre symbol; for
u ∈ Up,
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χ(u) =
(
u
p

)
=

{
+1 if u is a square
−1 if u is a non-square.

For R = Z/pe, p odd, χ : D(Z/pe) → {±1} is the Legendre symbol.
For R = Z2, χ : D(Z2) → (Z/8)× is the “mod 8” map.
For R = Z/2e, e ≥ 3, χ : D(Z/2e) → (Z/8)× is the mod 8 map.
For R = Z/4, χ : D(Z/4) → (Z/4)× is the identity.
For R = Z/2, χ : D(Z/2) → (Z/2)× is the identity.

Note that for any prime p, we have a commutative square

D(Zp)
χ−→ standard groupy y

D(Z/pe) χ−→ standard group

in addition the squares

D(Z/pe1) χ−→ standard groupy y
D(Z/pe2) χ−→ standard group

commute, where e2 ≤ e1. In both cases the vertical maps are the
natural quotient maps.

We will extend this notation to D(Qp) by defining

χ(peu mod (Q×
p )2) = χ(u mod U2

p ),

where e ∈ Z and u ∈ Up. In this case

χ : D(Qp) → {±1} if p is odd

and

χ : D(Q2) → (Z/8)×

are only group homomorphisms, with kernel of order 2, generated by
the prime p in each case.

In case R = Z, a quadratic Z-module will be referred to as an
integral quadratic form, justifying the title of this book. Similarly, if
R = Q, R or C, a quadratic R-module will be called a rational, real
or complex quadratic form, respectively. An integral p-adic quadratic
form is a quadratic Zp-module, and a rational p-adic quadratic form is
a quadratic Qp-module.

4. Torsion Forms over Integral Domains

The central construction dealt with in this book is a special case of
the following type of quadratic form. Throughout this section, let R
denote an integral domain, and let K denote its fraction field.
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Definition 4.1. A torsion quadratic form over R is a K/R-valued
quadratic form over R on a finitely generated torsion R-module.

Similarly, a torsion bilinear form over R is a K/R-valued bilinear
form over R on a finitely generated torsion R-module.

Note that there is no requirement of nondegeneracy in the above
definition.

If G is a torsion R-module, define G# = HomR(G,K/R), so that if
(G, q) is a torsion quadratic form over R, the adjoint map Adq maps
G to G#. In case G is cyclic, these groups are isomorphic:

Lemma 4.2. Assume a ∈ R, a 6= 0. Then the map α : R/a →
HomR(R/a,K/R) defined by

α(x mod (a))(y mod (a)) =
xy

a
mod R

is an isomorphism of R-modules.

Proof. It is clear that α is well defined, and is an R-map. Assume
α(x mod (a)) = 0. Then α(x mod (a))(1 mod (a)) = x

a
mod R will be

0 in K/R, i.e., x
a
∈ R, or a|x; hence x mod (a) = 0 in R/a. Therefore,

α is 1-1. Let φ ∈ (R/a)#, and write φ(1 mod (a)) = p
q

mod R. Since

0 = φ(0) = φ(a mod (a)) = aφ(1 mod (a)) = ap
q

mod R, q|ap in R.

Write ap = rq; then p
q

= r
a

in K so that φ(1 mod (a)) = r
a

mod R,

and φ = α(r mod (a)) by linearity. Hence α is onto. Q.E.D.

This leads to the following result which is well known in case R = Z.
As is standard, we will abbreviate “principal ideal domain” to P.I.D.

Lemma 4.3. Assume R is a P.I.D. and G is a finitely generated
torsion R-module. Then G ∼= G# as R-modules.

Proof. By hypothesis on R, G is a direct sum of cyclic torsion
R-modules. Since (

⊕
iGi)

# ∼=
⊕

iG
#
i , the result follows from Lemma

4.2. Q.E.D.

Corollary 4.4. Assume R is a P.I.D. and let (G, q) be a torsion
quadratic form over R. Then G is nondegenerate if and only if G is
unimodular.

Two special cases will be of particular interest to us. Firstly, if
R = Z, then a torsion quadratic form (G, q) over Z will be called a
finite quadratic form; the group G is a finite abelian group, and the
values of q lie in Q/Z. A finite bilinear form is a torsion bilinear form
over Z.

Secondly, if R = Zp, then a torsion quadratic form (G, q) over Zp

will be called a p-primary quadratic form. In this case the group G is
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a finite abelian p-group and the values of q lie in Qp/Zp. A p-primary
bilinear form is a torsion bilinear form over Zp.

The value group Qp/Zp for a p-primary quadratic form is isomorphic
to a sub-quotient group of Q. Let Q(p) ⊂ Q denote the set of all rational
numbers with denominator a power of p.

Lemma 4.5. There is a natural isomorphism between Qp/Zp and
Q(p)/Z.

Proof. Represent elements of Qp as Laurent series in p, with co-
efficients in {0, 1, . . . , p − 1}. Define β : Qp → Q(p)/Z by β(

∑
aip

i) =
(
∑

i<0 aip
i) mod Z. Then β is a surjective group homomorphism with

kernel Zp. Q.E.D.

5. Orthogonality and Splitting

Let (L1, Q1) and (L2, Q2) be two F -valued quadratic forms over R.

Definition 5.1. The direct sum (or orthogonal direct sum) of
(L1, Q1) and (L2, Q2) is the pair (L1 ⊕ L2, Q1 + Q2). (The func-
tion Q1 + Q2 : L1 ⊕ L2 → F is defined by (Q1 + Q2)(x1, x2) =
Q1(x1) +Q2(x2).)

It is trivial to check that (L1⊕L2, Q1+Q2) is an F -valued quadratic
form over R. In addition, we have the following.

Lemma 5.2. Using the above notations,

(5.2.1) Q1 +Q2 is nondegenerate if and only if Q1 and Q2 are.
(5.2.2) Q1 +Q2 is unimodular if and only if Q1 and Q2 are.

Proof. This follows immediately from the formula AdQ1+Q2 =
AdQ1 ⊕AdQ2 , and the fact that direct sums commute with Hom. Q.E.D.

Lemma 5.3. Assume that (L1, Q1) and (L2, Q2) are quadratic R-
modules. Then

(5.3.1) (L1 ⊕ L2, Q1 +Q2) is a quadratic R-module.
(5.3.2) Assume S1 and S2 are bases for L1 and L2, respectively, so

that A1 and A2 are the matrices of Q1 and Q2 with respect to
S1 and S2, respectively. Then S1 ∪ S2 = {(s1, 0) | s1 ∈ S1} ∪
{(0, s2) | s2 ∈ S2} is a basis for L1⊕L2 over R, and the matrix
of Q1 +Q2 with respect to S1 ∪ S2 is

(
A1 0
0 A2

)
.

(5.3.3) disc(Q1 +Q2) = disc(Q1) disc(Q2).

Proof. The first statement follows immediately from the
definitions and
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Lemma (5.2.1). The second statement is clear by the following calcu-
lation:

〈(x1, x2), (y1, y2)〉Q1+Q2 = (Q1 +Q2)(x1 + y1, x2 + y2)

−(Q1 +Q2)(x1, x2)− (Q1 +Q2)(y1, y2)

= Q1(x1 + y1) +Q2(x2 + y2)

−Q1(x1)−Q2(x2)−Q1(y1)−Q2(y2)

= 〈x1, y1〉Q1 + 〈x2, y2〉Q2 .

Finally, the last statement follows from the second. Q.E.D.

The above construction is sometimes referred to as an external di-
rect sum. There is, of course, a notion of internal direct sum, also.

Definition 5.4. Let (L,Q) be an F -valued quadratic form over R,
with associated bilinear form 〈 , 〉.
(5.4.1) Two elements x, y ∈ L are said to be orthogonal, or perpen-

dicular if 〈x, y〉 = 0.
(5.4.2) An element x ∈ L is isotropic if Q(x) = 0; x is anisotropic if

Q(x) 6= 0.
(5.4.3) If X ⊂ L is a subset of L, the perpendicular module to X,

denoted by X⊥, is the set {y ∈ L | 〈x, y〉 = 0 for all x in L}.
(5.4.4) A subset X ⊂ L is totally anisotropic if each element of X is

isotropic. This implies that X ⊂ X⊥.

Note that 〈x, x〉 = 0 does not imply that x is isotropic, unless
multiplication by 2 is injective on F . Similarly, X ⊂ X⊥ does not
imply that X is totally isotropic.

Also note that if X is any set, X⊥ is a submodule of L. Moreover,
X ⊂ (X⊥)⊥ always.

Definition 5.5. Let (L,Q) be an F -valued quadratic form over
R. A splitting of (L,Q) is a direct sum decomposition L = M ⊕ N
of L such that every element of M is orthogonal to each element of
N . If M is a submodule of L, we say that M splits off L if M is a
direct summand of L, and there exists a submodule N of L such that
L = M ⊕N is a splitting.

Note that if L = M⊕N is a splitting of L, then (L,Q) is isomorphic
to the orthogonal direct sum of (M,Q|M) and (N,Q|N).

There is one simple but important criterion for a submodule of L
to split off.

Proposition 5.6. Let (L,Q) be an F -valued quadratic form over R
and let M be a submodule of L. Assume that (M,Q|M) is unimodular.
Then M splits off L. In fact, L = M ⊕M⊥ is a splitting of L.
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Proof. Since M is unimodular, M ∩ M⊥ = {0}; hence, it suf-
fices to show that L = M + M⊥. Restriction gives an R-map res :
HomR(L, F ) → HomR(M,F ). Let α = res ◦AdL : L → HomR(M,F ).
Note that α|M = AdM , so by the unimodularity of M , α|M is an iso-
morphism; hence, α is onto. The kernel of α is exactly M⊥, so we have
an exact sequence of R-modules

0 →M⊥ → L
α→ HomR(M,F ) → 0.

Let x ∈ L. Since α|M is an isomorphism, there is an element m ∈ M
such that α(m) = α(x); hence x−m ∈ M⊥. Therefore x = m + (x−
m) ∈M +M⊥. Q.E.D.

There is a generalization of the above proposition for R a discrete
valuation ring which will be discussed later.

Definition 5.7. An F -valued quadratic form (L,Q) over R is in-
decomposable if L does not split as the direct sum of two proper nonzero
submodules. A quadratic R-module (L,Q) is diagonalizable if L splits
as the direct sum of rank one submodules.

Proposition 5.8. Assume that R is a field of characteristic 6= 2,
and let (L,Q) be a quadratic R-module. Then (L,Q) is diagonalizable.

Proof. The proof is by induction on the rank of L. If rank(L) = 1,
there is nothing to do; assume rank(L) ≥ 2. If x ∈ L and Q(x) 6= 0,
then M = span of x splits off L, and by induction M⊥ is diagonalizable;
hence, L = M ⊕M⊥ is diagonalizable. Therefore, we need only show
that there is a vector x in L with Q(x) 6= 0. However, if Q(x) = 0 for
every x in L, Q is degenerate. Q.E.D.

6. Homomorphisms

Definition 6.1. Let (L1, Q1) and (L2, Q2) be two F -valued qua-
dratic forms over R. A homomorphism φ from (L1,Q1) to (L2, Q2) (or,
for convenience, from L1 to L2) is an R-map φ : L1 → L2 such that
Q2 ◦ φ = Q1. If φ is 1-1, φ is called an embedding.

This is, of course, just what one would expect. Note that if (L,Q)
is an F -valued quadratic form over R, and M ⊂ L is a submodule,
then the inclusion map inc : M → L is an embedding of (M,Q|M) into
(L,Q).

The reader should also note that if L splits as L = M ⊕ N , then
the projection map π : L → M is not a homomorphism in general; it
is only if Q|N ≡ 0.

The composition of homomorphisms is a homomorphism.
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Lemma 6.2. Let φ : (L1, Q1) → (L2, Q2) be a homomorphism of
F -valued quadratic forms over R. Assume x ∈ L1 and φ(x) = 0. Then
AdQ1(x) = 0 and Q1(x) = 0.

Proof. By assumption, Q1(x) = Q2(φ(x)) = Q2(0) = 0, so we
need only check that AdQ1(x) = 0. Let y ∈ L1. Then Q1(x + y) =
Q2(φ(x+y)) = Q2(φ(y)) = Q1(y), so that Q1(x+y)−Q1(y) = 0. Since
Q1(x) = 0 also, we have 〈x, y〉Q1 = Q1(x+ y)−Q1(x)−Q1(y) = 0, so
that AdQ1(x) = 0. Q.E.D.

Corollary 6.3. Let φ : (L1, Q1) → (L2, Q2) be a homomorphism
of F -valued quadratic forms over R. Assume that L1 is nondegenerate.
Then φ is an embedding.

Corollary 6.4. Let φ : (L1, Q1) → (L2, Q2) be a homomorphism
of quadratic R-modules. Then φ is an embedding.

These corollaries follow immediately from Lemma 6.2.
Note that if φ is a bijective homomorphism of F -valued quadratic

forms over R, then φ−1 is also a homomorphism.

Definition 6.5. An isomorphism (or isometry) of F -valued qua-
dratic forms is a bijective homomorphism. An automorphism is a self-
isometry. Two F -valued quadratic forms (L1, Q1) and (L2, Q2) are iso-
morphic (or isometric) if there exists an isomorphism between them,
and we use the usual notation (L1, Q1) ∼= (L2, Q2) in this case. (We
will often abbreviate this to L1

∼= L2 or Q1
∼= Q2.)

The following “equivalence relation” on F -valued quadratic forms
is coarser than isomorphism, but still is quite rich.

Definition 6.6. Two F -valued quadratic forms (L1, Q1) and (L2, Q2)
over R are stably isomorphic if there exist two unimodular F -valued
quadratic forms over R, M1 and M2, such that L1 ⊕M1

∼= L2 ⊕M2.
We denote this by L1 ∼S L2 (or Q1 ∼S Q2).

It will be useful to consider the following special class of homomor-
phisms, whose importance is motivated by the above.

Definition 6.7. A homomorphism φ : L1 → L2 of F -valued qua-
dratic forms over R is stable if L2 = φ(L1) ⊕ φ(L1)

⊥, and φ(L1)
⊥ is

unimodular.

Note that if M is unimodular, the inclusion of L into L ⊕ M is
a stable homomorphism. We leave to the reader to check that the
smallest equivalence relation on F -valued quadratic forms over R such
that if there exists a stable homomorphism φ : L1 → L2, then L1 is
equivalent to L2, is stable isomorphism.
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7. Examples

We will collect in this section the fundamental examples of bilinear
and quadratic forms which are needed in this book. These examples
will all be either quadratic R-modules, or torsion quadratic forms.

Example 7.1. Rank 1 quadratic R-modules.

Let R be any commutative ring with identity, and let a ∈ R. Let
L be a free rank-one R-module with basis S = {s}. Define Q : L→ R
by Q(rs) = ar2. The associated bilinear form is then 〈xs, ys〉 = 2xya,
so the matrix of 〈 , 〉 with respect to S is the 1× 1 matrix (2a). Hence
〈 , 〉 is nondegenerate if and only if 2a is not a zero-divisor in R; if this
is the case, then (L,Q) is a quadratic R-module of rank 1. We denote
by 〈a〉R the isomorphism class of this quadratic R-module. The form
〈1〉R will usually be denoted by 1R.

Note that 〈a〉R ∼= 〈b〉R if and only if there is a unit u ∈ R× such that
a = u2b. Hence, if multiplication by 2 in injective on R, then rank-one
quadratic R-modules are classified by {non-zero divisors of R}/(R×)2.
In particular, if R is an integral domain, rank-one quadratic R-modules
are classified by (R− {0})/(R×)2.

We will use a special notation in case R = Z or Zp.
If a 6= 0, a ∈ Z, then 〈a〉Z will be denoted simply by 〈a〉, if no

confusion is possible.
If a ∈ Zp, a 6= 0, then we can write 2a = pku, where k ≥ 0 and

u ∈ Up. The isomorphism class of the form 〈a〉Zp = 〈1
2
pku〉Zp will be

denoted by W ε
p,k, where ε = χ(u).

Note that 〈a〉 ∼= 〈b〉 if and only if a = b, and W ε
p,k
∼= W η

p,` if and
only if ε = η and k = `.

Also, disc(〈a〉) = 2a and disc(W ε
p,k) = pku mod U2

p , where χ(u) =
ε.

Finally, note that if p = 2, the quadratic Z2-modules W ε
2,0 are

not defined as quadratic modules; the quadratic form has values in
1
2
BbbZ2, not in BbbZ2. However, we can define the associated bilinear

form 〈−,−〉, which does have values in BbbZ2; if s is the generator of
the free module L, this bilinear form is 〈xs, ys〉 = xyu, where χ(u) = ε.
With this definition we have an (odd) inner product module over Z2.

Example 7.2. The hyperbolic plane.

Let R be a commutative ring with identity, and let L be a free
rank 2 R-module with basis S = {s1, s2}. Define Q : L → R by
Q(r1s1 + r2s2) = r1r2. The associated bilinear form is then

〈r1s1 + r2s2, r
′
1s1 + r′2s2〉 = r1r

′
2 + r2r

′
1,
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and the matrix of Q with respect to S is (0 1
1 0). Hence, Q is nondegener-

ate and is in fact unimodular. The isomorphism class of this quadratic
R-module (L,Q) of rank 2 will be denoted by UR, or simply U if no
confusion is possible; it is called the hyperbolic plane over R. Note that
disc(UR) = −1 mod (R×)2.

Lemma 7.3.

(7.3.1) If 2 is a unit in R, then UR splits as 〈2〉R ⊕ 〈2〉R.
(7.3.2) If 2 is not a unit in R, then UR is indecomposable.

Proof. The first statement is easily seen, using the new basis {s1+
s2, s1 − s2}. Assume 2 is not a unit in R. If UR splits, it must split as
a direct sum of 2 rank 1 quadratic R-modules, so UR ∼= 〈a〉R⊕〈b〉R for
some a, b ∈ R, in which case disc(UR) = 4ab mod (R×)2. Therefore,
4ab = −1 mod (R×)2, so 2 must be a unit in R. Q.E.D.

Example 7.4. AN , DN , EN and Tpqr.

Let R = Z and let L be a free rank N Z-module with basis S =
{s1, . . . , sN}. Define a symmetric bilinear form 〈−,−〉 on L by setting
〈si, si〉 = −2 for every i, 〈si, si+1〉 = 1 for i = 1, . . . , N − 1, and all
other values = 0. This is an even bilinear form, so by 2.4, there is a
unique quadratic form q on L inducing 〈−,−〉. The isomorphism class
of this form is denoted by AN .

The matrix of AN in the above basis is tri-diagonal, with −2 entries
on the main diagonal, +1 entries on the sub- and super-diagonals, and
0’s elsewhere. Clearly disc(A1) = −2 and disc(A2) = det

(−2 1
1 −2

)
= +3.

By expansion along the first row, one easily checks that disc(AN+2) =
−2 disc(AN+1) − disc(AN). Therefore, disc(AN) = (−1)N(N + 1) for
all N , as is easily proved by induction.

The AN quadratic form is a special case of a more general con-
struction. Let G be a simple graph, i.e., one without loops or multiple
edges. Let L be the free Z-module on the set of vertices. Define a
bilinear form 〈−,−〉 on L by setting

〈v, w〉 =

 −2 if v = w
1 if v 6= w but v and w are adjacent in G
0 if v 6= w and v is not adjacent to w in G

for vertices v, w in G and extending by linearity. The form 〈−,−〉 is
even and defines a quadratic form on L. The AN form arises from the
graph which is simply a path on N vertices:t t p p p t t

v1 v2 vn−1 vn
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The next level of complexity is obtained with the so-called Tpqr
graphs, defined as the graph on p+q+r−2 vertices, labeled a1, . . . , ap−1, b1, . . . , bq−1, c1, . . . , cr−1, e,
joined as follows:

t t p p p t t
t

t p p p t t

ppp
t
t a1

a2

ap−1

b1 b2 bq−1 c1c2cr−1e

Here p, q, r ≥ 1, although if any equal 1, the graph reduces to a path,
giving the AN form. We usually order the indices so that p ≤ q ≤ r.
In this case the T1qr form is the Aq+r−1 form. The matrix for the T222

form is


−2 1

−2 1
−2 1

1 1 1 −2

, whose determinant is +4. In general,

the same expansion as in the AN case above yields

disc(Tp,q,r+2) = −2 disc(Tp,q,r+1)− disc(Tp,q,r).

Induction now easily shows that

disc(Tpqr) = (−1)p+q+r+1[pqr − pq − pr − qr]

= (−1)p+q+r+1pqr

[
1− 1

p
− 1

q
− 1

r

]
.

Note that this formula holds in case p = 1 also, i.e., for the AN case.
Let us note when the Tpqr is degenerate and when it is unimodular.

Firstly, Tpqr is degenerate if and only if disc(Tpqr) = 0, i.e., when 1 =
1
p

+ 1
q

+ 1
r
. Clearly T333 is degenerate and no Tpqr with (p, q, r) >

(3, 3, 3) (ordered lexicographically) is degenerate. Therefore, all other
degenerate Tpqr’s have p = 2; an easy computation shows that T244 and
T236 are the only other examples. These forms have special names: T333

is denoted by Ẽ6; T244 by Ẽ7; and T236 by Ẽ8.
For Tpqr to be unimodular, we must have pqr = pq + pr + qr ± 1;

there are no solutions to this if p ≥ 3; hence p = 2 and we must have
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qr = 2q + 2r ± 1, forcing q ≥ 3. Therefore, r = (2q ± 1)/(q − 2), and
r ≥ q implies q ≤ 4. For q = 3, r = 5 and r = 7 is a solution; there
is none for q = 4. Hence the unimodular Tpqr forms are T235 and T237;
these are denoted by E8 and E10, respectively.

In general, T22r is denoted by Dr+2 and T23r by Er+3. Note that

Ẽ8 = E9.
The forms above which are negative definite are the AN ’s, the DN ’s,

E6, E7 and E8. All other nondegenerate Tpqr forms are indefinite. The
graphs for these negative definite forms are the Dynkin diagrams.

There are some non-obvious relationships among these forms. For
example, if r ≥ 7, Er+3 = T23r

∼= E8 ⊕ U ⊕ Ar−7 (where, for r = 7, A0

is the trivial form of rank 0). The graph for Er+3 is

t t t
t

t t t t t t t p p p t tb1 b2 e

a1

cr−1 cr−2 cr−3 cr−4 cr−5 cr−6 cr−7 c2 c1

The E8 submodule is generated by a1, b1, b2, cr−4, cr−3, cr−2, cr−1

and e. Let f = 3a1 + 2b1 + 4b2 + 2cr−4 + 3cr−3 + 4cr−2 + 5cr−1 + 6e.
Then the U submodule is generated by cr−5 + f and cr−5 + cr−6 + f .
Since 〈f, f〉 = −2, 〈f, cr−5〉 = 2, and 〈f, cr−6〉 = 0, U ⊂ E⊥

8 . Finally
the Ar−7 submodule is generated by cr−7 − cr−5 − f, cr−6, . . . , c2, c1, all
of which are in (U ⊕ E8)

⊥.
Note that, in particular, the unimodular form E10 is isomorphic to

E8 ⊕ U .
The forms Ẽ6, Ẽ7 and Ẽ8 all have exactly a rank one radical; modulo

their radicals, they are isomorphic to E6, E7 and E8, respectively. They
are called the extended diagrams for E6, E7 and E8. There are also
extended diagrams for the other negative definite forms AN and DN ,

denoted also by ÃN and D̃N . ÃN is defined by the graph which is a

cycle of N+1 vertices. D̃N is defined by the following graph with N+1
vertices:

t
t
t t p p p t t

t
t

v1 v2 vn−2 vn−1

vnv0
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As is the case with Ẽ6, Ẽ7 and Ẽ8, these extended diagrams each have

a rank-one radical and modulo their radicals ÃN is isomorphic to AN
and D̃N is isomorphic to DN .

As special cases of the discriminant formula for the Tpqr forms, we
have

disc(DN) = (−1)N · 4
and

disc(EN) = (−1)N+1(N − 9).

Example 7.5. Indecomposable rank-2 quadratic Z2-modules.

Let L be a free rank 2 Z2-module with basis S = {s1, s2}. Define
Q : L → Z2 by Q(a1s1 + a2s2) = 2ka1a2. The associated bilinear

form has matrix
(

0 2k

2k 0

)
, and so Q is nondegenerate, and unimodular

if k = 0. The isomorphism class of this quadratic form will be denoted
by Uk.

Using the same Z2-module L and basis S, define a different quadra-
tic form by Q(a1s1 +a2s2) = 2k(a2

1 +a1a2 +a2
2). The associated bilinear

form has matrix
(

2k+1 2k

2k 2k+1

)
with respect to S, so Q is nondegenerate

and unimodular if k = 0. The isomorphism class of this quadratic form
will be denoted by Vk.

Note that disc(Uk) = −22k mod U2
2 and disc(Vk) = 3·22k mod U2

2;
hence, none of these forms are isomorphic to any other.

Lemma 7.6. For all k ≥ 0, Uk and Vk are indecomposable.

Proof. We will only prove that Uk is indecomposable, leaving the
(similar) argument for the Vk’s to the reader. Assume that Uk is rep-
resented by (L,Q) as above, and that (L,Q) splits as M ⊕ N where
M and N are rank-1 quadratic Z2-modules generated by m and n, re-
spectively. The set T = {m,n} is then a basis for L and the matrix

of Q with respect to T is
(

2Q(m) 0
0 2Q(n)

)
, so that disc(Uk) = 4Q(m)Q(n)

mod U2
2. Since 2k divides every value of Q, 22k+2 divides disc(Uk).

Since disc(Uk) = −22k mod U2
2, this contradiction proves the inde-

composability. Q.E.D.

Let us show that these are the only indecomposable rank-2 quadra-
tic Z2-modules, up to
isomorphism.

Lemma 7.7. Let (L,Q) be an indecomposable rank-2 quadratic Z2-
module.
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(7.7.1) Assume that there is a nonzero x ∈ L with Q(x) = 0. Then
(L,Q) ∼= Uk for some k ≥ 0.

(7.7.2) Assume that there is no nonzero x in L with Q(x) = 0. Then
(L,Q) ∼= Vk for some k ≥ 0.

(7.7.3) As an alternate characterization, (L,Q) ∼= Uk if and only if
disc(L,Q) = 22k ·δ for some odd δ with

(
2
δ

)
= 1, while (L,Q) ∼=

Vk if and only if disc(L,Q) = 22k · δ for some odd δ with(
2
δ

)
= −1.

Proof. To prove the first statement, letQ(x) = 0. We may assume
x /∈ 2L, so {x} can be extended to a basis {x, y} for L over Z2. Let
〈x, y〉 = 2ku, with u ∈ U2; by replacing y by u−1y, we may assume
〈x, y〉 = 2k for some k ≥ 0. Write 〈y, y〉 = r. If r|2k, then the span of y
splits off L: {y}⊥ = span of x−(2k/r)y, and {x−(2k/r)y, y} also forms
a basis for L. Since L is indecomposable, 2k+1|r, and by replacing y by

y − (r/2k+1)x, the matrix for Q becomes
(

0 2k

2k 0

)
; hence, by Corollary

2.5, (L,Q) ∼= Uk.
For the second statement, we may assume that there is a basis

S = {x, y} for L such that the matrix of Q with respect to S is
(
r 2k

2k s

)
.

If r|2k, then the span of x splits off L and if s|2k, the span of y splits
off L by an argument similar to the above. Hence, we may assume
2k+1 divides both r and s. Therefore, 2k divides every value of Q; by
replacing Q by 2−kQ, we may assume k = 0. We must show that (L,Q)
represents V0. Now the matrix of Q with respect for S is (r 1

1 s), with r
and s even; write r = 2u and s = 2v.

Claim: u and v are both odd.

Assume, for example, that v is even; write v = 2Lw, where w is
a unit and L ≥ 1. Replace y by y′ = 2Lx + (1 − 2L+1u)y. Then
〈x, y′〉 = 2L · 2u+ (1− 2L+1u) · 1 = 1 still, and

〈y′, y′〉 = 22L · 2u+ 2 · 2L(1− 2L+1u) + (1− 2L+1u)2 · 2L+1w

= 2L+1[2Lu+ 1− 2L+1u+ w − 2L+2uw + 22l+2u2]

which is divisible by 2L+2 since w is odd. By iterating this operation,
we achieve a sequence of bases {x, y(i)} such that ‖〈y(i), y(i)〉‖2 → 0.
Moreover, the sequence y(i) converges to y∞ in L and Q(y∞) = 0,
contradicting the hypotheses on L. This proves the claim.
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Write v = 1+2Lw where w is a unit in Z2 and L ≥ 1. Again replace
y by y′ = 2Lx+ (1− 2L+1u)y. We still have 〈x, y′〉 = 1 and

〈y′, y′〉 = 22L · 2u+ 2L+1(1− 2L+1u) + (1− 2L+1u)2 · 2(1 + 2Lw)

= 2[22Lu+ 2L − 22L+1u+ 1− 2L+1u+ 2Lw − 22L+1uw]

= 2[1 + 2L+1w′]

since w is odd.
By iterating this operation, we obtain a sequence of bases {x, y(i)}

such that

‖〈y(i), y(i)〉 − 2‖2 → 0.

Moreover, the sequence y(i) converges to y∞ in L, {x, y∞} is a basis for
L, and the matrix of Q with respect to this basis is (r 1

1 2).
By reversing the roles of x and y, we obtain (again by iteration) a

basis {x∞, y∞} for L such that the matrix of Q with respect to this
basis is (2 1

1 2), proving the second statement by Corollary 2.5.
To prove the alternate characterization in the third part, note that

(L,Q) must be isomorphic to Uk or Vk for some k. But disc(Uk) =
22k · (−1) and

(
2
−1

)
= 1, while disc(Vk) = 22k · 3 and

(
2
3

)
= −1.

Thus, the isomorphism classes of these forms are determined by the
discriminant. Q.E.D.

Example 7.8. Cyclic torsion bilinear forms over Z.

In this section we want to briefly introduce the nondegenerate Q/Z-
valued symmetric bilinear forms over Z on G ∼= Z/`. If g generates G,
then any such bilinear form must be of the form 〈xg, yg〉 = xya/`
mod Z, where (a, `) = 1, a ∈ Z. The form 〈 , 〉 depends only on the
class of a mod `), so we may consider a ∈ (Z/`)×. Moreover, a and a′

induce isomorphic bilinear forms if and only if there is a unit u ∈ (Z/`)×
such that a′ = u2a mod `. Therefore, these bilinear forms are classified
by (Z/`)×/((Z/`)×)2 = D(Z/`). This form will be denoted by z̄a` .

Again we want to be more specific in case ` is a prime power ` = pk.
First assume p is odd. Assume that the bilinear form has the form
〈xg, yg〉 = xya/pk, for a generator g of Z/pk. We denote this form by

w̄εp,k, where ε =
(
a
p

)
= χ(a). Here ε ∈ {±1}.

Assume p = 2. Then the bilinear form has the form 〈xg, yg〉 =
xya/2k. We denote this form by w̄ε2,k, where ε = χ(a mod 2k). Here
ε ∈ (Z/2)× = {1} if k = 1; ε ∈ (Z/4)× = {1, 3} if k = 2; and
ε ∈ (Z/8)× = {1, 3, 5, 7} if k ≥ 3.

Example 7.9. Cyclic torsion quadratic forms over Z.
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LetG = Z/` be a cyclic group of order ` with generator g. Fix a ∈ Z
with (a, `) = 1 and a` ∈ 2Z. Define q : G → Q/Z by q(rg) = r2a/2`
mod Z. This is well defined since a` is even. The associated bilinear
form 〈xg, yg〉 = xya/` mod Z is nondegenerate since (a, `) = 1, so q is
nondegenerate, hence unimodular. The isomorphism class of this finite
quadratic form will be denoted by za` .

Note that if a ≡ b mod 2`, then za`
∼= zb` , so za` only depends on

the class of a mod 2`. If ` is even, then there are 2ϕ(`) possible classes
for a mod 2` satisfying (a, `) = 1(a` ∈ 2Z is automatic); if ` is odd,
there are ϕ(`) possibilities for a mod 2`, since in addition to (a, `) = 1,
a must be even. (ϕ(`) is the Euler phi function.)

For these possible values for a mod 2`, multiplication by squares of
units in Z/` is well defined. To check this, let u ∈ (Z/`)× and first
assume ` is even. Then

(u+ `)2a mod 2` = u2a+ 2`ua+ `2a mod 2`

= u2a+ `2a mod 2`

= u2a mod 2`

since for ` even, `2 ≡ 0 mod 2`. Now assume ` is odd; then (u+ `)2a
mod 2` = u2a+ `2a mod 2` = u2a mod 2` since a is even.

Therefore, if a and b are allowable values as above, then za`
∼= zb` if

and only if there is a unit u ∈ (Z/`)× such that b = u2a mod 2`.
We can be more specific if ` is a prime power, say ` = pk.
If p = 2, then the allowable values for a mod 2k+1 are the units

(Z/2k+1)×, and the class of a mod ((Z/2k)×)2 determines the isomor-
phism class of the form za

2k . Hence the set (Z/2k+1)×/((Z/2k)×)2 clas-
sifies finite quadratic form on Z/2k. Note that this set is in 1-1 corre-
spondence with D(Z/2k+1); hence we will use this group to classify the
finite quadratic forms in this case. We denote the isomorphism class
of za

2k by wε2,k, where ε = χ(a). Hence if k = 1, ε ∈ (Z/4)× = {1, 3}; if
k ≥ 2, ε ∈ (Z/8)× = {1, 3, 5, 7}.

If p is odd, the allowable values for a mod 2pk are the even units
of (Z/2pk)×, which are in 1-1 correspondence with the units of Z/pk.
Hence, the group D(Z/pk) classifies finite quadratic forms on Z/pk. We
denote the isomorphism class of za

pk by wεp,k, where ε = χ(a mod pk).
With this notation, we have that the associated bilinear form to

wεp,k is w̄εp,k, where if p = 2 and k ≤ 2, the ε’s are only “equal” mod 2k.

Example 7.10. Indecomposable finite quadratic forms on Z/2k ×
Z/2k.
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Let G = Z/2k × Z/2k, with generators x, y of order 2k. Define
q : G → Q/Z by q(ax + by) = 2−kab mod Z. The reader can check
that q is a well-defined nondegenerate quadratic form on G, which is
in fact indecomposable. The isomorphism class of this quadratic form
will be denoted by uk.

On the same group G, define a different quadratic form q : G →
Q/Z by q(ax+by) = 2−k(a2+ab+b2) mod Z. This form is well defined
and nondegenerate and is also indecomposable; its isomorphism class
will be denoted by vk.

In keeping with the notations of Examples 7.8 and 7.9, we will
denote by ūk (respectively v̄k) the isomorphism class of the associated
bilinear form on G to uk (respectively to vk).

Example 7.11. Negation.

Let (L,Q) be an F -valued quadratic form over R. Then (L,−Q)
is also an F -valued quadratic form over R, which is nondegenerate
(respectively unimodular) if (L,Q) is. If (L,Q) is denoted by L, then
(L,−Q) will be denoted by −L.

Note that −〈a〉R ∼= 〈−a〉R and −UR ∼= UR. For R = Z2, we have
−Uk ∼= Uk and −Vk ∼= Vk; for R = Zp, −W ε

p,k
∼= W−ε

p,k . For the finite

quadratic forms, we have −wεp,k ∼= w−εp,k, −uk ∼= uk and −vk ∼= vk.

We now want to briefly discuss the elementary theory of quadratic
vector spaces over R. By Proposition (5.8), Lemma (3.6.3), and Exam-
ple 7.1, every such form is isomorphic to 〈1〉⊕s+R ⊕ 〈−1〉⊕s−R for integers
s+, s− ≥ 0. By Sylvester’s theorem, the pair (s+, s−) is determined by
the form.

Definition 7.12. Let (L,Q) be a quadratic vector space over R.
Assume that (L,Q) ∼= 〈1〉⊕s+R ⊕〈−1〉⊕s−R . The signature of (L,Q) is the
pair (s+, s−). (L,Q) is positive definite if s− = 0, (L,Q) is negative
definite if s+ = 0, and (L,Q) is definite if s+s− = 0; (L,Q) is indefinite
if s+s− 6= 0.

Corollary 7.13. Two quadratic vector spaces over R are isomor-
phic if and only if they have the same rank and signature.

With the above language at our disposal, the signature of a qua-
dratic vector space (L,Q) over R can be described as follows: s+ is
the dimension of a maximal subspace P ⊂ L on which Q is positive
definite; s− is the dimension of a maximal subspace N ⊂ L on which
Q is negative definite.
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Ring Notation Rank Definition Discriminant
R 〈a〉R 1 Q(r) = ar2 2a mod (R×)2

Z 〈a〉 1 Q(r) = ar2 2a
Zp, p odd W 1

p,k 1 Q(r) = pkr2/2 pk mod U2
p

Zp, p odd W−1
p,k 1 Q(r) = pkr2u/2, u ∈ Up − U2

p pku mod U2
p

Z2 W 1
2,k 1 Q(r) = 2k−1r2 2k mod U2

2
Z2 W 3

2,k 1 Q(r) = 3 · 2k−1r2 3 · 2k mod U2
2

Z2 W 5
2,k 1 Q(r) = 5 · 2k−1r2 5 · 2k mod U2

2
Z2 W 7

2,k 1 Q(r) = 7 · 2k−1r2 7 · 2k mod U2
2

R UR 2 Q(r, s) = rs −1 mod (R×)2

Z2 Uk 2 Q(r, s) = 2krs −22k mod U2
2

Z2 Vk 2 Q(r, s) = 2k(r2 + rs+ s2) 3 · 22k mod U2
2

Table 7.1. Basic Examples of Quadratic R-modules

Note that (L,Q) is positive (respectively negative) definite if and
only if whenever x ∈ L and x 6= 0, then Q(x) 	 0 (respectively Q(x) �
0).

Example 7.14. Expansion.

Let (L,Q) be an F -valued quadratic form over R, and let r ∈ R.
Then (L, rQ) is an F -valued quadratic form over R. If r is a unit of
R, then rQ is nondegenerate if Q is, and rQ is unimodular if Q is. If
multiplication by r is injective on F , then rQ is nondegenerate if Q is.
If the symbol A denotes the isomorphism class of (L,Q), we will use
the symbol A(r) for the isomorphism class of (L, rQ).

For example, 〈a〉R(r) ∼= 〈ar〉R. In particular, Uk(2
L) ∼= Uk+L and

Vk(2
L) ∼= Vk+L.

We collect the examples of this section in the nearby tables for
convenience.

8. Change of Rings

Let (L, Q) be an F -valued quadratic form over R. Let S be an
R-algebra. Define QS : L⊗R S → F ⊗R S by

QS(
∑
i

xi ⊗ si) =
∑
i<j

〈xi, xj〉Q ⊗ sisj +
∑
i

Q(xi)⊗ s2
i .

We leave it to the reader to verify that QS is well defined, and that it is
an (F ⊗R S)-valued quadratic form over S on L⊗R S. The associated
bilinear form to QS has the form 〈x ⊗ s, y ⊗ t〉QS

= 〈x, y〉Q ⊗ st. It is
immediate that the adjoint map AdQS : L⊗RS → HomS(L⊗RS, F⊗R
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G Notation Definition
Z/` = 〈g〉 z̄a` 〈xg, yg〉 = xya/`
Z/pk , p odd w̄1

p,k 〈xg, yg〉 = xy/pk

Z/pk , p odd w̄−1
p,k 〈xg, yg〉 = xya/pk where a is not a square mod p

Z/2 w̄1
2,1 〈xg, yg〉 = xy/2

Z/4 w̄1
2,2 〈xg, yg〉 = xy/4

Z/4 w̄3
2,2 〈xg, yg〉 = 3xy/4

Z/2k , k ≥ 3 w̄1
2,k 〈xg, yg〉 = xy/2k

Z/2k , k ≥ 3 w̄3
2,k 〈xg, yg〉 = 3xy/2k

Z/2k , k ≥ 3 w̄5
2,k 〈xg, yg〉 = 5xy/2k

Z/2k , k ≥ 3 w̄7
2,k 〈xg, yg〉 = 7xy/2k

Z/2k × Z/2k ūk 〈(x1, x2), (y1y2)〉 = (x1y2 + x2y1)/2
k

Z/2k × Z/2k v̄k 〈(x1, x2), (y1, y2)〉 = (2x1y1 + 2x2y2 + x1y2 + x2y1)/2
k

Table 7.2. Basic Examples of Torsion Bilinear Forms
〈−,−〉 : G×G→ Q/Z over Z

G Notation Definition
Z/` = 〈g〉 za` q(rg) = r2a/2`, (a, `) = 1 and a` ∈ 2Z
Z/pk , p odd w1

p,k q(rg) = r2u/pk where 2u is a square mod p
Z/pk , p odd w−1

p,k q(rg) = r2u/pk where 2u is not a square mod p
Z/2 w1

2,1 q(rg) = r2/4
Z/2 w3

2,1 q(rg) = 3rr/4
Z/2k , k ≥ 2 w1

2,k q(rg) = r2/2k+1

Z/2k , k ≥ 2 w3
2,k q(rg) = 3r2/2k+1

Z/2k , k ≥ 2 w5
2,k q(rg) = 5r2/2k+1

Z/2k , k ≥ 2 w7
2,k q(rg) = 7r2/2k+1

Z/2k × Z/2k uk q(r, s) = rs/2k

Z/2k × Z/2k vk q(r, s) = (r2 + rs+ s2)/2k

Table 7.3. Basic Examples of Torsion Quadratic Forms
q : G→ Q/Z over Z

S) is simply the composition of AdQ⊗1 : L⊗RS → HomR(L, F )⊗RS
with the natural map α : HomR(L, F ) ⊗R S → HomS(L ⊗R S, F ⊗R

S). Therefore, if α is injective, then Q nondegenerate implies QS is
nondegenerate. Moreover, if α is an isomorphism then Q unimodular
implies QS is unimodular. Fortunately, these are often the case. In
particular, if L is a finitely generated free R-module and F = R, then
α is an isomorphism. Therefore:
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Proposition 8.1. If (L,Q) is a quadratic R-module, then (L ⊗R

S,QS) is a quadratic S-module. Moreover, if (L,Q) is unimodular, so
is (L⊗R S,QS).

We will often abbreviate L⊗R S to LS.
We should also analyze the behavior of the discriminant under

change of rings. Let f : R → S be the structure map. We’ll as-
sume that both R and S are integral domains. The map f induces a
natural map from R× to S×, sending (R×)2 into (S×)2, so we get a
natural function

f̄ : (R− {0})/(R×)2 → (S − {0})/(S×)2.

Lemma 8.2. Let (L,Q) be a quadratic R-module. Then f̄(disc(L)) =
disc(LS).

Proof. Let E = {e1, . . . , eN} be a basis for L over R and assume
that the matrix of Q with respect to E is A = (aij). Then E ⊗ 1 =
{e1⊗1, . . . , eN ⊗1} is a basis for LS over S, and the matrix of QS with
respect to E ⊗ 1 is AS = (f(aij)). Then

disc(LS) = det AS mod (S×)2

= f(det A) mod (S×)2

= f̄(disc(L)).

Q.E.D.

We will again use special notation in the most important cases. If
R = Z and S = Zp, we will denote by Lp the quadratic Zp-module
L⊗Z Zp.

It will also be useful, when dealing with the change of rings from Z
to Zp, or Z to Q, or Z to R, etc., to consider L as embedded in Lp, LQ
or LR, and the original quadratic form Q as the restriction of Qp, QQ
or QR.

Definition 8.3. Let (L,Q) be an integral quadratic form. The
signature of (L,Q) is the signature of (LR, QR).

Finally, let us analyze the behavior of finite quadratic forms under
the change of rings from Z to Zp. Let (G, q) be a finite quadratic form
with values in Q/Z. Then G⊗Z Zp = Gp is the Sylow p-subgroup of G
and Q/Z ⊗Z Zp

∼= Q(p)/Z(∼= Qp/Zp); the induced form (Gp, qp) upon
change of rings from Z to Zp is simply the restriction of q to Gp, with
values considered in Q(p)/Z.



9. ISOMETRIES 25

9. Isometries

Let (L,Q) be an F -valued quadratic form over R.

Definition 9.1. The orthogonal group of L, denoted by O(L) (or
O(Q), or O(L,Q)) is the group of automorphisms of (L,Q), i.e., the
group of self-isometries under composition.

As usual, in case (L,Q) is a quadratic R-module, O(L) can be
described in terms of matrices.

Lemma 9.2. Assume 2 is not a zero-divisor in R. Let (L,Q) be a
quadratic R-module with basis S and let A be the N ×N matrix of Q
with respect to S. Then O(L,Q) is isomorphic to the group of invertible
N ×N matrices B over R satisfying B>AB = A.

Proof. These matrices are the matrices of automorphisms of L
which preserve the associated bilinear form to Q. Since 2 is not a
zero-divisor in R, any automorphism of 〈 , 〉Q will automatically be an
automorphism of Q. Q.E.D.

Corollary 9.3. Let R be an integral domain and (L,Q) a quadra-
tic R-module. Assume σ ∈ O(L). Then the determinant of σ is either
1 or −1.

Proof. Let B be the matrix of σ with respect to a basis S of L so
that B>AB = A, where A is the matrix of Q with respect to S. Then
det(B)2 det(A) = det(A), so det(B)2 = 1 or det(B) = ±1 since R is a
domain. Q.E.D.

Let us collect in the following Lemma the orthogonal groups of the
standard quadratic R-modules from Section 7.

Lemma 9.4.

(9.4.1) O(W ε
p,k) = ±I

(9.4.2) O(Uk) =

{(
u 0
0 u−1

)
,

(
0 u
u−1 0

)
|u ∈ U2

}
(9.4.3) O(Vk) =

{(
a −c
c a+ c

)
,

(
a a+ c
c −a

)
|a, c ∈ Z2,a2 + a + 2 = 1

}
Proof. The first statement is obvious, and the second follows eas-

ily by noting that if one chooses a basis {x, y} such that the form is
Q(rx, sy) = 2krs, then the only elements z of Uk with Q(z) = 0 are
multiples of x and y. The final statement is a bit more involved. Choose
a basis {x, y} of Vk such that the form is Q(rx+ sy) = 2k(r2 + rs+ s2).

Assume σ =

(
a b
c d

)
∈ O(Vk). From the equations Q(x) = Q(σ(x)),
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Q(y) = Q(σ(y)), and Q(x+ y) = Q(σ(x+ y)), we are led to the equa-
tions

a2 + ac+ c2 = 1,

b2 + bd+ d2 = 1,

ad+ bc+ 2ab+ 2cd = 1.

Therefore at least one of a or c must be odd. Let us assume first that
a is odd. The third equation may be written as

b(c+ 2a) + d(a+ 2c) = 1;

since a is odd, a+ 2c is a unit, so that

d = (a+ 2c)−1(1− bc− 2ab).

Substitute this in for d in the second equation, multiply through by
(a+ 2c)2, and collect terms; one obtains

a2 + 4ac+ 4c2 = 3a2b2 + 3ab2c+ 3b2c2 − 3ab+ 1,

so that
3ac+ 3c2 = 3b2 − 3ab,

using the first equation. Dividing by 3and re-arranging gives (b+c)(b−
a− c) = 0. Now one of b+ c and b− a− c must be a unit: if both were
even, then their difference a+2c would be even, contrary to hypothesis.
Therefore either b + c = 0 or b = a + c; these two possibilities lead to
the matrix forms given above.

If a is even, then c must be odd, and the analogous argument with
the roles of a and c, b and d reversed, gives the same result. Q.E.D.

Essentially identical arguments serve to compute the orthogonal
groups for the standard torsion quadratic forms introduced in Section
7. We just present the results, leaving the details to the reader.

Lemma 9.5.

(9.5.1) O(wε2,1) is a trivial group.
(9.5.2) O(wεp,k) = ±I if p is odd or if k ≥ 2.

(9.5.3) O(uk) =

{(
u 0
0 u−1

)
,

(
0 u
u−1 0

)
|u ∈ (Z/2kZ)⊗

}
(9.5.4) O(vk) =

{(
a −c
c a+ c

)
,

(
a a+ c
c −a

)
|a, c ∈ Z/2kZ,a2 + a + 2 = 1

}
Definition 9.6. Let (L,Q) be a quadratic R-module where R is an

integral domain. Let σ ∈ O(L). Define det(σ) =

{
+ if the determinant of σ is 1
− if the determinant of σ is -1.

Hence, det(σ) takes values in the 2-element group {+,−} with identity
+. (We use this notation simply for the convenience of using + and −
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as super- and sub-scripts to denote various subgroups of O(L). This
will be explained further in Sections 10 and 11.) Note that det is a
group homomorphism from O(L) to {+,−}. The kernel of det will be
denoted by O)+(L,Q).

There is one type of isometry of fundamental importance, namely
the reflection. Let R be an integral domain where 2 6= 0, (L,Q) a
quadratic R-module, and x an element of L such that Q(x) divides
〈x, y〉 for all y in L.

Definition 9.7. The reflection of x, denoted by τx, is the map

τx : L→ L defined by τx(y) = y − 〈x,y〉
Q(x)

x.

Lemma 9.8.

(9.8.1) τx is an isometry of L of order 2.
(9.8.2) det(τx) = −.
(9.8.3) If y ∈ {x}⊥, then τx(y) = y.
(9.8.4) τx(x) = −x.
(9.8.5) For any λ ∈ R×, τλx = τx.

Proof. Statements (9.8.3) and (9.8.5) are immediate and state-
ment (9.8.4) follows from 〈x, x〉 = 2Q(x). Clearly τx is R-linear and

τx(τx(y)) = τx(y −
〈x, y〉
Q(x)

x) = τx(y)−
〈x, y〉
Q(x)

τx(x) = y,

so τx is of order 2 and hence is a bijection. To see that τx is an isometry,
compute

Q(τx(y)) = Q(y − 〈x, y〉
Q(x)

x)

= 〈y, −〈x, y〉
Q(x)

x〉+Q(y) +Q

(
−〈x, y〉
Q(x)

x

)
=

−〈x, y〉
Q(x)

〈y, x〉+Q(y) +
〈x, y〉2

Q(x)2
Q(x)

= Q(y).

This proves (9.8.1).
To prove (9.8.2), we may tensor with the fraction field K of R; the

determinant of τx is unchanged by this. We claim in this case that
L ⊗R K splits as M ⊕ M⊥, where M is the span of x. To see that
L = M+M⊥, let ` ∈ L. By assumption on x, 〈x, x〉 = 2Q(x) 6= 0, so it

divides 〈x, `〉 (in K); set a = 〈x,`〉
〈x,x〉 . Then 〈`−ax, x〉 = 〈`, x〉−a〈x, x〉 =

0, so ` = ax + (` − ax) is in M + M⊥. Assume ` ∈ M ∩M⊥; write
` = ax. Then a〈x, x〉 = 0, which is a contradiction unless a = 0. Hence
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M ∩M⊥ = {0} and L⊗R K = M ⊕M⊥. Since the determinant of τx
is the product of the determinants of τx restricted to M and to M⊥,
and τx is the identity on M⊥, we have det(τx) = det(τx|M) = −1 since
τx is −1 on M . Q.E.D.

Note that in particular τx exists if Q(x) is a units of R. More
particularly, if R is a field of characteristic 6= 2 and Q(x) 6= 0 then τx
exists. In this case note also that the two properties (9.8.3) and (9.8.4)
determine τx, since when R is a field we have L ∼= Rx⊕ x⊥.

The importance of reflections is attested to by the theorem of Car-
tan and Dieudonne, which roughly says that all isometries are products
of reflections.

We require a preliminary lemma.

Lemma 9.9. Let (L,Q) be a quadratic vector space over a field R
of characteristic 6= 2. Let v, w ∈ L with Q(v) = Q(w) 6= 0. Then
at least one of τv−w and τv+wτv is well-defined, and gives an element
σ ∈ O(V,B) such that σ(v) = w.

Proof. We have that τv ∈ (L,Q) since v is anisotropic; thus we
must show that either τv−w or τv+w is well-defined, i.e., that v − w or
v + w is anisotropic. But if Q(v − w) = Q(v + w) = 0, then

O = Q(v − w) +Q(v + w) = 2Q(v) + 2Q(w) = 4Q(v) 6= 0,

giving a contradiction; so at least one of τv−w and τv+wτv is defined.
It remains to show that τv−w(v) = w and τv+wτv(v) = w (whenever

these are defined.)
Now

Q(v ± w) = Q(v)± 〈v, w〉+Q(w)

= 2Q(v)± 〈v, w〉
= 〈v, v ± w〉

so that

Q(v − w) = 〈v − w, v〉

and

Q(v + w) = 〈v + w, v〉.
Thus, if Q(v − w) 6= 0 then

τv−w(v) = v − 〈v − w, v〉
Q(v − w)

(v − w)

= v − (v − w) = w
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while if Q(v + w) 6= 0 then

τv+wτv(v) = τv+w(−v)

= −v − 〈v + w,−v〉
Q(v + w)

(v + w)

= −v + (v + w) = w.

Q.E.D.

Theorem 9.10 (Cartan-Dieudonné). Assume R is a field of char-
acteristic 6= 2, and (L,Q) is a quadratic vector space over R. Then
every element of O(L) is a product of reflections.

Proof. We use induction on the dimension of L. Let ρ ∈ O(L),
choose some w ∈ V with Q(w) 6= 0, and let v = ρ(w). Then Q(v) =
Q(ρ(w)) = Q(w) 6= 0 and we may apply the preceding lemma: there is
some σ ∈ O(L) which is a product of reflections such that σρ(w) = w.
But this means that σρ ∈ O(w⊥, Q |w⊥); by the inductive hypothesis,
we have that σρ is a product of reflections. Hence ρ = σ−1(σρ) is as
well. Q.E.D.

In fact, if dim L = N , at most N reflections is required; see
[Cassels 78, Chapter 2, Example 8].

As a final remark, we should mention the map on orthogonal groups
for a change of rings. Let us assume that f : R→ S is a monomorphism
of integral domains, in which 2 6= 0, and let (L,Q) be a quadratic R-
module. Then there is a 1-1 homomorphism of groups g : O(L) →
O(LS) sending σ to σ ⊗ 1. In this situation we often abuse notation
and consider O(L) ⊂ O(LS) if R ⊂ S.

10. The Spinor Norm

Let K be a field of characteristic 6= 2 and let (L,Q) be a quadratic
vector space over K. If σ ∈ O(L), write σ = τv1τv2 . . . τvr , where vi is a
vector in L with Q(vi) 6= 0; this is possible by Theorem (9.10).

Definition 10.1. With the above notations, define a function

spin : O(L) → K×/(K×)2

by

spin(σ) =
∏

Q(vi) mod (K×)2.

Theorem 10.2. Let K be a field of characteristic 6= 2 and let (L,
Q) be a quadratic vector space over K. Then spin : O(L) → K×/(K×)2

is a well defined group homomorphism.
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Proof. By Theorem 9.10, any σ ∈ O(L) can be written in the form
σ = τv1 . . . τvr for some anistropic vectors v1, . . . , vr; if σ = τw1 . . . τws is
another such expression, then

τv1 . . . τvrτws . . . τw1 = σσ−1 = 1 in O(L),

so that

Q(v1) . . . Q(vr)Q(ws) . . . Q(w1) ∈ (K×)2,

or

Q(v1) . . . Q(vr) ≡ Q(w1) . . . Q(ws) mod (K×)2.

This proves that spin is well-defined; the homomorphism property is
immediate. Q.E.D.

The homomorphism spin is called the spinor norm map. An alter-
native approach to the spinor norm can be found in Zassenhaus (1962).

If R is an integral domain in which 2 6= 0 and (L,Q) is a quadratic
R-module, then, as remarked in the previous section, O(L) may be
considered as a subgroup of O(L ⊗R K) and hence spin : O(L) →
K×/(K×)2 is defined by restriction. Note that to compute spin(σ)
for σ ∈ O(L), one must factor σ into a product of reflections inside
O(L⊗R K); such a factorization may not be possible in O(L).

We wish to introduce some special subgroups of O(V ) in case V
is a quadratic vector space over R. In this case spin takes values
in R×/(R×)2, which is cyclic of order 2; we identify this group with
{+,−}. Hence we have a group homomorphism (det, spin) : O(V ) →
{+,−} × {+,−}, and the kernel of (det, spin) will be denoted by
O++(V ).

For α, β ∈ {+,−} with (α, β) 6= (+,+) we then define a group
Oαβ(V ) containing O++(V ) by specifying that Oαβ(V )/O++(V ) be
generated by any element σ ∈ O(V ) such that det(σ) = α and spin(σ) =
β. (If no such element exists, we set Oαβ(V ) = O++(V ).) Note that
the index of O++(V ) in Oαβ(V ) is either 1 or 2. With this notation,
we have the following descriptions of the groups Oαβ(V ):

O++(V ) = {σ ∈ O(V ) | det(σ) = spin(σ) = +} = Ker(det, spin)

O+−(V ) = {σ ∈ O(V ) | det(σ) = +} = Ker(det)

O−+(V ) = {σ ∈ O(V ) | spin(σ) = +} = Ker(spin)

O−−(V ) = {σ ∈ O(V ) | det(σ) = spin(σ)} = Ker(det · spin).

Let L be an integral quadratic form. In the same spirit as the above,
we define Oαβ(L) by

Oαβ(L) = O(L) ∩ Oαβ(L⊗Z R)
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for (α, β) ∈ {+,−} × {+,−}.
The elements of Oαβ(L) (or of Oαβ(L⊗Z R)) will be referred to as

(α, β)-isometries.

11. Sign Structures and Orientations

Let V be a real vector space of dimension N . An ordered basis S
of V is an N -tuple (v1, . . . , vN) of vectors of V whose elements form
a basis for V . Define an “orienting” equivalence relation on the set
of ordered bases for V by declaring S = (v1, . . . , vN) equivalent to
T = (w1, . . . , wN) if the change of basis matrix from S to T has positive
determinant.

Definition 11.1. An orientation on V is an equivalence class of
ordered bases of V .

Unless V = (0), each finite-dimensional real vector space has ex-
actly two orientations. Any ordered basis of V determines a unique
orientation on V . V is said to be oriented if an orientation for V has
been chosen.

Now let (V,Q) be a quadratic vector space over R, with signature
(r+, r−). The set

GR+ = {r+-dimensional oriented subspace W ⊂ V |Q|W is positive definite}
has either one or two connected components, one if V is negative defi-
nite, two otherwise. If V is not negative definite, the two components
exchange if one switches orientation.

Similar statements hold for the set

GR− = {r−-dimensional oriented subspace W ⊂ V |Q|W is negative definite}
Following Looijenga and Wahl [], we make the following:

Definition 11.2. A positive (respectively negative) sign structure
on V is a choice of a connected component of GR+ (respectively GR−).
A total sign structure on V is a positive and a negative sign structure
on V .

Note that a positive (respectively negative) sign structure on V is
determined by a choice of any element of GR+ (respectively GR−), i.e.,
an orientation on any r+- (respectively r−-) dimensional subspace W
of V on which Q|W is positive (respectively negative) definite.

A total sign structure on V determines an orientation on V by the
rule that if W+ (respectively W−) belongs to the positive (respectively
negative) sign structure, thenW+∧W− defines the orientation. In other
words, if (v1, . . . , vr+) is an ordered basis of W+ and (w1, . . . , wr−) is
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an ordered basis of W− inducing their orientations, then the ordered
basis (v1, . . . , vr+ , w1, . . . , wr−) induces the orientation of V .

Note that if V is positive definite, there is only one possible negative
sign structure and a total sign structure on V is positive sign structure,
which is an orientation. Similar remarks hold if V is negative definite.
If V is indefinite, all of these notions are distinct. In particular, an
orientation does not induce a total sign structure in this case.

If (L,Q) is an integral quadratic form, a positive (respectively neg-
ative, respectively total) sign structure on L is by definition one on
L⊗Z R; an orientation on L is one on L⊗ R, also.

If σ ∈ O(V ), σ acts on the sets GR+, GR− and the sets of ordered
bases of V , so it makes sense to say that σ preserves positive, negative
or total sign structures on V , or that σ preserves orientations on V .
We use the same language for elements of O(L) where L is an integral
quadratic form. With this language, we have the following descriptions
of the groups Oαβ(L).

Proposition 11.3. Let L be an integral quadratic form or a real
quadratic vector space. Then

(11.3.1) O++(L) = {σ ∈ O(L) |σ preserves total sign structures}
(11.3.2) O+−(L) = {σ ∈ O(L) |σ preserves orientations}
(11.3.3) O−+(L) = {σ ∈ O(L) |σ preserves negative sign structures}
(11.3.4) O−−(L) = {σ ∈ O(L) |σ preserves positive sign structures}.

Proof. From the definition of orientation, it is immediate that
σ ∈ O(L) preserves orientations if and only if det(σ) = +. This proves
(11.3.2) and we seek a similar statement characterizing the kernel of
spin.

Let Q be the form on L (and on V = L ⊗ R) and assume L has
signature (r+, r−). Note that if x ∈ V is anisotropic, then spin(τx) =
+if Q(x) > 0 and spin(τx) = − if Q(x) < 0. Also, given any x ∈ V
with Q(x) > 0 (respectively < 0), there is an r+-(respectively r−−)
dimensional subspace W ⊂ V containing x, on which Q is positive
(respectively negative) definite. Therefore, if Q(x) > 0, i.e., spin(τx) =
+, then τx switches positive sign structures and preserves negative sign
structures. On the other hand, if Q(x) < 0, i.e., spin(τx) = −, then τx
preserves positive sign structures and switches negative sign structures.

By writing σ ∈ O(L) as a product of reflections in O(V ), we see
immediately that σ preserves negative sign structures if and only if
spin(σ) = +, proving statement (11.3.3).

If σ ∈ O(L) preserves orientations and negative sign structures, it
must also preserve positive sign structures, hence total sign structures.
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Therefore, σ preserves total sign structures if and only if det(σ) =
spin(σ) = +, which is statement (11.3.1).

Note that σ ∈ O(L) preserves positive sign structures if and only
if S either preserves both orientations and negative sign structures or
switches both. Therefore, σ preserves positive sign structures if and
only if either det(σ) = spin(σ) = + or det(σ) = spin(σ) = −, i.e., if
and only if det(σ) = spin(σ), proving (11.3.4). Q.E.D.

Due to this proposition, we refer to a total sign structure, orienta-
tion, negative sign structure, and positive sign structure as a (+,+)-
structure, (+,−)-structure, (−,+)-structure, and (−,−)-structure, re-
spectively. With this language, the elements of Oαβ(L) are exactly
those isometries which preserve (α, β)-structures, for any (α, β) ∈ {+,−}×
{+,−}.





CHAPTER II

Quadratic Forms over Integral Domains

1. Torsion Modules over a Principal Ideal Domain

In this section, and indeed throughout this entire chapter, R will
denote a principal ideal domain with quotient field K, of characteristic
unequal to 2. We will also assume that all R-modules discussed are
finitely generated, except of course for the module K/R. Let G be
a torsion R-module. A finite subset E = {g1, . . . , gn} of G − {0} is
independent if whenever

∑
rigi = 0 in G, with ri ∈ R, then rigi = 0

for every i. A basis for G is an independent set of nonzero elements
of G which generates G. A basis E = {g1, . . . , gn} is an ordered basis
if AnnR(gi) ⊇ AnnR(gi+1) for every i; if we set (di) = AnnR(gi), this
condition is equivalent to di|di+1 for every i.

For example, {2, 3} is a basis for Z/6Z over Z, but it is not an
ordered basis; {1} is an ordered basis.

From the classification theorem for finitely generated modules over
a principal ideal domain, any two ordered bases of a torsion R-module
G have the same cardinality. This cardinality is the minimum among
all subsets of G which generate G; it called the length of G, and is
denoted by `(G).

Any two ordered bases for G also have the same sequence of annihi-
lator ideals AnnR(gi). Generators di ∈ R for these ideals are unique up
to a unit factor in R×, and are called the invariant factors, or simply
the invariants, of G. Any collection {d1, . . . , dn} of elements of R such
that d1 is not a unit and di|di+1 for every i can occur as the invariants
of a torsion R-module G, and they determine G as an R-module up to
isomorphism:

G ∼= R/(d1)⊕ · · · ⊕R/(dn).

The product ∆ =
∏
di of the invariants of G is the order of G; it is

well defined up to a unit factor. If R = Z we will always take ∆ > 0,
so that ∆ = |G|.

Let p ∈ R be a prime element, and let Rp be the localization of R
at the prime ideal (p). If G is a torsion R-module, then G ⊗R Rp is
a torsion Rp-module, whose invariants are all powers of p. Conversely,
if G is a torsion R-module whose invariants are all powers of p, then

35
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G is naturally an Rp-module also, and G ∼= G ⊗R Rp as Rp-modules.
Such a module will be called a p-primary R-module. If R = Z, then a
p-primary Z-module will be simply called a finite abelian p-group.

Let Gp = {x ∈ G | pkx = 0 for some k ≥ 0}. Gp is an R-submodule
of G, is p-primary, and is in fact isomorphic to G ⊗R Rp. Gp will be
called the p-part of G. Note that G =

⊕
pGp is an internal direct sum

decomposition of G.

Proposition 1.1. Let 〈−,−〉 be a torsion bilinear form on G, i.e.,
a symmetric bilinear form on G with values in K/R. Then the decom-
position G =

⊕
pGp is an orthogonal direct sum decomposition, i.e., a

splitting of G.

Proof. Let p1 and p2 be two non-associate primes of R, and let
xi ∈ Gp. Assume pα1x1 = 0 and pβ2x2 = 0; since p1 and p2 are relatively

prime, so are pα1 and pβ2 , and there exist elements a and b in R such

that apα1 + bpβ2 = 1. Therefore,

〈x1, x2〉 = (apα1 + bpβ2 )〈x1, x2〉
= apα1 〈x1, x2〉+ bpβ2 〈x1, x2〉
= a〈pα1x1, x2〉+ b〈x1, p

β
2x2〉

= 0 mod R.

Q.E.D.

This splitting of G is called the Sylow-splitting of G.
Let G be a nontrivial p-primary torsion R-module, with invariants

d1 = pe1 ,. . . , dn = pen . We define the exponent of G to be dn = pen ,
and the scale of G to be d1 = pe1 . Note that the exponent of G is pe

if peG = 0 but pe−1G 6= 0; the scale of G is the minimum order among
elements of G which are not divisible by p. Alternatively, the exponent
is the largest order which appears in any decomposition of G into cyclic
R-modules, and the scale is the smallest order so appearing. If G is
trivial, we define its exponent and scale to be 1.

A p-primary torsion R-module H is homogeneous if its exponent is
equal to its scale. This is equivalent to H ∼= (R/(pe))s for some e and
s ∈ N. The integer e is the exponent (and scale) of H, and the integer
s is the rank of H.

Note that any p-primary torsionR-moduleG is isomorphic to
⊕

e≥1(R/(p
e))se ,

where (se)e≥1 is a collection of nonnegative integers, all but finitely
many equal to zero. The se’s are determined by G. If G is nontrivial,
then the exponent of G is pmax{e | se 6=0} and the scale of G is pmin{e | se 6=0}.
G is homogeneous if se 6= 0 for at most one e, and that se is its rank.
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IfG is any torsionR-module, the decompositionG =
⊕

p(
⊕

e(R/(p
e))sp,e)

will be called the prime power decomposition of G. It is often more use-
ful than the invariant factor decomposition G =

⊕n
i=1R/(di).

Note that any basis of a p-primary torsion R-module can be ordered
to become an ordered basis; hence, we will always assume (in the p-
primary case) that any basis is so ordered.

Finally note that (Gp)
∗ = (G∗)p, where G∗ = HomR(G,K/R) for a

torsion R-module G.

2. The Functors ρk

Fix a prime p of R, and let G be a torsion R-module.

Definition 2.1. Gp,k = {x ∈ G | pkx = 0}.

The following is immediate.

Lemma 2.2.

(2.2.1) Gp,0 = (0)
(2.2.2) Gp,k−1 ⊆ Gp,k for all k ≥ 1
(2.2.3) pGp,k+1 ⊆ Gp,k for all k ≥ 0
(2.2.4) For k sufficiently large, Gp,k = Gp,k+1 and Gp =

⋃
k≥0Gp,k.

If G is a p-primary, we will often denote Gp,k by simply Gk. With
this notation, Gp,k = (Gp)k.

Definition 2.3. ρp,k(G) = Gp,k/(Gp,k−1 + pGp,k+1)

If G is p-primary, ρp,k will be denoted by ρk. We note that ρp,k(G) =
ρk(Gp).

We have the following elementary properties of this construction.

Lemma 2.4.

(2.4.1) ρp,k is a covariant functor from the category of torsion R-
modules to p-primary torsion R-modules.

(2.4.2) ρp,k is additive, i.e.

ρp,k(G⊕H) ∼= ρp,k(G)⊕ ρp,k(H).

(2.4.3) ρp,k(G) is either trivial or is homogeneous with exponent p.
(2.4.4) If G is homogeneous with exponent pe and rank s, then

ρk(G) ∼=
{
{0} if k 6=e
(R/(p))s if k=e.

(2.4.5) If G is p-primary and G ∼=
⊕

e≥1(R/(p
e))se, then ρk(G) ∼=

(R/(p))sk .
(2.4.6) ρp,k(G

∗) ∼= ρp,k(G)∗.
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Proof. Since Gp,k is p-primary, so is ρp,k(G). Hence (2.4.1) follows
from remarking that if φ : G→ H is an R-map, then φ(Gp,k) ⊆ Hp,k, so
φ induces an Rp-map δp,k(φ) from ρp,k(G) to ρp,k(H). Statement (2.4.2)
is obvious, and (2.4.3) follows from (2.2.3). To prove (2.4.4), it suffices
to assume G has rank 1, so that G ∼= R/(pe). Then Gk is generated by
pe−k for k ≤ e and Gk = G for k ≥ e; hence, pGk+1 = Gk for k > e,
so that ρk(G) = 0 if k 6= e. Finally, ρe(G) is generated by 1 mod pe

which is of order p in ρe(G). Statement (2.4.5) follows from (2.4.4)
and the additivity of ρk. Finally, (2.4.6) is a direct consequence of the
isomorphism (Gp)

∗ ≡ (G∗)p; we leave the details to the reader. Q.E.D.

The functor ρk exactly “picks out” the exponent pk piece of a p-
primary torsion module G and can reduce many questions about tor-
sion R-modules to homogeneous p-primary torsion R-modules. For in-
stance, if G ∼=

⊕
e(R/(p

e))se , then se = rankR/p(ρe(G)), showing that
the ranks se are uniquely determined by G. This is the crucial observa-
tion to make, to prove the uniqueness of the prime power decomposition
and the invariant factor decomposition of a torsion R-module G.

Our interest in ρk goes a bit deeper, though: if G has a bilinear
form on it, then ρk(G) inherits the form.

Lemma 2.5. Let G be a p-primary torsion R-module, and let 〈−,−〉
be a torsion bilinear form on G, i.e., a symmetric bilinear form with
values in K/R. For x ∈ Gk, denote by x̄ its class in ρk(G). Define
〈−,−〉k on ρk(G) by 〈x̄, ȳ〉k = pk−1〈x, y〉. Then 〈−,−〉k is a well-
defined torsion bilinear form on ρk(G), which is nondegenerate if 〈−,−〉
is nondegenerate on G.

Proof. To check that 〈−,−〉k is well defined, we need only check
that Gk−1+pGk+1 is contained in the kernel of 〈−,−〉|Gk

. Let z ∈ Gk−1,
y ∈ Gk, and w ∈ Gk+1; then

pk−1〈z + pw, y〉 = pk−1〈z, y〉+ pk〈w, y〉
= 〈pk−1z, y〉+ 〈w, pky〉
= 〈0, y〉+ 〈w, 0〉
= 0.

This proves that 〈−,−〉k is well defined since it is clearly symmetric
and bilinear.

If 〈−,−〉 is nondegenerate, then the adjoint map Ad : G → G∗ is
an isomorphism; by the functoriality of ρk, ρk(Ad) : ρk(G) → ρk(G

∗) is
also an isomorphism. Since ρk(G

∗) ∼= ρk(G)∗ and ρk(Ad) corresponds
to the adjoint map of 〈−,−〉k, this induced form 〈−,−〉k is also non-
degenerate. Q.E.D.
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If H is a homogeneous R-module, we can be more explicit.

Lemma 2.6. Let H be a homogeneous p-primary torsion R-module
with exponent pk and rank s. Let {e1, . . . , es} be a basis for H. Let
〈−,−〉 be a torsion bilinear form on H.

(2.6.1) For every i and j, 〈ei, ej〉 = p−kaij mod R with aij ∈ R.
(2.6.2) 〈−,−〉 is nondegenerate on H ⇔ det(aij) is prime to p.

If so, the class of det(aij) in (R/pk)×/((R/pk)×)2 is uniquely
determined by 〈−,−〉.

(2.6.3) 〈−,−〉 is nondegenerate on H ⇔ 〈−,−〉k is nondegenerate on
ρk(H).

(2.6.4) Any splitting of H induces a splitting of ρk(H).
(2.6.5) If 〈−,−〉 is nondegenerate on H, then any splitting of ρk(H)

can be lifted to a splitting of H.

Proof. Since pk annihilates H, pk〈ei, ej〉 must be 0 mod R, prov-
ing (2.6.1). Let {e∗1, . . . , e∗s} be the dual basis for H∗, i.e., e∗i (ej) =
δijp

−k. Then the matrix for the adjoint map Ad to 〈−,−〉 with respect
to these bases is (aij); hence Ad is an isomorphism if and only if det(aij)
is a unit in R/pk, i.e., p 6 | det(aij). If so, a change of basis (via a matrix
M in GL(s, R/pk)) changes det(aij) by (detM)2, proving (2.6.2). If
ēi is the class of ei in ρk(H), then {ēi} is a basis for ρk(H) over R/p,
and since 〈ēi, ēj〉k = p−1aij mod R, the matrix for the adjoint map
to 〈−,−〉k is also (aij). This proves (2.6.3), using (2.6.2). Statement
(2.6.4) is now clear; a splitting for H corresponds to a certain block
form for the matrix (aij), and this block form is still present, of course,
when considering the (aij) matrix as the matrix for the induced form
〈−,−〉k.

To prove (2.6.5), let {ē1, . . . , ēm} generate an orthogonal direct sum-
mand Ā of ρk(H). Lift each ēi to ei in H and let A be the submodule
of H generated by e1, . . . , em, so that ρk(A) = Ā. Since 〈−,−〉 is non-
degenerate, so is 〈−,−〉k, and since Ā is an orthogonal direct summand
of ρk(H), so is 〈−,−〉k|Ā. But 〈−,−〉k|Ā = (〈−,−〉|A)k, so by (2.6.3)
applied to A, 〈−,−〉|A is nondegenerate. By (I.4.4), 〈−,−〉|A is uni-
modular, so A splits off H by (I.5.6). This splitting induces the given
splitting of ρk(H). Q.E.D.

Let us present ρk for the relevant examples in (I, section 7); we
leave the computations to the reader.

Lemma 2.7.

(2.7.1) ρk(w̄
ε
2,k) = w̄1

2,1 for every ε.
(2.7.2) If p is odd, ρk(w̄

ε
p,k) = w̄εp,1 for each ε = ±1.
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(2.7.3) ρk(ūk) = ū1 and ρk(v̄k) = v̄1; note that ū1
∼= v̄1.

As an application of this construction, we have the following.

Proposition 2.8. Let 〈−,−〉 be a torsion bilinear form on a p-
primary torsion R-module G.

(2.8.1) If 〈−,−〉 is nondegenerate, then G splits into homogeneous
orthogonal direct summands.

(2.8.2) 〈−,−〉 is nondegenerate on G⇔ 〈−,−〉k is nondegenerate on
ρk(G) for all k.

Proof. Assume 〈−,−〉 is nondegenerate, and let the exponent of
G be pk. Write G = H ⊕ K, where H is homogeneous of exponent
pk and the exponent of K is strictly less than pk; the sum need not
be orthogonal. Since ρk(H) = ρk(G) and 〈−,−〉k is nondegenerate on
ρk(G) by (2.5), then 〈−,−〉|H is nondegenerate on H by (2.6.3). Hence
H splits off G by (I.5.6). Statement (2.8.1) then follows by induction
on the exponent.

One direction of (2.8.2) follows from (2.5). To finish, assume that
each ρk(G) is nondegenerate. Again write G = H ⊕K as above; then
〈−,−〉k on ρk(H) = ρk(G) is nondegenerate, so 〈−,−〉|H is nondegen-
erate on H. Hence H splits off G and by induction G is the orthogonal
direct sum of nondegenerate homogeneous modules. Hence 〈−,−〉 on
G is nondegenerate by (I.5.2). Q.E.D.

Corollary 2.9. Let G be a torsion R-module and 〈−,−〉 a nonde-
generate symmetric torsion bilinear form on G. Then (G, 〈−,−〉) splits
into nondegenerate homogeneous p-primary torsion bilinear forms. If q
is a nondegenerate torsion quadratic form on G, then (G, q) splits into
nondegenerate homogeneous p-primary torsion quadratic forms.

The above follows directly from the previous proposition and the
Sylow splitting of G.

3. The Discriminant of a Torsion Bilinear Form

LetG be a torsionR-module, with ordered basis {g1, . . . , gn} and in-
variants {d1, . . . , dn}. If 〈−,−〉 is a torsion bilinear form onG (with val-
ues in K/R), then one can choose representatives Bij ∈ K for 〈gi, gj〉;
these representatives must satisfy

diBij ∈ R and djBij ∈ R for all i, j.(3.1)

Conversely, if (Bij) is an n×n matrix over K satisfying (3.1), then
the torsion bilinear form 〈−,−〉 on G defined by 〈gi, gj〉 = Bij mod R
is well defined.
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Note that the choice of the Bij’s in K is exactly a lifting of the
torsion bilinear form on G to a K-valued bilinear form on the free
R-module on the set {g1, . . . , gn}.

Lemma 3.2. Let (G, 〈−,−〉) be a torsion bilinear form over R,
and let
{g1, . . . , gn} be an ordered basis of G. Assume that the invariants of G
are
{d1, . . . , dn}, and let ∆ =

∏
di be the order of G.

(3.2.1) If (Bij) ∈ K is any lifting of (〈gi, gj〉), then ∆ · det(Bij) ∈ R.
(3.2.2) If (Bij) and (B′

ij) are two such liftings, then

∆ · [det(Bij)− det(B′
ij)] ∈ d1R.

(3.2.3) If 〈−,−〉 is nondegenerate, then ∆ · det(Bij) ∈ R is relatively
prime to d1.

Proof. Note that det(Bij) is a sum of terms of the form

±B1σ(1)B2σ(2) . . . Bnσ(n),

where σ ∈ Sn is a permutation. By (3.1), diBiσ(i) ∈ R for every i;
hence,

∆ ·B1σ(1) . . . Bnσ(n) = d1B1σ(1)d2B2σ(2) . . . dnBnσ(n) ∈ R.
Therefore,

∆ · det(Bij) ∈ R,
proving (3.2.1).

To prove the second statement, we may assume that B′
ij = Bij

except for one pair of subscripts i0, j0, and that B′
i0j0

= Bi0j0 + r,
where r ∈ R. Let σ ∈ Sn be a permutation. If σ(i0) 6= j0, then∏

iBiσ(i) =
∏

iB
′
iσ(i); if σ(i0) = j0, then

∆ ·
∏
i

B′
iσ(i) = ∆ ·

(∏
i6=i0

Biσ(i)

)
(Bi0j0 + r)

= ∆ ·
∏
i

Biσ(i) + ∆ ·

(∏
i6=i0

Biσ(i)

)
r

= ∆ ·
∏
i

Biσ(i) +

(∏
i6=i0

(diBiσ(i))

)
di0r.

Therefore, by (3.1)

∆ ·

[∏
i

Biσ(i) −
∏
i

B′
iσ(i)

]
∈ di0R ⊆ d1R.
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Hence, in all cases every term of ∆ · [det(Bij) − det(B′
ij)] is in d1R,

proving (3.2.2).
Finally, assume 〈−,−〉 is nondegenerate and let p be a prime of R

dividing d1. Assume p also divides ∆ · det(Bij). Since ∆ · det(Bij) =
det(diBij), the matrix (diBij mod p) is singular over R/p. Let (r1
mod p, . . . , rn mod p) be a nonzero null vector for (diBij mod p), so

that (diBij)

 r1
...
rn

 = 0 mod p. Let x =
∑

i
di

p
rigi ∈ G. Since there

exists at least one i such that ri 6= 0 mod p, x 6= 0 in G. However,

〈x, gj〉 = 〈
∑
i

di
p
rigi, gj〉 =

1

p

∑
i

diriBij mod Rj

since p divides
∑
diriBij, 〈x, gj〉 = 0 mod R for every j, so that

Ad(x) = 0. Hence, 〈−,−〉 is degenerate. Q.E.D.

From (3.2.2), given the ordered basis {gi} of G, the class of ∆ ·
det(Bij) ∈ R/d1R is well defined. We would like to have an invariant
which is also independent of the choice of ordered basis. For this we
need the following.

Lemma 3.3. Let G be a torsion R-module with ordered basis {g1, . . . , gn}
and first invariant d1, and let σ be an R-automorphism of G. Let L
be the free R-module on the set {gi}, and let σ̃ : L → L be an R-
endomorphism of L which induces σ. Then det(σ̃) ∈ R is relatively
prime to d1.

Proof. Let p be a prime of R dividing d1 and assume p also divides
det(σ̃). We get an induced R/p-automorphism σp : G/pG → G/pG
and an induced (R/p)-endomorphism σ̃p : L/pG → L/pG such that
det(σ̃p) = 0 and σ̃p induces σp. However, since p|d1, the natural pro-
jection from L/pL to G/pG is an R/p-isomorphism; therefore, σp = σ̃p
and since det(σ̃p) = 0, σp cannot be an automorphism. Q.E.D.

Corollary 3.4. Let (G, 〈−,−〉) be a torsion bilinear form over
R with invariants {d1, . . . , dn} and order ∆. If {gi} and {g′i} are two
ordered bases for G and (Bij) and (B′

ij) are liftings to K of (〈gi, gj〉)
and (〈g′i, g′j〉), respectively, then

∆ · det(B′
ij) = u2∆ · det(Bij) in R/d1R

for some unit u ∈ (R/d1R)×.

Proof. Let σ : G → G be the change of basis automorphism of
G from {gi} to {g′i}. Let L be the free R-module on {gi} and let σ̃
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p d1 ∆ representatives in 1
∆

Z for 1
∆

(Z/d1)
×/((Z/d1)

×)2

odd pe1 pk {p−k, p−ku} where u is a non-square mod p
2 2e1 ≥ 8 2k {2−k, 3 · 2−k, 5 · 2−k, 7 · 2−k}
2 4 2k {2−k, 3 · 2−k}
2 2 2k {2−k}

Table 3.1. representatives for 1
∆

(Z/d1)
×/((Z/d1)

×)2

be a lifting of σ to an R-endomorphism of L. Let M be the matrix of
σ̃; then we may assume (B′

ij) = MTBijM , since they are both liftings
of 〈g′i, g′j〉 and the class ∆ · det(B′

ij) is independent of this lifting. By

taking determinants, we see that ∆ · det(B′
ij) = (detM)2∆ · det(Bij)

mod d1R and moreover, u = detM is a unit in R/d1R by the previous
lemma. Q.E.D.

Hence, ∆ · det(Bij) is well defined in ((R/d1)
×)2\R/d1R and is an

invariant of the bilinear form alone. Equivalently, we know

det(Bij) ∈ ((R/d1)
×)2\ 1

∆
R/

d1

∆
R

is well defined.

Definition 3.5. Let (G, 〈−,−〉) be a torsion bilinear form over R.
The discriminant of (G, 〈−,−〉), denoted by disc(G, 〈−,−〉) (or simply
disc(G) or disc〈−,−〉), is the class of det(Bij) in ((R/d1)

×)2\ 1
∆
R/d1

∆
R.

We will often only need to consider the discriminants of nondegen-
erate forms, in which case the discriminant takes values in a subset of
the above, namely

((R/d1)
×)2\ 1

∆
(elements of R prime to d1)/

d1

∆
(elements of R prime to d1)

which we will by abuse of notation denote by

1

∆
(R/d1)

×/((R/d1)
×)2 =

1

∆
D(R/d1).

If R = Z and G is p-primary for some prime number p, then d1 = pe1

and ∆ = pk for two integers 1 ≤ e1 ≤ k. In this case the above set of
values for disc(G) is readily calculated; we leave the computations to
the reader and present the results in Table 3.1.

The values for the discriminant of the standard examples from (I,
section 7) are given in Table 3.2.

The discriminant, although well defined for any torsion bilinear
form over R, behaves more nicely in the case of p-primary forms. For
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(G, 〈−,−〉) disc(〈−,−〉)
w̄1
p,k, p odd p−k

w̄−1
p,k, p odd p−ku, where u is a non-square mod p

w̄ε2,k, k ≥ 3 2−ku, where χ(u) = ε mod 8
w̄ε2,2 2−4u, where χ(u) = ε mod 4
w̄1

2,1 2−2

ūk −2−2k

v̄k 3 · 2−2k

Table 3.2. discriminants of finite bilinear forms

example, we have an “additivity” property. This is a little awkward
to define, since the values of the discriminant lie in different sets, de-
pending on the torsion module. However, if d1 and d′1 are the first
invariants, and ∆ and ∆′ are the orders of two torsion modules, there
is a natural “product”[
((R/d1)

×)2\ 1

∆
R/

d1

∆
R

]
×
[
((R/d′1)

×)2\ 1

∆′R/
d′1
∆′R

]
→ ((R/d)×)2\ 1

∆∆′R/
d

∆∆′R

where d = gcd(d1, d
′
1), induced by the ordinary multiplication map

1
∆
R× 1

∆′R→ 1
∆∆′R. With this in mind, we have the following.

Lemma 3.6. Fix a prime p of R and let (G, 〈−,−〉) and (G′, 〈−,−〉)
be two p-primary torsion bilinear forms over R; let G⊕G′ denote their
orthogonal direct sum. Then disc(G ⊕ G′) = disc(G) disc(G′), where
the product of the discriminants is defined as above.

Proof. Firstly, note that because G and G′ are p-primary, the first
invariant d of G⊕G′ is simply the “smaller” of the two first invariants
d1 and d′1 for G and G′, i.e.,

d = gcd(d1, d
′
1) =

{
d1 if d1|d′
d′1 if d′|d1.

Since the order of G⊕G′ = ∆ ·∆′ (where ∆ and ∆′ are the orders for
G and G′), both sides of the equality live in the same set.

The equality is now clear; after re-ordering, the representing matrix
for G ⊕ G′ can be chosen as the block form matrix consisting of two
blocks, namely the representing matrices for G and G′. Q.E.D.

For p-primary forms, there is also a converse to (3.2.3).

Lemma 3.7. Let (G, 〈−,−〉) be a p-primary torsion bilinear form
with order ∆ and let Bij ∈ K be such that Bij mod R = 〈gi, gj〉 for
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some ordered basis {gi} for G. Then (G, 〈−,−〉) is nondegenerate if
and only if p 6 |∆ · det(Bij).

Proof. By the additivity (3.6) and (2.8.1), we may assume G is
homogeneous, say of exponent pk and of rank s. Then by (2.6.1),
Bij = p−kaij for some aij ∈ R and ∆ = psk; hence, ∆ · det(Bij) =
psk det(p−kaij) = det(aij). The result now follows from (2.6.2). Q.E.D.

In the above case, we will abuse language and say that if p 6 |∆ ·
detBij, the discriminant is a unit.

Finally, there is a localization statement. Again this is slightly
awkward to formulate. Note however that for a p-primary form, the
values for the discriminant can equally well be taken in

((Rp/d1)
×)2\ 1

∆
Rp/

d1

∆
Rp

instead of

((R/d1)
×)2\ 1

∆
R/

d1

∆
R,

which are naturally isomorphic if d1 and ∆ are powers of p. In any
case, there is for any d1 and ∆ a natural localization map

((R/d1)
×)2\ 1

∆
R/

d1

∆
R→ ((Rp/d1)

×)2\ 1

∆
Rp/

d1

∆
Rp

and if disc(G) is in the left-hand set, its image in the right-hand set
will be denoted by (disc(G))p, the “p-part of the discriminant”. The
following lemma can now be stated.

Lemma 3.8. Let (G, 〈−,−〉) be a torsion bilinear form over R and
fix a prime p. Assume that G and Gp have the same length, i.e., p
divides the first invariant of G. Then disc(Gp) = (discG)p.

Proof. The point is that if `(G) = `(Gp), the same representing
matrix (Bij) for 〈−,−〉 on G over R also represents 〈−,−〉 on Gp over
Rp. Indeed, if {gi} is an ordered basis for G, then gi ⊗R Rp ∈ Gp is an
ordered basis for Gp, and the result follows immediately. Q.E.D.

4. The Discriminant of a Torsion Quadratic Form

Let G be a torsion R-module. If q : G→ K/R is a quadratic form
on G, the associated bilinear form 〈−,−〉 to q is always symmetric. We
can use this and the extra information obtained in passing from the
bilinear form 〈−,−〉 to the quadratic form q to define a more refined
discriminant for q than for 〈−,−〉.

Assume that (G, q) is a torsion quadratic form over R with ordered
basis {gi}, invariants {di}, and associated bilinear form 〈−,−〉. One
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can choose “symmetric” representatives for the values of q as follows. If
i < j let Bij ∈ K be a lift of 〈gi, gj〉 ∈ K/R. For the diagonal elements,
let Bii be two times a lift of q(gi) ∈ K/R. If i > j, set Bij = Bji. In
this way we produce a matrix (Bij) over K satisfying

Bij = Bji for every i and j, and
diBij ∈ R if i 6= j.

(4.1)

Note that Bii ∈ K is actually well defined mod 2R, since Bii =
2q(gi), and q(gi) is well defined mod R. The matrix (Bij) over K will
be called a representing matrix for q. We have the following analogue
of (3.2).

Lemma 4.2. Let (G, q) be a torsion quadratic form over R and let
{g1, . . . , gn} be an ordered basis of G. Assume that the invariants of G
are {d1, . . . , dn} and let ∆ =

∏
di be the order of G.

(4.2.1) If (Bij) is any representing matrix for q, then ∆·det(Bij) ∈ R.
(4.2.2) If (Bij) and (B′

ij) are two representing matrices for q, then

∆ · [detBij − detB′
ij] ∈ αd1R,

where α = gcd(2, d1).
(4.2.3) If q is nondegenerate, then ∆ ·det(Bij) ∈ R is relatively prime

to αd1.

Proof. The first statement follows immediately from (3.2.1), since
(Bij) is a lift of (〈gi, gj〉), where 〈−,−〉 is the associated bilinear form
to q. To prove the second statement, let us introduce some notation.
Let Eij be the n × n matrix over K with all 0’s as entries, except in
the i− jth position, where the entry is 1. Denote by M [i, j] the matrix
obtained from a matrix M by deleting the ith row and jth column. Note
that if M is a square matrix,

det(M + rEij) = detM + (−1)i+j detM [i, j],(4.3)

as is easily seen by expansion along the ith row.
We may assume that the two representing matrices B′ and B for q

differ in only one entry on or above the main diagonal (recall that both
are symmetric). There are two cases to consider.

Case 1: B′ = B + 2rEi0i0 for some i0.

This case occurs ifB′ andB differ in one entry on the main diagonal,
since the entries on the main diagonal of a representing matrix for q is
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well defined mod 2R. Then

∆ · [detB′ − detB] = ∆ · [det(B + 2rEi0i0)− detB]

= ∆ · (2r detB[i0, i0]) by (4.3)

= 2di0r

(∏
i6=i0

di

)
detB[i0, i0]

which is in 2d1R, since
(∏

i6=i0 di

)
detB[i0, i0] ∈ R by (4.2.1) ap-

plied to the subgroup of G generated by {gi}i6=i0 . Since 2d1R ⊆ αd1R,
this case is clear.

Case 2: B′ = B + rEi0j0 + rEj0i0 for some i0 � j0.
In this case

∆ · [detB′ − detB] = ∆ · [det(B + rEi0j0 + rEj0i0)− detB]

= ∆ · (det(B + rEi0j0)

+(−1)i0+j0r det((B + rEi0j0)[j0, i0])

− detB)

= ∆ · (detB + (−1)i0j0r detB[i0, j0]

+(−1)i0+j0r detB[j0, i0] + r2 det(B[j0, i0][i0, j0])

− detB)

= ∆ · (2r(−1)i0+j0 detB[i0, j0] + r2 det(B[j0, i0][i0, j0]))

= 2di0r(−1)i0+j0

(∏
i6=i0

di

)
detB[i0, j0]

+di0dj0r
2

( ∏
i6=i0,j0

di

)
det(B[j0, i0][i0, j0]).

Now
(∏

i6=i0 di

)
detB[i0, j0] ∈ R by (4.1) and the same analysis as

in the proof of (3.2.1);
(∏

i6=i0,j0 di

)
det(B[j0, i0][i0, j0]) ∈ R by applying

(4.2.1) to the subgroup of G generated by {gi}i6=i0,j0 . Therefore,

∆ · [detB′ − detB] ∈ 2di0R + di0dj0R ⊆ 2d1R + d2
1R ⊆ αd1R,

proving (4.2.2).
Finally, (4.2.3) follows from (3.2.3), after noting that any r ∈ R

which is relatively prime to d1 is relatively prime to αd1 (and con-
versely). Q.E.D.
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p d1 ∆ α representatives in 1
∆

Z for 1
∆

(Z/αd1)
×/((Z/αd1)

×)2

odd pe1 pk 1 {p−k, p−ku} where u is a non-square mod p
2 2e1 ≥ 4 2k 2 {2−k, 3 · 2−k, 5 · 2−k, 7 · 2−k}
2 2 2k 2 {2−k, 3 · 2−k}

Table 4.1. representatives for 1
∆

(Z/αd1)
×/((Z/αd1)

×)2

(G, q) disc(q)
w1
p,k, p odd p−k

w−1
p,k, p odd p−ku, where u is a non-square mod p

wε2,k, k ≥ 2 2−ku, where χ(u) = ε mod 8
wε2,1 2−1u, where χ(u) = ε mod 4
uk −2−2k

vk 3 · 2−2k

Table 4.2. discriminants of finite quadratic forms

Corollary (3.4) applies in our situation as well, and, recalling that(
R
d1

)× ∼= ( R
αd1

)×
, we obtain a well-defined element

det(Bij) ∈ ((R/αd1)
×)2\ 1

∆
R/

αd1

∆
R

Definition 4.4. Let (G, q) be a torsion quadratic form over R. The
discriminant of (G, q), denoted by disc(G, q) (or disc(G), or disc(q)) is
the class of detB in ((R/αd1)

×)2\ 1
∆
R/αd1

∆
R, where B is any represent-

ing matrix for q.

Again, by (4.2.3), if q is nondegenerate, disc(q) takes values in

1

∆

(
R

αd1

)×
/

((
R

αd1

)×)2

=
1

∆
D
(
R

αd1

)
.

If R = Z and G is p-primary, then d1 = pe1 and ∆ = pk for two
integers 1 ≤ e1 ≤ k. In this case we have the values shown in Table
4.1 for disc(q) in the nondegenerate case:

The values for the discriminants of the standard examples from (I,
section 7) are given in Table 4.2.

We will again find it useful to employ the χ notation to factor out
the powers of p in the p-primary situations.

If p is odd, and d ∈ 1
pk (Z/pe1)×/((Z/pe1)×)2 is a discriminant value,

we set χ(d) = 1 if d ≡ p−k, and χ(d) = −1 if d ≡ p−ku for a non-square
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u mod p. Note that abusing the notation somewhat this formula reads
that χ(d) = χ(pkd).

With this same abuse of notation, if p = 2, and ∆ = 2k, then we
set χ(d) = χ(2kd) which is a unit mod 8 if k ≥ 2, and is a unit mod 4
if k = 1.

The discriminant for a torsion quadratic form satisfies similar prop-
erties as does the discriminant for a torsion bilinear form. We present
these below, leaving the proofs (which are entirely analogous to the
bilinear case) to the reader. We also employ the same notational con-
ventions used in the previous section.

Proposition 4.5.

(4.5.1) Fix a prime p of R and let (G, q) and (G′, q′) be two p-primary
torsion quadratic forms over R; let (G⊕G′, q+q′) denote their
orthogonal direct sum. Then disc(q + q′) = disc(q) disc(q′).

(4.5.2) Let (G, q) be a p-primary quadratic form with order ∆ and let
B be a representing matrix for q. Then (G, q) is nondegenerate
if and only if p 6 |∆ · det(B), i.e., if disc(q) is a unit.

(4.5.3) Let (G, q) be a torsion quadratic form over R and fix a prime
p. Assume that G and Gp have the same length, i.e., p divides
the first invariant of G. Then disc(Gp, qp) = (disc(G, q))p,
where qp = q|Gp is the induced quadratic form on Gp.

Finally, the discriminant of a torsion quadratic form is compatible
with the discriminant of the associated bilinear form in the following
sense. There is a natural map

((R/αd1)
×)2\ 1

∆
R/

αd1

∆
R→ ((R/d1)

×)2\ 1

∆
R/

d1

∆
R

namely, the “ mod d1” map. It sends values for disc(q) to values for
disc(〈−,−〉).

Lemma 4.6. Let (G, q) be a torsion quadratic form with associated
bilinear form 〈−,−〉. Then disc(q) = disc〈−,−〉 mod d1.

The proof is immediate.

5. The Functor τ

In this section we will define another useful functor, the τ functor,
which will be used in the sequel to refine the discriminant of a quadratic
form in certain cases. We begin with a description of these “special”
forms.

Definition 5.1. Let G be a torsion R-module.
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(5.1.1) A torsion bilinear form 〈−,−〉 on G is special if whenever x ∈
G and 2x = 0 then 〈x, x〉 = 0.

(5.1.2) A torsion quadratic form q on G is special if its associated
bilinear form is, i.e., whenever x ∈ G and 2x = 0 then 2q(x) =
0.

(5.1.3) A torsion bilinear form 〈−,−〉 on G is extraspecial if it is spe-
cial, and whenever x ∈ G and 4x = 0 then 2〈x, x〉 = 0.

Recall that for a torsion R-module G, the subgroup G2,1 = {x ∈
G | 2x = 0} is defined (2.1). Hence, a torsion form 〈−,−〉 on G is
special if x ∈ G2,1 implies 〈x, x〉 = 0. Note that if x, y ∈ G2,1, then
〈x+ y, x+ y〉 = 〈x, x〉+ 〈y, y〉, so to check whether 〈−,−〉 is special it
suffices to check that 〈fi, fi〉 = 0 for a generating set {fi} for G2,1.

We will adopt the notation that, for a torsion R-module G, G′ will
denote the quotient module G′ = G

G2,1
. Given x ∈ G, x′ will denote its

image in G′; given x′ ∈ G, x will denote a lift of x′ to G.

Definition 5.2. Let (G, 〈−,−〉) be a special torsion symmetric
bilinear form over R. Define τ(G, 〈−,−〉) = (G′, q′) to be the torsion
quadratic form defined on G′ by

q′(x) = 〈x, x〉.

To see that q′ is well defined, suppose that z ∈ G2,1; then 〈x, 2z〉 = 0
and 〈z, z〉 = 0 since 〈−,−〉 is special. Therefore, 〈x+z, x+z〉 = 〈x, x〉.
To see that q′ is quadratic, note that q′(rx′) = 〈rx, rx〉 = r2〈x, x〉 =
r2q′(x′); in addition, the associated bilinear form to q’is 〈−,−〉′ where

〈x′, y′〉 = q′(x′ + y′)− q′(x′)− q′(y′)

= 〈x+ y, x+ y〉 − 〈x, x〉 − 〈y, y〉
= 2〈x, y〉

which is bilinear.

Lemma 5.3.

(5.3.1) If (G, 〈−,−〉) is nondegenerate, then τ(G, 〈−,−〉) is nonde-
generate.

(5.3.2) (G, 〈−,−〉) is extra special ⇔ τ(G, 〈−,−〉) is special.
(5.3.3) τ is additive.

Proof. Suppose x′ ∈ Ker Ad〈−,−〉′ ; then for all y ∈ G,

〈2x, y〉 = 2〈x, y〉 = 〈x′, y′〉 = 0.

Since 〈−,−〉 is nondegenerate, 2x = 0 in G, so x ∈ G2,1 and x′ = 0.
This proves (5.3.1); the last statements are obvious. Q.E.D.
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Our first task is to show that any torsion quadratic form can be
obtained as τ of a special torsion bilinear form.

Lemma 5.4. Let (G′, q′) be a torsion quadratic form over R and let
{e′i} be an ordered basis of G′ with invariants {d′i}. For each i, define

di =

{
d′i if (d′i, 2) = 1
2d′i if (d′i, 2) 6= 1

and let G be the torsion R-module with ordered basis {ei} and invariants
{di}. (Note that G

G2,1

∼= G′, the isomorphism induced by sending ei to e′i;

hence, there should be no confusion with the notation.) Then there is a
special symmetric bilinear form 〈−,−〉 on G such that τ(G, 〈−,−〉) ∼=
(G′, q′).

Proof. Choose elements b′ij ∈ K such that
(1) b′ji = b′ij
(2) b′ij = 〈e′i, e′j〉′ mod R, where 〈−,−〉′ is the associated bilinear

form to q′

(3) 1
2
b′ii = q′(e′i) mod R

(4) If (d′i ,2) = 1 and i ≤ j then 1
2
d′ib

′
ij ∈ R.

Only property (4) needs justification. If (d′i ,2) = 1 and i ≤ j,

then d′ib
′
ij ≡ 〈d′ie′i, e′j〉 = 0 mod R, so that b′ij =

a′ij
d′i

for some a′ij in R.

Since (d′i ,2) = 1, there exist αi, βi in R with 2αi + d′iβi = 1. Then
a′ij
d′i
−βia′ij =

2αia
′
ij

d′i
; thus, choosing appropriate representatives of 〈e′i, e′j〉

in K, we may ensure that the numerators 2αia
′
ij are even (divisible by

2).
We now define 〈−,−〉 on G by setting 〈ei, ej〉 = 1

2
b′ij mod R and

extending by linearity.
To see that 〈−,−〉 is well defined, we must check that 〈diei, ej〉 = 0

mod R for every i and j.
If (di, 2) 6= 1, then di = 2d′i , so that 〈diei, ej〉 = 1

2
dib

′
ij = d′i

b′ij = 〈d′ie′i, e′j〉′ = 0 mod R.

If (di, 2) = 1 and i ≤ j, then di = d′i, so that 〈diei, ej〉 = 1
2
d′ib

′
ij =

1
2
d′ib

′
ij = 0 mod R by property (4).
If (di, 2) = 1 and i > j, then dj|di, di = d′i and dj = d′j , so that

〈diei, ej〉 = 1
2
dib

′
ij = di

dj
· 1

2
d′jb

′
ji = 0 mod R, again by (4).
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Therefore, 〈−,−〉 is well defined. To see that 〈−,−〉 is special, note
that G2,1 has {d′iei} as a generating set. Therefore, since

〈d′iei, d′iei〉 = (d′i)
2〈ei, ei〉

= (d′i)
2 1

2
b′ii

= (d′i)
2q′(e′i)

= q′(d′ie
′
i)

= 0 mod R,

〈−,−〉 is indeed special.
Finally, note that τ(G, 〈−,−〉) = (G′, q′), since

q′

(∑
i

nie
′
i

)
=

∑
i

n2
i q
′(e′i) +

∑
i<j

ninj〈e′i, e′j〉′

=
1

2

∑
i

n2
i b
′
ii +

∑
i<j

ninjb
′
ij

=
∑
i

n2
i 〈ei, ei〉+ 2

∑
i<j

ninj〈ei, ej〉

= 〈
∑
i

niei,
∑
i

niei〉.

Q.E.D.

The structure of G2,1 and G′ are obviously of some importance for
the functor τ . We need the following language.

Definition 5.5. A torsion R-module G is good if G2,1 is homo-
geneous with annihilator 2R and is better if whenever x ∈ G2,1, then
x = 2y for some y ∈ G.

Lemma 5.6.

(5.6.1) Assume G has invariants {di}. Then
G is good ⇔ whenever (di, 2) 6= 1, then 2|di

and
G is better ⇔ whenever (di, 4) 6= 1, then 4|di.

Hence G better ⇒ G good.
(5.6.2) If G is better then G′ = G

G2,1
is good. Conversely, for any good

module G′ there is a better module G such that G
G2,1

∼= G′.

(5.6.3) If 〈−,−〉 is a symmetric bilinear form on a better module G,
then 〈−,−〉 is special.
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(5.6.4) If 2 is either a prime or a unit in R, then every torsion R-
module is good.

Proof. The first statement (5.6.1) is clear. The first part of (5.6.2)
is also clear, and the second part is the construction introduced in
Lemma (5.4). To see (5.6.3), assume 2x = 0; then x = 2y for some
y, so that 〈x, x〉 = 〈2y, 2y〉 = 4〈y, y〉 = 〈4y, y〉 = 0. Finally, the last
statement is immediate from (5.6.1). Q.E.D.

Lemma 5.7. Suppose (G, 〈−,−〉) is a torsion bilinear form and G
is better. If τ(G, 〈−,−〉) is nondegenerate, then (G, 〈−,−〉) is nonde-
generate.

Proof. Let x ∈ Ker Ad〈−,−〉. Then 〈x′, z′〉 = 2〈x, z〉 = 0 for all
z′ ∈ G′, so that x′ ∈ Ker Ad〈−,−〉′ , forcing x′ = 0 so that x ∈ G2,1.
Since G is better, x = 2y for some y ∈ G. Assume x 6= 0; then y′ ∈ G
is not zero, so there exists z′ ∈ G with 〈y′, z′〉 6= 0. For some z ∈ G
mapping to z′, 〈x, z〉 = 〈2y, z〉 = 2〈y, z〉 = 〈y′, z′〉′ 6= 0, a contradiction.
Hence, x = 0 and 〈−,−〉 is nondegenerate. Q.E.D.

There is also a uniqueness statement related to (5.6.2).

Lemma 5.8. Suppose G is a torsion R-module, and 〈−,−〉1 and
〈−,−〉2 are two special torsion symmetric bilinear forms on G such
that

τ(G, 〈−,−〉) = τ(G, 〈−,−〉2), and

(G′, q′) = τ(G, 〈−,−〉i)is nondegenerate.

Then there is an isometry ψ : (G, 〈−,−〉1) → (G, 〈−,−〉2).
Proof. By (5.7), each 〈−,−〉i is nondegenerate. Consider the sym-

metric bilinear form β(x, y) = 〈x, y〉1 − 〈x, y〉2. Note that

2β(x, y) = 2〈x, y〉1 − 2〈x, y〉2 = 〈x′, y′〉′ − 〈x′, y′〉′ = 0

for every x, y ∈ G, and

β(x, x) = 〈x, x〉1 − 〈x, x〉2 = q′(x′)− q′(x′) = 0

for every x ∈ G.
These two properties guarantee the existence of a (non-symmetric)

bilinear form γ on G such that β(x, y) = γ(x, y)+γ(y, x) and 2γ(x, y) =
0. For example, if {ei} is an ordered basis of G, we may set

γ(ei, ej) =

{
β(ei, ej) if i<j
0 if i≥j.

γ measures the difference between the two forms and by induction on
the length of G we may assume there exist I, J such that γ(ei, ej) = 0
when i = I and j = J.
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Let ϕ = (Ad〈−,−〉2)
−1 Adγ, so that γ(x, z) = 〈ϕ(x), z〉 for all x and

z, and define ψ(x) = x+ ϕ(x).
Note that 〈2y(x), z〉2 = 2γ(x, z) = 0 for all z, so that 2ϕ(x) = 0.

If i 6= I, then ϕ(ei) = 0; hence, 〈ϕ(ei), ϕ(ej)〉2 = 0 unless i = j = I.
But since 〈−,−〉2 is special and 2ϕ(eI) = 0, 〈ϕ(eI), ϕ(eI)〉2 = 0, also.
Hence, 〈ϕ(x), ϕ(y)〉2 = 0 for every x and y; therefore,

〈ψ(x), ψ(y)〉2 = 〈x, y〉2 + 〈ϕ(x), y〉2 + 〈ϕ(y), x〉2 + 〈ϕ(x), ϕ(y)〉2
= 〈x, y〉2 + γ(x, y) + γ(y, x)

= 〈x, y〉2 + β(x, y)

= 〈x, y〉1
so that ψ : G → G maps 〈−,−〉1 to 〈−,−〉2. Moreover, if x ∈ Kerψ
then 〈x, y〉1 = 〈ψ(x), ψ(y)〉2 = 〈0, ψ(y)〉2 = 0 for every y, forcing x =
0. Therefore, ψ is an isomorphism of R-modules, hence an isometry.

Q.E.D.

By applying (5.6.3), we have

Corollary 5.9.

(5.9.1) Suppose G is a better torsion R-module, and 〈−,−〉1 and 〈−,−〉2
are two torsion symmetric bilinear forms on G such that

τ(G, 〈−,−〉1) = τ(G, 〈−,−〉2), and

(G′, q′) = τ(G, 〈−,−〉i)is nondegenerate.

Then there is an isometry ψ : (G, 〈−,−〉1) → τ(G, 〈−,−〉2).
(5.9.2) τ establishes a 1-1 correspondence between{
isometry classes of nonde-
generate symmetric bilinear
forms on better R-modules

}
and

{
isometry classes of nonde-
generate quadratic forms on
good R-modules

}
Under this correspondence, extraspecial bilinear forms on bet-
ter modules correspond to special quadratic forms.

Let us display in Table 5.1 the “standard” torsion R-modules and
the behavior of the functor τ on them.

6. The Discriminant of a Good Special Torsion Quadratic
Form

There is a refinement of the discriminant for a torsion quadratic
form (defined in section 4) in case the form is good and special. We
first treat the case of a torsion bilinear form which is better and extra
special. In this section we work only over R = Z2.
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R (G, 〈−,−〉) good/better? special? τ(G, 〈−,−〉)
Zp, p odd w̄εp,k better extra special wεp,k
Z2 w̄ε2,1 good no (0)
Z2 w̄ε2,2 better special wε2,1
Z2 w̄ε2,k, k ≥ 3 better extra special wε2,k−1

Z2 ū1 good extra special (0)
Z2 v̄1 good extra special (0)
Z2 ūk, k ≥ 2 better extra special uk−1

Z2 v̄k, k ≥ 2 better extra special vk−1

Table 5.1. the functor τ

Let (G, 〈−,−〉) be a better and extra special nondegenerate torsion
bilinear form over Z2. As in section 4, let {gi} be an ordered basis for
G, with invariants {di} and choose “symmetric” representatives {Bij}
in K = Q2 for the values of 〈−,−〉 so that 〈gi, gj〉 ≡ Bij mod R, with
Bij = Bji. Since G is better, d1 ≥ 4. The extra special assumption
means that if di = 4, then 2Bii ∈ R.

We have the following analogue of (4.2).

Lemma 6.1. Let ∆ =
∏

i di and assume {Bij} is as above.

(6.1.1) ∆ · det(Bij) ∈ R
(6.1.2) If (Bij) and (B′

ij) are two such symmetric matrices, then

∆ · [det(Bij)− det(B′
ij)] ∈ 8R.

Proof. The first statement is simply (3.2.1) again. The proof of
(6.1.2) is along the lines of that of (4.2.2). Firstly, if d1 ≥ 8, we are done
by (3.2.2). Therefore, we may assume d1 = 4, which implies 2B11 ∈ R.
We may further assume that (Bij) and (B′

ij) differ only in one entry
on or above the diagonal.

If B′ = B + rEi0i0 for some i0 and r ∈ R, then

∆ · [detB′ − detB] = di0r

(∏
i6=i0

di

)
detB[i0, i0],

which is in 8R if di0 ≥ 8. Assume then that di0 = 4, or equivalently that

i0 = 1. If
(∏

i6=i0 di

)
(detB[i0, i0]) is a unit in Z2, then the subgroup

H of G generated by {g2, . . . , gn} is nondegenerate, thus splitting off
of G; therefore, G has an orthogonal direct summand which is cyclic
of order 4, namely the complement of H. This order 4 subgroup must
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(G, 〈−,−〉) or (G, q) disc8G
w̄ε2,k, k ≥ 3 ε
ūk, k ≥ 2 7
v̄k, k ≥ 2 3
wε2,k, k ≥ 2 ε
uk 7
vk 3

Table 6.1. the mod 8 discriminant

be nondegenerate, since G is; however, this contradicts the extra spe-

cialness of G. Therefore,
(∏

i6=i0 di

)
(detB[i0, i0]) is divisible by 2, so

that ∆ · [detB′ − detB] ∈ 8R as required.
IfB′ = B+rEi0j0+rEj0i0 for some i0 � j0 and r ∈ R, the calculation

in the proof of (4.2.2) shows that ∆ · [detBij − detB′
ij] ∈ 8R. Q.E.D.

Since ((Z/8)×)2 = {1}, the above lemma gives us a well-defined
element ∆ · det(Bij) in (Z/8)×.

Definition 6.2. Let (G, 〈−,−〉) be a better and extra special non-
degenerate torsion biliniear form over Z2. The mod 8 discriminant of
(G, 〈−,−〉), denoted by disc8(G, 〈−,−〉) (or disc8(G), or disc8〈−,−〉)
is the element ∆ · det(Bij) in (Z/8)×.

Using the functor τ , we can extend this mod 8 discriminant to
good and special nondegenerate quadratic forms. Let (G′, q′) be such
a form over Z2. Let (G, 〈−,−〉) be the unique better and extra special
nondegenerate torsion bilinear form over Z2 (unique up to isometry, by
(5.9)) with τ(G, 〈−,−〉) = (G′, q′).

Definition 6.3. The mod 8 discriminant of (G′, q′), denoted by
disc8(G

′, q′) (or disc8G
′, or disc8 q

′) is the mod 8 discriminant of (G, 〈−,−〉).

Table 6.1 shows the mod 8 discriminants for the standard examples.
Comparing these values to those of Table (4.2), at first glance it

may seem that we haven’t gained much; these values are simply |G|
times the values for the ordinary discriminant. However, for u1, and v1

the above values are defined mod 8, while the ordinary discriminant
is only defined mod 4.

7. The Discriminant-Form Construction

In this section R will be an integral domain and K its quotient field.



7. THE DISCRIMINANT-FORM CONSTRUCTION 57

Definition 7.1. Let M be a finite-dimensional vector space over
the quotient field K. An R-lattice in M is a free finitely generated
R-submodule L of M such that the natural map from L ⊗R K to M
is an isomorphism. An R-lattice is an R-lattice in M for some finite-
dimensional vector space M over K.

The rank of the R-lattice over R is the same as the dimension of M
over K; every R-lattice in M can be given as the R-span of a K-basis
of M . If L is a finitely generated free R-module, then one can consider
L as being naturally an R-lattice in LK = L⊗RK.

Let L be a finitely generated free R-module and let 〈−,−〉 be a
K-valued symmetric bilinear form on L, which is nondegenerate. The
extension LK = L ⊗R K inherits the bilinear form; simply set 〈l1 ⊗
k1, l2 ⊗ k2〉K = k1k2〈l1, l2〉. In this way (LK , 〈−,−〉K) is a K-valued
symmetric bilinear form over K, and is also nondegenerate.

Conversely, suppose a K-valued symmetric bilinear form is given on
a finite-dimensional vector space M over K. If L is any R-lattice in M ,
then the restriction of the form to L is a K-valued symmetric bilinear
form on L, nondegenerate if the original form is. This operation is
inverse to the previous extension operation.

In this situation there is a natural notion of duality.

Definition 7.2. Let (M, 〈−,−〉) be a nondegenerate symmetric
K-valued bilinear form on a finite-dimensional vector space M over K.
For any R-lattice L in M , define its dual lattice L# in M by

L# = {m ∈M | 〈m, l〉 ∈ R for every l ∈ L}.

If (L, 〈−,−〉) is a nondegenerate symmetric K-valued bilinear form on
a free f.g. R-module L, its dual lattice L# will denote its dual lattice
in LK .

The first thing to check is that in fact L# is a lattice in M . It is
enough to consider the case when M = LK .

The R-dual L∗ = HomR(L,R) of L is, of course, also a finitely
generated free R-module with the same rank.

Lemma 7.3. Assume (L, 〈−,−〉) is a nondegenerate K-valued sym-
metric bilinear form over R as above. Then the map α : L# → L∗

defined by sending x to AdLK
(x)|L = 〈x,−〉 is an isomorphism of R-

modules.

Proof. It is clear that the above map α is well-defined, and maps
L# to L∗. Let us first show that α is onto. Choose any f in L∗

and consider the extension f̃ of f in L∗K = HomK(LK , K). Let x =
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Ad−1
LK

(f̃), i.e., x ∈ LK and f̃(y) = 〈x, y〉 for every y ∈ LK . Since f̃

extends f , and f is in L∗, x must be in L#. Since α(x) = f , we have
proved α is onto.

Since L is nondegenerate, AdLK
is an isomorphism, so the restric-

tion α = AdLK
|L = AdL# is injective. Q.E.D.

The above lemma suffices to show that L# is an R-lattice in LK .
It of course inherits a K-valued bilinear form (denoted 〈−,−〉L#) from
the induced form on LK . It is nondegenerate, since the form on LK is.

If {ei} is a basis for L over R, define a “dual basis” {e#i } for L#

by transporting the dual basis {e∗i } of L∗ via α : e#i = α−1(e∗i ). The

vectors e#i can also be defined by the property that 〈e#i , ej〉LK
= δij,

the Kronecker delta.
A special case of the above situation is afforded when (L, 〈−,−〉)

is an R-valued form over R. In this case, as lattices in LK , L ⊆ L#.
In particular, if (L,Q) is a quadratic R-module, then L ⊆ L#. The
adjoint map AdL from L to L∗ can be viewed as the composition of the
inclusion of L into L#, followed by the isomorphism α of the previous
lemma.

Definition 7.4. Let (L,Q) be a quadraticR-module. The discriminant-
form module of (L,Q) is the torsion R-module GL = L#/L.

By Lemma (I.3.2), a matrix for AdL is given by a matrix for Q, so
that if R = Z, GL is a finite abelian group of order equal to | disc(L)|. If
R = Zp and disc(L) = peu mod U2

p, where u ∈ Up, then GL is a finite
abelian p-group of order pe, using similar considerations. In general, if
R is a P.I.D. and {d1, . . . , dn} are the invariants of G, with ∆ =

∏
di,

then ∆ ≡ disc(L) mod R×

(R×)2
in the value group (R−{0})

(R×)2
.

The quadratic form Q on L induces one, QK , on LK(I, (8.1)). The
restriction of QK to L# induces a K-valued quadratic form Q# on L#,
which is also nondegenerate.

The plot now thickens: the discriminant-form module also inherits
the quadratic form by defining

qL(x+ L) = Q#(x) mod R ∈ K/R.

Proposition 7.5. Let (L,Q) be a quadratic R-module. Then (GL, qL)
is a well-defined nondegenerate torsion quadratic form over R.
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Proof. Assume x, y ∈ L# with x− y ∈ L; write x = y + l. Then

qL(x+ L) = Q#(x) mod R

= Q#(y + l) mod R

= Q#(y) +Q#(l) + 〈y, l〉# mod R

= Q#(y) +Q(l) mod R since 〈y, l〉# ∈ R
= Q#(y) mod R since Q(l) ∈ R
= qL(y + L);

hence, qL is well defined. It is trivial to check that it is a quadratic
form. Finally, to see that it is nondegenerate, assume x + L is in the
kernel of AdGL

. Let [-,-] denote the associated bilinear form to qL on
GL. Then [x+L, y+L] = 0 for all y in L#; however, from the definition
of qL, [x+L, y+L] = 〈x, y〉 mod R, so that 〈x, y〉# ∈ R for all y in L#.
Since (L#)# = L, this implies x ∈ L, so that x+L = 0 in GL. Q.E.D.

We will usually denote the associated bilinear form to qL on GL by
〈−,−〉GL

.
Note that GL = (0) if and only if L is unimodular. Also, any

splitting of L induces one of GL : GL⊕M ∼= GL ⊕ GM as torsion forms
over R.

As an example, assume char(R) 6= 2 and let L = 〈a〉R. (That is, L
is a rank-one R-module generated by e ∈ L, and Q(e) = a.) The dual
L# ⊂ LK is generated by e# = (1/2a)·e, andQ#(e#) = (1/4a2)·Q(e) =
1/4a ∈ K. The adjoint map sends e to 2ae#, so that GL

∼= R/(2a) is
generated by the class of e# mod L. Since q(e#) = 1/2 · 2a mod R,
we see that (GL, qL) ∼= z1

2a.
A related example is this. Consider the form (L,Q) = 〈a〉Zp =

〈(1/2)pku〉Zp (whose isomorphism class is W ε
p,k, where ε = χ(u)). If

e generates the rank-one Zp-module L, with Q(e) = (1/2)pku, then
p−ke generates L# ⊂ LK . We have GL

∼= Zp/(pk), and Q#(p−ke) =
p−2k ·Q(e) = u/2pk, so that (GL, qL) ∼= zu

pk . Since χ(u) = ε, this is the
form whose isomorphism class was denoted by wεp,k.

Similar calculations for Uk and Vk will enable the reader to com-
plete the verification of Table 7.1, which shows the discriminant-form
modules for the standard examples of Chapter I.

As one application of discriminant-forms, we give a characterization
of indecomposable torsion quadratic forms over Z2 of rank two.

Lemma 7.6. Let (G, q) be a nondegenerate indecomposable torsion
quadratic form over Z2 of rank two. (Note that (G, q) is necessarily
good and special.) Let δ = disc8(G, q). Then (G, q) ∼= uk if and only if
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R (L,Q) (GL, qL)
Z 〈a〉 z1

2a

Zp, p odd W 1
p,k w1

p,k

Zp, p odd W−1
p,k w−1

p,k

Z2 W ε
2,k wε2,k

Z2 Uk uk
Z2 Vk vk

Table 7.1. discriminant-form modules

(G, q) has scale 2k and
(

2
δ

)
= 1, while (G, q) ∼= vk if and only if (G, q)

has scale 2k and
(

2
δ

)
= −1.

Proof. There clearly exists a nondegenerate quadratic Z2-module
of rank two (L,Q) whose discriminant-form is (G, q). If (L,Q) were
decomposable, the orthogonal direct sum decomposition into two cyclic
pieces would induce an orthogonal direct sum decomposition of (G, q),
contrary to hypothesis. Thus, (L,Q) is indecomposable, so by lemma
(7.7) of chapter I, (L,Q) must be isomorphic to Uk or Vk for some k.
But Then by table (7.1), (G, q) is isomorphic to uk or vk for some k.
Since uk and vk each have scale 2k and satisfy the given conditions
on the mod-8 discriminants, these two properties characterize their
isomorphism classes: the scale of (G, q) identifies k, and the mod-8
discriminant distinguishes between uk and vk. Q.E.D.

Corollary 7.7. If we multiply all the values of the quadratic form
uk or vk by a fixed unit in Z2, the isomorphism class does not change.

Proof. The scale is not affected (being a property of the group),
and the mod-8 discriminant is simply multiplied by the square of the
fixed unit, and so remains unchanged. Q.E.D.

Returning to the free R-modules L and L#, assume that the matrix
of QL with respect to a basis {ei} for L is A.

Lemma 7.8. The matrix for QL# with respect to the dual basis {e#i }
for L# is A−1.

Proof. Write e#i =
∑
cijej, with cij ∈ K and let C = (cij) be

the associated matrix. Note that
∑

j ckj〈ej, ei〉L = 〈
∑

j ckjej, ei〉L =

〈e#k , ei〉LK
= δik. Hence, CA is the identity matrix. Since A is symmet-

ric, so is C; moreover, if B is the matrix for QL# , then B = CTAC =
CT = C = A−1. Q.E.D.
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Corollary 7.9. Let L be a quadratic R-module. Then

disc(L) disc(L#) = 1.

Note that disc(L) ∈ R−{0}
(R×)2

while disc(L#) ∈ K−{0
(R×)2

}
; hence, the

product makes sense, in K−{0}
(R×)2

.

Let us close this section with the calculation of the discriminant-
form groups for the examples of (I, section 7.4), namely, theAN , DN , EN
and Tpqr forms. We take up the case of the AN forms first. Label the
vertices of the path graph v1, . . . , vN in order so that they form a basis
for the Z-module L. Denote the dual basis of L# by v#

1 , . . . , v
#
N . For

0 ≤ m ≤ N − 1, define αm =
∑N

i=m+1(i −m)vi;αm ∈ L for every m.
Note that if m ≥ 1, we have

〈αm, vj〉 =


0 if j < m
1 if j = m
0 if m < j < N
0 if j = N,

so that v#
m = αm + (N + 1 −m)v#

N if 1 ≤ m ≤ N − 1. Therefore, v#
N

generates GL = L#/L. Furthermore, we have

〈α0, vj〉 =

{
0 if j < N
−N − 1 if j = N,

so that v#
N = −1

N+1
α0. Since

Q#(v#
N) = Q#

(
−1

N + 1
α0

)
=

1

2(N + 1)2
〈α0, α0〉

=
1

2(N + 1)2

[
−2

N∑
i=1

(i2) + 2
N−1∑
i=1

i(i+ 1)

]
=

1

2(N + 1)2
[−2N2 +N(N − 1)]

=
1

2(N + 1)2
[−N2 −N ]

=
−N

2(N + 1)
,

we have

qL(v#
1 + L) =

−N
2(N + 1)

mod Z.
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Therefore, the discriminant-form group for AN is isomorphic to z−NN+1.
The same techniques can be used to discover the discriminant-form

groups for the Tpqr forms. Label the vertices of the Tpqr graph by
a1, . . . , ap−1, b1, . . . , bq−1, c1, . . . , cr−1, and e as in (I, section 7.4). Define

αm =

p−1∑
i=m+1

(i−m)ai for 0 ≤ m ≤ p− 2

βm =

q−1∑
i=m+1

(i−m)bi for 0 ≤ m ≤ q − 2, and

γm =
r−1∑

i=m+1

(i−m)ci for 0 ≤ m ≤ r − 2.

As above,

a#
m = αm + (p−m)a#

p−1 for 1 ≤ m ≤ p− 2,

b#m = βm + (q −m)b#q−1 for 1 ≤ m ≤ q − 2, and

c#m = γm + (r −m)c#r−1 for 1 ≤ m ≤ r − 2,

so that {a#
p−1, b

#
q−1, c

#
r−1, e

#} generates GL = L#/L.
Next, note that 〈α0, αp−1〉 = −p, 〈α0, e〉 = p− 1 and

〈α0, any other basis vector of L〉 = 0,

so that

α0 = (p− 1)e# − pa#
p−1; similarly,

β0 = (q − 1)e# − qb#q−1, and(7.10)

γ0 = (r − 1)e# − rc#r−1.

Also, 〈e, e〉 = −2, 〈e, ap−1〉 = 〈e, bq−1〉 = 〈e, cr−1〉 = 1 and

〈e, other basis vector of L〉 = 0

so that

e = −2e# + a#
p−1 + b#p−1 + c#r−1.(7.11)

Therefore, in L#/L, we have the four relations
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(p− 1)e# − pa#
p−1 = 0

(q − 1)e# − qb#q−1 = 0(7.12)

(r − 1)e# − rc#r−1 = 0

−2e# + a#
p−1 + b#q−1 + c#r−1 = 0.

Since the determinant∣∣∣∣∣∣∣∣
(p− 1) −p 0 0
(q − 1) 0 −q 0
(r − 1) 0 0 −r
−2 1 1 1

∣∣∣∣∣∣∣∣ = pqr − pq − pr − qr,

which is the order of L#/L for Tpqr, there are no other independent

relations among the generators e#, a#
p−1, b

#
q−1 and c#r−1 of GTpqr ; hence

we have given generators and relations for GTpqr .
The most straightforward way to compute the form on GTpqr is to

first write the given generators in terms of e, α0, β0 and γ0 by using
(7.11) and (7.12), i.e., by inverting the above 4× 4 matrix. We get

e# =
1

D
[pqre+ qrα0 + prβ0 + pqγ0]

a#
p−1 =

1

D
[(pqr − qr)e+ (q + r)α0 + (pr − r)β0 + (pq − q)γ0](7.13)

b#q−1 =
1

D
[(pqr − pr)e+ (qr − r)α0 + (p+ r)β0 + (pq − p)γ0]

c#r−1 =
1

D
[(pqr − pq)e+ (qr − q)α0 + (pr − p)β0 + (p+ q)γ0]

where D = |GTpqr | = pqr −pq − pr - qr.
The values of the bilinear form for e, α0, β0 and γ0 are given below.

〈−,−〉 e α0 β0 γ0

e −2 p− 1 q − 1 r − 1
α0 p− 1 −p(p− 1) 0 0
β0 q − 1 0 −q(q − 1) 0
γ0 r − 1 0 0 −r(r − 1)

(7.14)

In principle, (7.13) and (7.14) suffice to calculate the quadratic form
q on GTpqr . We will be satisfied at this time with calculating q for the
DN and EN forms.
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For DN , p = q = 2, r = N − 2, and D = 4. Assume first that N is
even, say N = 2M. From (7.13) we have

e# = 0

a#
1 =

M

2
α0 −

M − 1

2
β0 −

1

2
γ0

b#1 =
−M − 1

2
α0 +

M

2
β0 −

1

2
γ0

c#r−1 = −1

2
α0 −

1

2
β0

in GDN
. Hence GDN

∼= Z/2 × Z/2, with nonzero elements a#
1 , b

#
1 and

c#r−1. Using (7.14), one finds that

q(a#
1 ) = q(b#1 ) = −M

4
mod Z

and

q(c#r−1) = −1

2
mod Z.

If N ≡ 2 mod 8, then 〈a#
1 , b

#
1 〉G = 0 and GDN

splits as w−1
2,1⊕w−1

2,1.
If N ≡ 4 mod 8, then GDN

is indecomposable; GDN
∼= v1. If N ≡ 6

mod 8, then 〈a#
1 , b

#
1 〉G = 0 and GDN

splits as w1
2,1 ⊕ w1

2,1. If N ≡ 0
mod 8, G is again indecomposable; GDN

∼= u1.
Now assume that N is odd, say N = 2M + 1. Then, using (7.13),

we have

a#
1 =

1

4
[2re+ (r + 2)α0 + rβ0 + 2γ0]

=
1

4
[2(2M − 1)e+ (2M + 1)α0 + (2M − 1)β0 + 2γ0]

=
1

4
[−2e+ (2M + 1)α0 + (2M − 1)β0 + 2γ0] in GDN

,

and hence a#
1 has order 4 in GDN

, so GDN
is cyclic, generated by a#

1 .

Again using (7.14), we find that q(a#
1 ) = −N

8
. Hence

GDN
∼= wε2,2,

where ε = −N mod 8.
For EN , p = 2, q = 3 and r = N−3. We really only need to compute

GEN
for N = 6 and 7, since E8 is unimodular, E9 is degenerate, and

EN ∼= E8 ⊕ U ⊕ AN−10 for N ≥ 10. For N = 6, D = 3, so GE6
∼= Z/3.

From (7.13), b#q−1 = 1
3
[12e+ 6α0 + 5β0 + 4γ0] = 1

3
[2β0 + γ0] in GE6 ,

so b#q−1 6= 0 and generates GE6 . From (7.15??), we have q(b#q−1) = 1
3

mod Z, so that GE6
∼= w−1

3,1.
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quadratic Z-module L G qL |GL|
AN , N ≥ 1 Z/N + 1 z−NN+1 N + 1
DN , N ≡ 0 mod 8 (Z/2)2 u1 4
DN , N ≡ 1 mod 8 Z/4 w7

2,2 4
DN , N ≡ 2 mod 8 (Z/2)2 w−1

2,1 ⊕ w−1
2,1 4

DN , N ≡ 3 mod 8 Z/4 w5
2,2 4

DN , N = 4 mod 8 (Z/2)2 v1 4
DN , N ≡ 5 mod 8 Z/4 w3

2,2 4
DN , N ≡ 6 mod 8 (Z/2)2 w1

2,1 ⊕ w1
2,1 4

DN , N ≡ 7 mod 8 Z/4 w1
2,1 4

E6 Z/3 w−1
3,1 3

E7 Z/2 w1
2,1 2

E8, E10 {1} — 1
EN , N ≥ 11 Z/N − 9 z10−N

N−9 N − 9
Tp,q,r — — pqr − pq − pr − qr

Table 7.2. discriminant-forms of AN , DN , EN , and Tp,q,r

ForN = 6, D = 2, soGE7
∼= Z/2. From (7.13), a#

p−1 = 1
2
[12e+ 7α0 + 4β0 + 3γ0]

= 1
2
[α0 + γ0] in GE7 , so a#

p−1 generates GE7 . From (7.14), we have

q(a#
p−1) = 1

4
mod Z, so that GE7

∼= w1
2,1.

For completeness, we have for N ≥ 11, GEN
∼= GAN−10

∼= z10−N
N−9 .

We collect what we have computed in Table 7.2.

8. The Functoriality of GL

Again let R be an integral domain with characteristic 6= 2. Let L
and M be two quadratic R-modules and Φ : L→M a homomorphism
of quadratic R-modules. By (I, (6.4)),Φ is an embedding; hence Φ
induces an injection of vector spaces ΦK : LK →MK .

How does ΦK behave with respect to the dual lattices L# and M#?
In particular, does ΦK(L#) ⊆M#? The answer is unfortunately no in
general. For example, assume R = Z and M = Z2, with the quadratic
structure of the hyperbolic plane. With the standard basis {e1, e2} for
M , we have 〈e1, e1〉 = 〈e2, e2〉 = 0 and 〈e1, e2〉 = 1. Let L ∼= Z be the
submodule generated by f = e1 + e2. Note that 〈f, f〉 = 2, so L is
nondegenerate; in fact, QL(l) = 0 ⇔ l = 0 in L. The dual lattice L# to
L is generated by f# = f/2; however since M is unimodular, M# = M
and so L# does not map to M#, since f/2 is not in M .

However, if the image Φ(L) of L in M splits off M , then it is clear
that ΦK(L#) ⊆ M#. Indeed, if we write M = Φ(L) ⊕ Φ(L)⊥, then
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M# is Φ(L)# ⊕ (Φ(L)⊥)#. In this case we then obtain a module map
ϕ : GL → GM induced by Φ|L# . It is not hard to see that in fact the
splitting condition is necessary for ΦK(L#) to lie inside M#.

The reader can easily check that in this case ϕ is a homomorphism
of the quadratic structures on GL and on GM , and is in fact an injection
of a direct summand (as is Φ, after all).

Therefore, if Φ is in fact a stable homomorphism, i.e., Φ(L) splits
off M and Φ(L)⊥ is unimodular, then ϕ will be an isometry from GL

to GM . The following is now immediate.

Proposition 8.1. The discriminant-form construction

L GL

is a covariant functor from the category of quadratic R-modules (with
stable homomorphisms) to the category of torsion quadratic forms over
R (with isometries).

As the first application, we therefore have a map on orthogonal
groups:

Corollary 8.2. Let L be a quadratic R-module. Then there is a
natural group homomorphism from O(L) to O(GL).

If σ ∈ O(L) is an isometry of L, the induced isometry of GL will
be denoted by σ. Since the map on GL is the reduction mod L of the
induced map from L# to L#, we have

σ(x mod L) = σ(x) mod L for x in L#.(8.3)

Notation 8.4. If L is a quadratic R-module, the kernel of O(L) →
O(GL) will be denoted by O#(L).

In terms of matrices, if the matrix of QL is A and the matrix of
σ ∈ O(L) is S with respect to some basis of L, then the matrix of σ
on L# with respect to the dual basis is ASA−1. Hence

σ ∈ O#(L) ⇔ σ(x mod L) = x mod L for all x in L#

⇔ ∀x ∈ L#, σ(x)− x ∈ L
⇔ Image of (ASA−1 − I) ⊆ image of A on RN ,

where N = rankL

⇔ ∃C ∈MN×N(R) such that ASA−1 = I + AC

⇔ ∃C ∈MM×N(R) such that S = I + CA

Therefore, O#(L) = {S ∈ O(L) |S = I + CA for some C}, which
corresponds to the set {C | I + CA ∈ O(L)}.
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Now I + CA ∈ O(L) ⇔ (I + CA)>A(I + CA) = A ⇔ C + C> +
C>AC = 0; therefore, we have an onto function from {C |C + C> +
C>AC = 0} to O#(L), sending C to I + AC.

The reader can easily check the following.

Proposition 8.5. Let (L,Q) be a quadratic R-module of rank N
with matrix A. Let HA = {C ∈ MN×N(R) |C + C> + C>AC = 0}.
Define an operation ∗ on HA by setting C1 ∗ C2 = C1 + C2 + C1AC2.
Then:

(8.5.1) (HA, ∗) is a group.
(8.5.2) The inverse of C ∈ HA is C>.
(8.5.3) The map HA → O#(L) defined by sending C to I +CA is an

isomorphism of groups.

For example, suppose L has rank 1 so that A = (2a) for some a ∈ R.
Then

HA = {(c) | (c) + (c)> + (c)>(2a)(c) = 0}
= {(c) | 2c+ 2ac2 = 0}
= {(c) | c+ ac2 = 0}
= {(c) | c(1 + ac) = 0}.

Therefore, HA = {(0)} if a 6∈ R×, and HA = {(0), (−a−1)} if a ∈ R×.
Hence,

O#(L) =

{
{I} if a6∈R×

{±I} if a∈R×.

It is useful to remark at this point that Lemmas (I.9.4) and (I.9.5)
show that the map O(L) → O(GL) is surjective for all the standard
forms W ε

p,k, Uk, and Vk.
We will close this section with a discussion of the discriminant and

its behavior vis-a-vis the discriminant-form construction. The result is
as follows.

Proposition 8.6. Assume R is a P.I.D. Let (L,Q) be a quadratic
R-module and let (GL, qL) be the discriminant-form for L. Assume that
the rank of L equals the length of GL. Let d1 be the first invariant of
GL and let α = gcd(2, d1). Then

disc(L) · disc(GL) = 1 in D
(
R

αd1

)
Proof. Before proceeding, let us remark on the meaning of this

identity. The discriminant disc(L) lies in (R×)2\(R − {0}), and if
{d1, . . . , dN} are the invariants of GL and ∆ =

∏
di, then in fact



68 II. QUADRATIC FORMS OVER INTEGRAL DOMAINS

disc(L) ∈ (R×)2/∆ ·R×. By disc(L) we denote its residue in (R×)2\∆ ·(
R
αd1

)×
= ∆D

(
R
αd1

)
. Recall that disc(GL) ∈ 1

∆
D
(

R
αd1

)
since qL is

nondegenerate. In the product disc(L) · disc(GL) the ∆’s cancel and

we get a class in D
(

R
αd1

)
; we are claiming this class is 1.

Let {g1, . . . , gN} be an ordered basis for GL; lift these generators
to a basis {fi} for L#. Let {ei} be the dual basis for L and let A be
the matrix of QL with respect to the basis {ei}. Then B = A−1 is the
matrix of QL# with respect to {fi}, by (7.9). B is a matrix over K and
from the definition of q, B is a representing matrix for q. Since disc(L)
is the class of det(A) and disc(GL) is the class of det(B), the result
follows. Q.E.D.

In the case of a quadratic Zp-module, we can factor out the powers
of p occurring in both discriminants to obtain the following.

Corollary 8.7. Fix a prime p, and let L be a quadratic Zp-module,
and let (GL, qL) be its discriminant-form. Assume that the rank of L
equals the length of GL. Then χ(disc(L)) = χ(disc(qL)). (If p = 2 then
this holds mod 8 if the first invariant of G is at least 4, and it holds
mod 4 if the first invariant of G is 2.) Moreover if p = 2 and G is
good and special, then χ(disc(L)) = χ(disc8(qL)).

Proof. This follows immediately from the above, noting that χ
has values in a group all of whose elements have order two. The better
and extra special case also follows by the same proof, simply noting
that the relevant quantities are defined mod 8. Q.E.D.

.

9. The Discriminant-Form and Stable Isomorphism

In this section let R be a P.I.D. of characteristic 6= 2.
Recall that if M is a unimodular quadratic R-module, then its

discriminant-form module GM is trivial. Therefore, if L is any other
quadratic R-module, then GL⊕M ∼= GL ⊕ GM

∼= GL, so that L and
L⊕M have isomorphic discriminant-forms. This immediately implies
the following.

Lemma 9.1. If L1 and L2 are quadratic R-modules, which are stably
isomorphic, then GL1

∼= GL2.

Recall that we denote stable isomorphism by L1 ∼S L2. It is our
intention in this section to demonstrate that in fact the converse of
(9.1) is true. We require one technical lemma.
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Lemma 9.2. Let L̃ and M̃ be two K-valued quadratic forms over

R and let f : L̃ → M̃ be an R-module homomorphism such that
QfM(f(x)) ≡ QeL(x) mod R for every x in L. Then there exists a

unimodular quadratic R-module N and an R-map g : L̃→ N such that

f ⊕ g : L̃→ M̃ ⊕N is a homomorphism of quadratic forms.

Proof. As is standard, let U denote the rank-2 quadraticR-module

with matrix

(
01
10

)
, i.e., the hyperbolic plane over R. Let {ẽ1, . . . , ẽN}

be a basis for L̃ and let

rij = 〈ẽi, ẽj〉eL − 〈f(ẽi), f(ẽj)〉fM .
By hypothesis, rij ∈ R. The proof proceeds by induction on the number
of nonzero rij’s. If this number is zero, then f is a homomorphism of
the bilinear form structure and since R has characteristic 2, f is also a
homomorphism of the quadratic structure.

It then suffices to show that, if the number of nonzero rij’s is at

least one, then there exists a map g : L̃ → U such that the R-map

f ⊕ g : L̃→ M̃ ⊕ U “corrects” exactly one rij. There are two cases to
consider.

Case 1: Correct rkk.
Since the bilinear forms come from quadratic forms, the diagonal

elements are divisible by 2, so rkk = 2ak. Define

g : L̃→ U by g(ẽn) =

{
(ak, 1) if n = k
(0, 0) if n 6= k.

Then
〈ẽi, ẽj〉L̃− 〈f(ẽi), f(ẽj)〉M̃ − 〈g(ẽi), g(ẽj)〉U

=

{
rij if i 6= k or j 6= k
rkk − 2ak = 0 if (i, j) = (k, k).

Hence this corrects rkk.

Case 2: Correct rkl, k 6= l.

In this case define g : L̃→ U by

g(ẽn) =

 (rkl, 0) if n = k
(0, 1) if n = l
(0, 0) if n 6= k, l

Then
〈ẽi, ẽj〉L̃− 〈f(ẽi), f(ẽj)〉M̃ − 〈g(ẽi), g(ẽj)〉U

=

{
rij if (i, j) 6= (k, l)
rkl − rkl · 1 = 0 if (i, j) = (k, l).
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Therefore, this corrects rkl. Q.E.D.

Our result is this:

Proposition 9.3. Let L and M be quadratic R-modules. Then
L ∼S M ⇔ GL

∼= GM as torsion quadratic forms.

Proof. Lemma (9.1) is the direction ⇒, so we will prove ⇐. Let
f̄ : GL → GM be an isomorphism of the torsion quadratic structures
on GL on GM . Since L is a free R-module, so is L#, so f̄ can be lifted
to an R-map f : L# → M#. This gives us the following commutative
diagram:

0 −→ L
AdL−→ L# −→ GL −→ 0yf |L yf ∼=

yf̄
0 −→ M

AdM−→ M# −→ GM −→ 0

Since f̄ is an isomorphism, we have QM#(f(x)) = QL#(x) mod R
for every x in L#. By the previous lemma, there exists a unimodular
quadratic R-module N and an R-map g : L# → N such that h =
f ⊕ g : L# → M# ⊕ N is a quadratic form homomorphism, hence an
embedding. Restricting h to L gives the isomorphism h : L→M⊕N.

We claim that h(L)⊕h(L)⊥ = M ⊕N , i.e. that h(L) splits off M⊕
N. Certainly h(L) ⊕ h(L)⊥ ⊆ M⊕ N. To prove the reverse inclusion,
let y ∈ M⊕ N. Consider the linear map 〈y,−〉M#⊕N on M# ⊕ N ,
restricted to h(L#). Since h is 1-1, this linear map is induced, via the
adjoint map, from a unique element of h(L#)# = h(L), say h(l). Let
z = y−h(l), so that y = h(l) + z. We need only show that z ∈ h(L)⊥,
i.e., for every l′ in L, 〈z, h(l′)〉M⊕N = 0. But

〈z, h(l′)〉M⊕N = 〈y − h(l), h(l′)〉M⊕N

= 〈y, h(l′)〉M⊕N − 〈h(l), h(l′)〉M⊕N

= 〈y, h(l′)〉M⊕N − 〈l, l′〉L
= 0 by the choice of l.

This proves that h(L)⊕ h(L)⊥ = M⊕ N. Hence

disc(h(l)) disc(h(L)⊥ = disc(M) disc(N) = disc(M) mod
R×

(R×)2

since N is unimodular. However, disc(h(L)) = disc(L) = disc(M)

mod R×

(R×)2
, since GL

∼= GM . Therefore, disc(h(L)⊥ is in R×

(R×)2
, so that

h(L)⊥ is unimodular. This proves that L ∼S M . Q.E.D.

Note that we have actually proved a slightly stronger result:
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Proposition 9.4. Let L and M be quadratic R-modules. Then
any isomorphism f̄ : GL → GM can be lifted to a stable homomorphism
from L to M ⊕N , for some unimodular quadratic R-module N.

10. Discriminant-forms and overlattices

One of the primary uses for discriminant forms is the following
construction. Let L be a quadratic R-module, and suppose that M is
a submodule of L# ⊂ LK which contains L such that Q# is R-valued
on M . We then get a chain of inclusions

L ⊂M ⊂M# ⊂ L#

which induce inclusions

M/L ⊂M#/L ⊂ L#/L = GL.

Let I = M/L. Now since Q# is R-valued on M , qL vanishes identically
on I. Moreover, the definition of M# implies that M#/L = I⊥ in
GL. Thus, to each overlattice M of L corresponds a totally isotropic
subspace I of GL, and GM = I⊥/I. The converse statement (that each
totally isotropic I corresponds to an overlattice) is also easy to see.

As an example of this construction, consider the finite quadratic

form (G, q) = w1
2,k+1

⊥
⊕ w3

2,k+1, and let x and y be generators of the

first and second factors, respectively. Now q(2kx + 2ky) = 2k mod Z,
so that 2kx+2ky generates an isotropic subgroup H of order 2. To find
H⊥, we compute 〈ax+ by, 2kx+2ky〉 = (a+3b)/2; thus, ax+ by ∈ H⊥

if and only if a + 3b is an even integer. Thus, H⊥ is generated by 2x
and x+ y; in H⊥/H, these each have order 2k, and there are no other
relations. Now q(2x) = 2−k, 〈2x, x + y〉 = 2−k−1, and q(x + y) = 2−k,
which shows that H⊥/H is isomorphic to vk.

Thus, the quadratic Z2-module

W 1
2,k+1

⊕
W 3

2,k+1

has an overlattice whose discriminant-form is isomorphic to vk. In fact,
from Lemma (I.7.7.2) it can be seen that this overlattice is isomorphic
to Vk.

11. Quadratic forms over a discrete valuation ring

Let R be a discrete valuation ring, and let F be an R-module. We
say that F is quasi-principal if every finitely generated submodule of F
can be generated by a single element. The primary examples of quasi-
principal R-modules which will interest us are R itself, and K/R, where
K is the fraction field of R.
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We note two properties of a quasi-principal R-module.

Lemma 11.1. Let F be a quasi-principal R-module.

(11.1.1) Any submodule H of a finitely generated submodule G of F is
itself finitely generated.

(11.1.2) For any subset {xi}i∈I which generates a finitely generated sub-
module of F , there is some j ∈ I such that xj generates the
same submodule as {xi}i∈I .

Proof. Let π be a uniformizing parameter for R.
(11.1.1) If G is a finitely generated submodule of F , then G can be

generated by a single element g of G. Every other element of g can
then be written in the form πeu · g for some e ≥ 0 and some unit u of
R. If we define ν(H) = min{e|πeu · g ∈ H for some unit u of R}, then
H is generated by πe · g.

(11.1.2) Let G be the submodule generated by {xi}i∈I and let g be a
generator of G as before. Then for each i ∈ I, we can write xi = πeiui ·g
as before. There must be some j such that ej = 0 (else {xi}i∈I would
not generate G). But then xj generates G. Q.E.D.

Now suppose we are given a quadratic form Q : L → F over R,
where R is a discrete valuation ring, L is a finitely generated R-module,
and F is a quasi-principal R-module. Under these conditions, we define
Im(〈, 〉) to be the submodule of F generated by {〈x, y〉}x,y∈L (where
〈−,−〉 denotes the associated bilinear form of Q) and Im(Q) to be the
submodule generated by {Q(x)}x∈L. Notice that since 2Q(x) = 〈x, x〉,
we have 2 · Im(Q) ⊂ Im(〈, 〉).

Lemma 11.2.

(11.2.1) Suppose that 2 · Im(Q) = Im(〈, 〉), and that Q(x) generates
Im(Q). Then the submodule of L generated by x splits as an
orthogonal direct summand of L.

(11.2.2) Suppose that 2 · Im(Q) 6= Im(〈, 〉), and that 〈x, y〉 generates
Im(〈, 〉). Then the submodule of L generated by x and y splits
as an orthogonal direct summand of L.

Proof. (11.2.1) 〈x, x〉 = 2Q(x) must generate Im(〈, 〉). Thus, for
any z ∈ L, we may write 〈z, x〉 = αz〈x, x〉 for some αz ∈ L. But then

z = (z − αzx) + αzx and z − αzx lies in x⊥. It follows that the
submodule of L generated by x splits as an orthogonal direct summand
of L.

(11.2.2) Let π be a uniformizing parameter for R. Since 2 · Im(Q) 6=
Im(〈, 〉), there exist ξ and η ∈ R such that 2Q(x) = 〈x, x〉 = πξ〈x, y〉,
and 2Q(y) = 〈y, y〉 = πη〈x, y〉. (π divides each coefficient since 2·Im(Q)
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is a proper submodule of Im(〈, 〉).) Then u = 1− π2ξη is a unit in R.
Now for any z ∈ L, there exist αz, βz ∈ R such that 〈z, x〉 = αz〈x, y〉
and 〈z, y〉 = βz〈x, y〉. We can write

z = [z + u−1(πηαz − βz)x+ u−1(πξβz − αz)y]+
u−1(βz − πηαz)x + u−1(αz − πξβz)y. An easy computation shows

that
z + u−1(πηαz − βz)x + u−1(πξβz − αz)y is orthogonal to both x

and y. Thus, the submodule of L generated by x and y splits as an
orthogonal direct summand of L. Q.E.D.

Lemma 11.3. Suppose that R is a discrete valuation ring, that F
is a quasi-principal R-module, that Q : L → F is a quadratic form,
and that L is generated by x and y but cannot be generated by a single
element. Then L is indecomposable if and only if 2 · Im(Q) 6= Im(〈, 〉).
Moreover, in this case Im(〈, 〉) is generated by 〈x, y〉.

Proof. If 2 · Im(Q) = Im(〈, 〉), then there is some z in L such
that Q(z) generates Im(Q). By lemma (11.2)(i), the submodule of L
generated by z (which is a proper submodule by assumption) splits as
an orthogonal direct summand, so that L is decomposable.

Conversely, suppose that L is decomposable. Since the minimum
number of generators of a finitely generated R-module is an invariant
of the module which is additive under direct sum, we must have L =
L1 ⊕ L2, where L1 and L2 are cyclic. But then if z and w are the
corresponding generator, Im(〈, 〉) is generated by 2Q(z), 2Q(w), and
〈z, w〉 = 0. Thus, Im(〈, 〉) is generated by 2Q(z) and 2Q(w) alone, and
so coincides with 2 · Im(Q).

To see the last statement, note that if 2 · Im(Q) 6= Im(〈, 〉), then
Im(〈, 〉) is generated by 2Q(x), 2Q(y), and 〈x, y〉. Now one of these
three quantities must generate the module Im(〈, 〉). It cannot be either
of the first two (by our assumption); thus, 〈x, y〉 generates Im(〈, 〉), as
claimed. Q.E.D.

As a consequence of lemmas (11.2) and (11.3) we get

Proposition 11.4. Let R be a discrete valuation ring, let L be a
finitely generated R-module, let F be a quasi-principal R-module, and
let Q : L→ F be a quadratic form. Then there is an orthogonal direct
sum decomposition into indecomposable pieces L ∼= L1 ⊕ · · · ⊕ Lk such
that rank(Li) = 1 or 2 for each i. Moreover, if 2 is a unit in R, then
rank(Li) = 1 for each i.

Proof. Let {xi} is a finite generating set for L. Then {〈xi, xj〉} is
a finite generating set for Im(〈, 〉). Moreover, since
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Q(
∑
aixi) =

∑
a2
iQ(xi)+

∑
aiaj〈xi, xj〉, we see that Im(Q) is con-

tained in the submodule generated by {Q(xi)} and {〈xi, xj〉}, so that
it is finitely generated as well.

If 2 · Im(Q) = Im(〈, 〉) (which must be the case when 2 is a unit in
R), there exists some x such that Q(x) generates Im(Q). By lemma
(11.2), the submodule of L generated by x splits as an orthogonal direct
summand of L. If on the other hand 2 · Im(Q) 6= Im(〈, 〉), there exist
x and y such that 〈x, y〉 generates Im(〈, 〉). Again using lemma (11.2),
the submodule of L generated by x and y splits as an orthogonal direct
summand of L. By lemma (11.3), this summand is indecomposable.
An easy induction on the rank of L now finishes the argument. Q.E.D.

Since R and K/R are both quasi-principal R-modules, we get an
immediate corollary.

Corollary 11.5. Let R be a discrete valuation ring.

(11.5.1) If Q : L → R is a nondegenerate quadratic R-module, then
there is an orthogonal direct sum decomposition into indecom-
posable pieces L ∼= L1 ⊕ · · · ⊕ Lk such that rank(Li) = 1 or 2
for each i. Moreover, if 2 is a unit in R, then rank(Li) = 1
for each i.

(11.5.2) If q : G → K/R is a nondegenerate finitely generated torsion
quadratic form over R, there is an orthogonal direct sum de-
composition into indecomposable pieces G ∼= G1⊕· · ·⊕Gk such
that `(Gi) = 1 or 2 for each i. Moreover, if 2 is a unit in R,
then `(Gi) = 1 for each i.

Notice that in the case of torsion quadratic forms, each Gi is ho-
mogeneous (since there is always a decomposition into homogeneous
pieces).

We can give a further refinement of these decompositions which
makes them compatible with the discriminant-form construction.

Proposition 11.6. Let R be a discrete valuation ring, let Q : L→
R be a nondegenerate quadratic R-module, and let qL : GL → K/R be
the discriminant-form of L. Suppose we are given an orthogonal direct
sum decomposition

GL
∼= G1 ⊕ · · · ⊕ Gk where each Gi is indecomposable (so that in

particular, `(Gi) ≤ 2 and if 2 is a unit in R then `(Gi) = 1). Then
there exists an orthogonal direct sum decomposition into indecompos-
able pieces

L ∼= L1 ⊕ · · · ⊕ Lk ⊕M1 ⊕ · · · ⊕M` such that rank(Li) = `(Gi),
the natural map induces an isomorphism GLi

∼= Gi, and each Mj is
unimodular of rank at most 2 (rank 1 if 2 is a unit).
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Proof. By induction on the rank, it suffices to show that we may
split off one Li or Mj of the appropriate type.

Suppose first that there exist x, y ∈ L such that 〈x, y〉 is a unit in
R. By lemma (11.2), either 2 · Im(Q) 6= Im(〈, 〉) and x and y generate
a submodule of L which splits as an orthogonal direct summand, or
2 · Im(Q) = Im(〈, 〉). In the first case, we may take M1 to be the
submodule generated by x and y, since this is clearly unimodular. In
the second case, 2 must be a unit in R, and there exists some z with
Q(z) a unit; we may take M1 to be the submodule generated by z in
this case.

Thus, we may assume that Im(〈, 〉) 6= R. Let π be a uniformizing
parameter for R, and let πm generate Im(〈, 〉) with m ≥ 1. We claim
that the first invariant of GL is πm. For suppose that ξ is part of an
ordered basis of GL and has annihilator (πn) with n ≤ m − 1. Let
π−nx be a representative of ξ in L#. Then for all z ∈ L, 〈x, z〉 = πmα
with α ∈ R, so that 〈π−n−1x, z〉 = πm−n−1α ∈ R; this implies that
π−n−1x ∈ L#. But then if η is the image of π−n−1x in GL, we have
ξ = πη, a contradiction. Thus, πm divides the first invariant of GL.
On the other hand, if we choose x, y ∈ L such that 〈x, y〉 = πm, then
the image of π−mx in GL has annihilator (πm), and cannot be divided
by π in GL. (For if it could, then for some z ∈ L we would have
π−m−1x+π−1z ∈ L#. But then 〈π−m−1x+π−1z, y〉 = π−1(1+ 〈z, y〉) ∈
R. Since πm divides 〈z, y〉, this is impossible). Thus, π−mx may be
taken as the first element of an ordered basis of GL.

Thus, there exists some Gi whose first invariant is πm. (The second
invariant, if it has one, is also πm, since Gi is homogenous.) Let ξ (resp.
ξ, η) be an ordered basis for Gi, and let π−mx (resp. π−mx and π−my)
be a lift of the basis to L#. In the rank one case, nondegeneracy implies
that q(ξ) = (1/2)π−m · u for some unit u. Thus, Q(x) ≡ π2mq(ξ) ≡
(1/2)πm · u mod π2m. In the rank two case, since 2 · Im(Q) 6= Im(〈, 〉),
nondegeneracy implies that 〈ξ, η〉 = π−m · u for some unit u and that
πmq(ξ) and πmq(η) are both divisible by π. Thus, 〈x, y〉 ≡ π2m〈ξ, η〉 ≡
πm ·u mod π2m, while Q(x) and Q(y) are both divisible by πm+1. So in
either case, we may take Li to be the submodule generated by x (resp.
x and y); this is an orthogonal direct summand by lemma (11.2).

Q.E.D.





CHAPTER III

Gauss Sums and the Signature

1. Gauss sum invariants for finite quadratic forms

Let (G, q) be a finite quadratic form. The Gauss sum invariant (or
Gauss invariant) of the form is the map

γG : HomZ(Q/Z,Q/Z) → C
defined by

γG(ϕ) = |G|−1/2
∑
x∈G

exp(2πiϕ(q(x))).

(We occasionally denote this by γ(G,q) or γq rather than γG.)
Note that the value of γG(ϕ) depends only on the restriction of ϕ

to the submodule of Q/Z generated by the image of q, so that there
are only a finite number of distinct values taken on by γG(ϕ). These
values can all be found by taking ϕ to be one of the homomorphisms
ϕN which multiplies any element of Q/Z by N ; the resulting value
γG(ϕN) will be denoted by γG(N).

Note also that γ(G,q)(ϕ) = γ(G,ϕ◦q)(1), so that all values of γ(G,q)

can be found by varying the quadratic form on G, and computing the
corresponding sums with ϕ = ϕ1.

We now investigate how the Gauss invariant behaves with respect
to various operations on finite quadratic forms.

Lemma 1.1. If G ∼= H
⊥
⊕ K, then γG(ϕ) = γH(ϕ)γK(ϕ) for all ϕ.

Proof. This is just a computation:

γG(ϕ) = |G|−1/2
∑
x∈G

exp(2πiϕ(q(x)))

= |G|−1/2
∑

y∈H,z∈K

exp(2πiϕ(q(y) + q(z)))

= |H|−1/2
∑
y∈H

exp(2πiϕ(q(y))) · |K|−1/2
∑
z∈K

exp(2πiϕ(q(z)))

= γH(ϕ)γK(ϕ)

Q.E.D.

77
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Lemma 1.2. Let (G, q) be a finite quadratic form, and let H be a to-
tally isotropic subgroup of G. Then γG(1) = |H|1/2|G/H⊥|−1/2γH⊥/H(1).

Proof. Let x1, . . . , xm be a complete set of representatives for the
cosets of G/H, where m = |G/H|. Then

γG(1) = |G|−1/2
∑
xj

∑
y∈H

exp(2πiq(xj + y))

= |G|−1/2
∑
xj

∑
y∈H

exp(2πi(q(xj) + 〈xj, y〉))

= |G|−1/2
∑
xj

exp(2πiq(xj))
∑
y∈H

exp(2πi〈xj, y〉)

Now Adq(xj) defines a homomorphism from H to Q/Z; let k be the
order of the image. If this homomorphism is trivial (which is the case
exactly when xj ∈ H⊥), then

∑
y∈H exp(2πi〈xj, y〉) = |H|. Otherwise,∑

y∈H exp(2πi〈xj, y〉) is the sum all the kth roots of unity, each counted

|H|/k times; the sum is therefore 0. Thus,

γG(1) = |G|−1/2|H|
∑
xj∈H⊥

exp(2πiq(xj))

= |H|1/2|G/H⊥|−1/2|H⊥/H|−1/2
∑
xj∈H⊥

exp(2πiq(xj))

= |H|1/2|G/H⊥|−1/2γH⊥/H(1).

Q.E.D.

Since |H| = |G/H⊥| when (G, q) is nondegenerate, we get:

Corollary 1.3. Let (G, q) be a nondegenerate finite quadratic
form, and let H be a totally isotropic subgroup. Then γG(1) = γH⊥/H(1).

Recall that the kernel of a finite quadratic form (G, q) is Ker(G) =
Ker(Adq), and the q-radical of (G, q) is

Radq(G) = {x ∈ Ker(G)|q(x) ≡ 0 mod Z}.

Note that q|Ker(G) is Z-linear, with values in 1
2
Z/Z.

Corollary 1.4. Let Ḡ = G/Radq(G), and let q̄ be the induced
quadratic form on Ḡ. Then γ(G,q)(ϕ) = |Radq(G)|1/2γ(Ḡ,q̄)(ϕ).
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Proof. Radq(G) is an isotropic subgroup for (G,ϕ◦q), and Radq(G)⊥ =
G, so

γ(G,q)(ϕ) = γ(G,ϕ◦q)(1)

= |Radq(G)|1/2γ(Ḡ,ϕ◦q̄)(1)

= |Radq(G)|1/2γ(Ḡ,q̄)(ϕ).

Q.E.D.

Lemma 1.5. Let (G, q) be a finite quadratic form. If Ker(G) 6=
Radq(G), then γG(1) = 0.

Proof. By corollary (1.4), it suffices to prove the statement in
the case in which the q-radical is trivial. In this case, the kernel is
nontrivial, and so Ker(G) ∼= Z/2Z; let x be a generator of Ker(G).
If x = 2y for some y ∈ G, then q(x) = 4q(y) = 2〈y, y〉 = 〈2y, y〉 =
〈x, y〉 ∈ Z. Hence, x ∈ Radq(G), a contradiction.

Thus, x is not divisible by 2 in G, so there is a direct sum de-
composition (as finite groups) G ∼= Ker(G)

⊕
G0. This is clearly an

orthogonal direct sum decomposition, so it suffices by lemma (1.1) to
show that γKer(G)(1) = 0. But

γKer(G)(1) = 2−1/2(exp(2πiq(0)) + exp(2πiq(x)))

= 2−1/2(e2πi + e2πi/2)

= 0.

Q.E.D.

We now apply these results to take a first step in computing the
Gauss invariants of finite quadratic forms.

Proposition 1.6. Let p be prime, and u be relatively prime to p.
Then γwε

p,k
(p`u) takes the following values:

(1.6.1) pk/2, if ` > k
(1.6.2) p`/2, if ` = k and p > 2
(1.6.3) 0, if ` = k and p = 2
(1.6.4) p`/2γzau

pk−`
(1), if ` < k, where ε = χ(a).

Proof. Recall that wεp,k
∼= za

pk , where ε = χ(a mod pk) if p is odd,

and ε = χ(a mod 2k+1) if p = 2. Let (G, q) denote this form za
pk . If e

is a generator for G, then the annihilator of e is (pk), and the form is
given by q(re) = r2a/2pk.

The Gauss invariant in question, which we shall denote by γ, is best
computed by using the form q̃ on G defined by q̃(x) = p`u · q(x). (For
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then γ = γ(G,eq)(1).) Since 〈re, e〉eq = p`u · ra/pk, we see that Ker(q̃) is
generated by pk−`e if ` ≤ k, and Ker(q̃) = G if ` > k. In fact, if ` > k,
then Radq(q̃) = G as well, so that by corollary (1.4), γ = |G|1/2 = pk/2,
as claimed.

Thus, we may assume that ` ≤ k. Now q̃(pk−`e) = pk−`au/2. Thus,
if ` < k or p > 2, pk−`e generates Radq(q̃) as well as Ker(q̃). In this
case, the induced form q̄ on Ḡ = G/Radq(q̃) is nondegenerate and
satisfies q̄(re) = r2au/2pk−`; thus, (Ḡ, q̄) ∼= zau

pk−` . It then follows from

corollary (1.4) that γ = |Radq(q̃)|1/2 ·γzau
pk−`

(1) = p`/2 ·γzau
pk−`

(1), proving

the formula in this case.
Finally, in the case ` = k, p = 2, we have that Ker(q̃) 6= Radq(q̃).

By lemma (1.5), γ = 0. Q.E.D.

Proposition 1.7. Let ε be a 2-adic unit.

(1.7.1) γuk
(2`ε) = 2k for ` ≥ k, and γuk

(2`ε) = 2` · γuk−`
(ε) for ` < k.

(1.7.2) γvk
(2`ε) = 2k for ` ≥ k, and γvk

(2`ε) = 2` · γvk−`
(ε) for ` < k.

The proof is similar to that of proposition (1.6), and is left to the
reader.

2. Gauss Sums

In order to finish the computation of the Gauss invariants of the
finite quadratic forms wεp,k, uk, and vk, we need to study the properties
of Gauss sums. Let a and ` be relatively prime integers such that 2|a`.
Define the Gauss sum S(a, `) by

S(a, `) = |`|−1/2

|`|−1∑
x=0

exp(πiax2/`).

Note that S(a, `) = γza
`
(1), where (za` , q) is the quadratic form on Z/`Z

defined in section 7 of chapter I; in particular, the terms in the sum
only depend on x mod `. Clearly, the sum S(a, `) only depends on
a mod 2`. Moreover, S(−a,−`) = S(a, `).

The first properties of this sum follow directly from our analysis in
section 1.

Corollary 2.1.

(2.1.1) If a, `, and m are relatively prime and 2|a`m, then
S(a, `m) = S(a`,m)S(am, `).

(2.1.2) If p is an odd prime and r ≥ 2, or if p = 2 and r ≥ 3, then
S(a, pr) = S(a, pr−2).
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Proof. The first property follows from the direct sum decomposi-
tion za`m

∼= za`m ⊕ zam` , and the second comes from the fact that if x is a
generator for zapr , then y = pr−1x generates a totally isotropic subgroup

H, and H⊥/H ∼= zapr−2 . Q.E.D.

There are a few additional elementary properties of Gauss sums.
(We extend the definition of the Legendre symbol

(
2
a

)
to all odd integers

a by exploiting the fact that its value only depends on a mod 8; note
that we then have

(
2
−a

)
=
(

2
a

)
. )

Lemma 2.2.

(2.2.1) S(a, 1) = 1, S(a, 2) = (1 + ia)/
√

2 =
(

2
a

)
exp(πia/4), and

S(a, 4) = exp(πia/4).

(2.2.2) If p is an odd prime, then S(2b, p) =
(
b
p

)
S(2, p), where

( )
denotes the Legendre symbol.

Proof. (2.2.1) follows from a direct computation, together with
the formula (1 + ia)/

√
2 =

(
2
a

)
exp(πia/4), which is easy to verify. To

prove (2.2.2), consider first the case in which b ≡ j2 is a square modp.
Then

S(2b, p) =

p−1∑
x=0

exp(2πij2x2/p)

=

p−1∑
y=0

exp(2πiy2/p)

= S(2, p),

proving the formula in this case.
On the other hand, if 2b is not a square modp, then

√
p · S(2b, p)− 1 = 2 ·

∑
(non-residues k)

e2πik/p,

while
√
p · S(2, p)− 1 = 2 ·

∑
(non-zero residues k)

e2πik/p.

Thus,
√
p ·S(2b, p)−1+

√
p ·S(2, p)−1 = twice the sum of all primitive

pth roots of unity, and so equals −2. Hence, S(2b, p) + S(2, p) = 0.
Q.E.D.

It remains to compute S(2, p) for odd primes p; to do this, we
establish a general reciprocity property for Gauss sums.
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Proposition 2.3. S(a, `) = S(−`, a) exp(πiσ/4), where σ = a`/|a`| ∈
{1,−1}.

Proof. Since S(−a,−`) = S(a, `), we may assume without loss of
generality that ` > 0. Let

f(t) =
`−1∑
k=0

exp(
πia(t+ k)2

`
),

and Fourier expand. If

bn =

∫ 1

0

f(t) exp(2πint)dt,

then

f(t) =
∞∑
−∞

bn exp(−2πint)

and

S(a, `) = |`|−1/2f(0) = |`|−1/2

∞∑
n=−∞

bn.

Now

bn =
`−1∑
k=0

∫ 1

0

exp(2πi(
a(t+ k)2

2`
+ nt))dt.

Complete the square:

a(t+ k)2

2`
+ nt =

a(t+ k + n`
a
)2

2`
− nk − n2`

2a
.

Making the substitution s = t + k + n`/a, and using the fact that
exp(2πi(−nk)) = 1, we get

bn = exp(
−πin2`

a
)
`−1∑
k=0

∫ k+1+n`
a

k+n`
a

exp(
πias2

`
)ds.

Now if n = am+ r, then (am+ r)2`/a ≡ r2`/a mod 2Z. Thus,

bam+r = exp(
−πir2`

a
)
`−1∑
k=0

∫ k+m`+1+ r`
a

k+m`+ r`
a

exp(
πias2

`
)ds.

Hence,
∞∑

m=−∞

bam+r = exp(
−πir2`

a
)

∫ ∞

−∞
exp(

πias2

`
)ds.
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If we make the substitution y = |a/`|1/2s, then as2/` = σy2, where
σ = a`/|a`|; setting

Iσ =

∫ ∞

−∞
exp(πiσy2)dy,

we find
∞∑

m=−∞

bam+r = exp(
−πir2`

a
)| `
a
|1/2Iσ

Thus,

S(a, `) = |`|−1/2

|a|−1∑
r=0

∞∑
n=−∞

bam+r

= |a|−1/2

|a|−1∑
r=0

exp(−πir2`/a)Iσ

= S(−`, a)Iσ.
We still need to evaluate the integrals Iσ for σ = 1 and σ = −1.

But using the property already established together with Lemma (2.2)
we find:

Iσ = S(σ, 2)/S(−2, σ) = S(σ, 2)/S(−2σ, 1)

= S(σ, 2) =

(
2

σ

)
exp(πiσ/4) = exp(πiσ/4).

Q.E.D.

Corollary 2.4. If p is odd, then S(2, p) =
(

2
p

)
exp(πi(1− p)/4).

Proof.

S(2, p) = S(−p, 2) exp(πi/4)

=

(
2

−p

)
exp(πi(−p)/4) exp(πi/4)

=

(
2

p

)
exp(πi(1− p)/4).

Q.E.D.

These properties together allow the computation of S(a, `) in gen-
eral; we record here the results when ` is a prime power.

Corollary 2.5.

(2.5.1) If p is an odd prime, b is relatively prime to p, and r ≥ 1, then

S(2b, pr) =
(

2b
p

)r
(exp(πi(1− p)/4))r

2
.
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(2.5.2) If a is odd and r ≥ 1, then
S(a, 2r) =

(
2
a

)r
exp(πia/4).

Proof. (2.5.1) By corollary (2.1) and lemma (2.2), if r is even then
S(2b, pr) = S(2b, 1) = 1, while if r is odd then

S(2b, pr) = S(2b, p)

=

(
b

p

)
· S(2, p)

=

(
b

p

)
·
(

2

p

)
· exp(πi(1− p)/4)

=

(
2b

p

)
· exp(πi(1− p)/4),

where we have used corollary (2.4) to find the value of S(2, p). Since(
2b
p

)
∈ {±1}, exp(πi(1 − p)/4) ∈ {±1,±i}, and r2 ≡ 0 mod 4 for r

even while r2 ≡ 1 mod 4 for r odd, the formula follows.
(2.5.1) By corollary (2.1) and lemma (2.2), if r is even then S(a, 2r) =

S(a, 4) = exp(πia/4), while if r is odd then S(a, 2r) = S(a, 2) =(
2
a

)
·exp(πia/4). Again since

(
2
a

)
∈ {±1}, the formula follows. Q.E.D.

We can now finish the computation of the Gauss invariants of the
finite quadratic forms wεp,k, uk, and vk. From proposition (1.6) and
corollary (2.5) we get:

Corollary 2.6.

(2.6.1) If p is odd, then γwε
p,k

(p`u) = pk/2 for ` ≥ k, and

γwε
p,k

(p`u) = p`/2 · εk−`
(
u
p

)k−`
(exp(πi(1 − p)/4))(k−`)2 for

` < k.
(2.6.2) If p = 2, then

γwε
2,k

(2`u) = 2k/2 for ` > k,

γwε
2,k

(2`u) = 0 for ` = k, and

γwε
2,k

(2`u) = 2`/2 ·
(

2
ε

)k−` ( 2
u

)k−`
exp(πiεu/4) for ` < k.

Proof. This is clear. Q.E.D.

As the final step in our computation, we prove:

Proposition 2.7. Let ε be a 2-adic unit. Then γuk
(ε) = 1 for all

k, while γvk
(ε) = (−1)k.

Proof. First note that by corollary (II.7.7), multiplying all values
of the quadratic form uk or vk by a fixed unit does not change the
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isomorphism type of the form; thus for ε a unit, γuk
(ε) = γuk

(1) and
γvk

(ε) = γvk
(1).

To compute γuk
(1), let x and y be the standard generators, and

consider the subgroup H generated by x. H is an isotropic subgroup;
moreover, since 〈x, ax+ by〉 = b/2k, H⊥ = H. Thus, by corollary (1.3),
γuk

(1) = γH⊥/H(1) = 1.
To compute γvk

(1), we use the example in Section (II.10). It was
shown there that there exists a totally isotropic subspace H for the

form (G, q) = w1
2,k+1

⊥
⊕ w3

2,k+1 such that H⊥/H is isomorphic to vk.
Again using corollary (1.3), we see that γvk

(1) = γw1
2,k+1

(1) · γw3
2,k+1

(1).

By corollary (2.6), we find

γvk
(1) =

(
2
1

)k+1
exp(πi/4) ·

(
2
3

)k+1
exp(3πi/4) = (−1)k. Q.E.D.

Combining this with proposition (1.7), we get:

Corollary 2.8.

(2.8.1) γuk
(2`ε) = 2k for ` ≥ k, and

γuk
(2`ε) = 2` for ` < k.

(2.8.2) γvk
(2`ε) = 2k for ` ≥ k, and

γvk
(2`ε) = 2` · (−1)k−` for ` < k.

3. Signature invariants for torsion quadratic forms over Zp

Lemma 3.1. Let (G, q) be a nondegenerate torsion quadratic form
over Zp, let r` be the length of the homogeneous piece of G with scale
p`, and define

ρ(`) =
∑
j≤`

j · rj +
∑
j>`

` · rj.

Then γG(p`)/pρ(`)/2 is either 0, or an eighth root of unity.

Proof. Since the quantity γG(p`)/pρ(`)/2 is multiplicative under
direct sums, it suffices to verify this for the standard forms wεp,k, uk,
and vk. In the case of wεp,k, ρ(`) = k if k ≤ `, and ρ(`) = ` if k > `;
the statement follows from corollary (2.6). In the case of uk or vk,
ρ(`) = 2k if k ≤ `, and ρ(`) = 2` is k > `; this time the statement
follows from Corollary (2.8). Q.E.D.

Definition 3.2. The `th signature invariant of a nondegenerate
torsion quadratic form (G, q) over Zp is the quantity

σ`(G) = γG(p`)/pρ(`)/2,

which, as we have seen, is multiplicative under direct sum and takes
values in {0, eπiα/4}.
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(G, q) σ`(G)
` < k ` = k ` > k

k − ` even k − ` odd
wεp,k, p odd ε(k−`) exp(πi(1− p)(k − `)2/4) 1 1

w1
p,k, p odd 1 (−i)(p−1)/2 1 1

w−1
p,k, p odd 1 −(−i)(p−1)/2 1 1

wε2,k
(

2
ε

)(k−`)
exp(πiε/4) 0 1

w1
2,k exp(πi/4) exp(πi/4) 0 1

w3
2,k exp(3πi/4) exp(7πi/4) 0 1

w5
2,k exp(5πi/4) exp(πi/4) 0 1

w7
2,k exp(7πi/4) exp(7πi/4) 0 1

uk 1 1 1 1
vk 1 -1 1 1

Table 3.1. signature invariants of the standard torsion
quadratic forms

Corollaries (2.6) and (2.8) provide a computation of the signature
invariants for the standard forms wεp,k, uk, and vk; we present the results
in Table (3.1).

4. The discriminant and the Gauss invariant

In this section, we will show how the discriminant and mod-8 discri-
minant are related to the Gauss invariant for nondegenerate quadratic
forms on finite abelian 2-groups. Our method is to use the decom-
position into indecomposable pieces whose existence is guaranteed by
Corollary (II.11.5), and then to compute explicitly with those pieces.
Unfortunately, we do not know direct proofs of the relations we find.

Proposition 4.1. Let (G, q) be a nondegenerate torsion quadratic
form over Z2, let r = length(G), let ∆ = |G|, and let δ = ∆ ·disc(G, q)
be the unit part of the discriminant. Then(

−1

δ

)
= i−r · γG(1)2.

Notice that δ is well-defined mod 4 (at least), so that
(−1
δ

)
is

always well-defined.

Proof. As remarked above, since both sides of this formula are
multiplicative under orthogonal direct sum, it suffices to prove the for-
mula for indecomposable forms of ranks one and two. By Example
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(I.7.9) and Lemma (II.7.6), each such form must be isomorphic to one
of the basic forms wε2,k, uk, and vk.

If (G, q) ∼= wε2,k, then δ ≡ ε mod 4, while γG(1)2 =
(

2
ε

)2k
exp(2πiε/4) =

exp(πiε/2) = i ·
(−1
ε

)
, verifying the formula in this case. (The last

equality, which holds for any odd ε, is easy to check.)
If (G, q) ∼= uk or vk, then δ ≡ 3 mod 4, while r = 2 and γG(1) =

±1. Since i−2 ·(±1)2 = −1 =
(−1

3

)
, the formula again follows. Q.E.D.

Proposition 4.2. Let (G, q) be a good and special nondegenerate
torsion quadratic form over Z2, let r = length(G), let 2k = exponent(G),
and let δ = disc8(G, q) be the mod-8 discriminant. Then for each ` with
0 ≤ ` < k, we have

γG(2`)/γG(1) = 2`r/2 ·
(

2

δ

)`
.

In particular, (
2

δ

)
= 2−r/2 · γG(2)/γG(1).

Notice that γG(1) is never zero for a nondegenerate form, so that
the right hand side of the equation is well-defined. It is also nonzero,
since γG(2) 6= 0 for a good and special form. Moreover, notice that

(
2
δ

)
only depends on δ mod 8.

Proof. It again suffices to verify this for the forms wε2,k, uk, and
vk.

If (G, q) ∼= wε2,k, then k ≥ 2 since it is good and special, and δ ≡ ε
mod 8. We find that

γG(2`)/γG(1) =

{
2`/2 ·

(
2

ε

)k−`
exp(πiε/4)

}
/

{(
2

ε

)k
exp(πiε/4)

}
= 2`/2·

(
2

ε

)`
,

so the formula holds.
If (G, q) ∼= uk, then δ ≡ 7 mod 8, while r = 2 and γG(2`)/γG(1) =

2`/1 = 2` = 2` ·
(

2
7

)`
. If (G, q) ∼= vk, then δ ≡ 3 mod 8, while r = 2

and γG(2`)/γG(1) = 2` · (−1)k−`/(−1)k = 2` · (−1)` = 2` ·
(

2
3

)`
. Q.E.D.

These two pieces of information about the discriminant can be com-
bined: it is easy to verify that for odd δ mod 8 we have

exp(πiδ/4) =

(
2

δ

){
1 + i ·

(
−1

δ

)}
/21/2.

Thus, we get:
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Corollary 4.3. Let (G, q) be a good and special nondegenerate
torsion quadratic form over Z2, let r = length(G), and let δ = disc8(G, q)
be the mod-8 discriminant. Then

exp(πiδ/4) = 2−(r+1)/2 ·
{
1 + i(1−r) · γG(1)2

}
· γG(2)/γG(1).

These formulae may be more easily digestible when expressed in
terms of the signature invariants. The statement, whose proof we leave
to the reader, is given below; it follows either from the above state-
ments, or by a direct computation using Tables (3.1) and (II.6.1).

Proposition 4.4. Let (G, q) be a good and special nondegenerate
torsion quadratic form over Z2, let 2k = exponent(G), and let δ =
disc8(G, q) be the mod-8 discriminant. Then for each ` with 0 ≤ ` < k,
we have

σ`(G)/σ0(G) =

(
2

δ

)`
.

Although we will not have an occasion to use it, we note here a
similar relation for the discriminant of a torsion quadratic forms over
Zp for p odd. The proof (which consists of checking the formula for
wεp,k) is left to the reader.

Proposition 4.5. Let (G, q) be a nondegenerate torsion quadratic
form over Zp, p odd, let r = length(G), let ∆ = |G|, and let δ =
∆ · disc(G, q) be the unit part of the discriminant. Then(

δ

p

)
= p−r/2 · exp(πi(1− p)/4)−r · γG(p) · γG(1).

5. Milgram’s theorem: the signature

We now come to a fundamental result due to Milgram which re-
lates the signature of an integral quadratic form to its Gauss invariant.
First, some notation. If L is a nondegenerate integral quadratic form,
we define its Gauss invariant γL to be the Gauss invariant γGL

of its
discriminant form GL.

Theorem 5.1. Let L be a nondegenerate integral quadratic form
with signature (s+, s−), and let s = s+− s−. Then γL(1) = exp(πis/4)

Proof. Let r be the rank of L. There exist elements x1, . . . , xr ∈ L
which form a diagonal basis for the induced form on L⊗Q. Let L1 be
the Z-span of {x1, . . . , xr}. By the standard “overlattice” construction
(section 10 of chapter II), H = L/L1 is an isotropic subspace in GL1 =

L#
1 /L1, and H⊥/H = GL. By corollary (1.3), γL(1) = γL1(1).
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Since L and L1 have the same signature, to prove the theorem it
suffices to prove it for L1; hence we are reduced to the case of a diagonal
form. Moreover, since the signature is additive and the Gauss invariant
is multiplicative under direct sum, it suffices to prove it for a form of
rank 1.

So suppose that L = 〈a〉 for some integer a. Then as shown in
section 7 of chapter II, GL

∼= z1
2a. Moreover, the signature of L is (1, 0)

if a > 0, and (0, 1) if a < 0, so that s = a/|a| ∈ {±1}. Now by the
reciprocity property for Gauss sums,

γL(1) = S(1, 2a) = S(−2a, 1) exp(πis/4) = exp(πis/4).

Q.E.D.





CHAPTER IV

Quadratic Forms over Zp

In this chapter, we will give a complete description of the isomor-
phism classes of nondegenerate quadratic Zp-modules, and of nonde-
generate torsion quadratic forms over Zp.

1. Indecomposable Forms of Ranks One and Two Over Zp

According to the decomposition proved in Section 11 of chapter II,
all nondegenerate quadratic Zp-modules and all nondegenerate torsion
quadratic forms over Zp can be built up (using direct sums) from in-
decomposable forms of ranks one and two. We discuss these forms
here.

In section 7 of Chapter I, we gave examples of indecomposable
nondegenerate quadratic forms on both free and torsion Zp-modules of
ranks 1 and 2. The basic quadratic Zp-modules are the forms W ε

p,k,
(for k ≥ 0 if p is odd, and k ≥ 1 if p = 2), and when p = 2, Uk and Vk
for k ≥ 0 on free Zp-modules. The basic torsion forms are the forms
wεp,k (for k ≥ 1 with any p) and when p = 2, uk and vk for k ≥ 1 on
torsion Zp-modules. The isomorphism classes for the forms of rank 1
are determined by p, ε, and k; we recall the statement from examples
(I.7.1) and (I.7.9).

Lemma 1.1.

(1.1.1) Every nondegenerate quadratic form on a free Zp-module of
rank one is isomorphic to one of the forms W ε

p,k. Moreover,
W ε
p,k
∼= W η

p,` if and only if ε = η and k = `.
(1.1.2) Every nondegenerate quadratic form on a cyclic torsion Zp-

module is isomorphic to one of the forms wεp,k. Moreover,
wεp,k

∼= wηp,` if and only if either
(a) ε = η and k = `, or
(b) p = 2, ε ≡ η mod 4, and k = ` = 1.

We also proved in chapter I a characterization of the indecompos-
able quadratic Z2-modules (of rank two), and extended this to the
torsion case in chapter II. We recall the results (Lemma (I.7.7.3), and
Lemma (II.7.6):

91
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Proposition 1.2.

(1.2.1) Let (L,Q) be a nondegenerate indecomposable quadratic Z2-
module of rank two. Then (L,Q) ∼= Uk if and only if disc(L,Q) =
22kδ for some odd δ with

(
2
δ

)
= 1, while (L,Q) ∼= Vk if and

only if disc(L,Q) = 22kδ for some odd δ with
(

2
δ

)
= −1.

(1.2.2) Let (G, q) be a nondegenerate indecomposable torsion quadratic
form of rank two. (Note that (G, q) is necessarily good and
special.) Let δ = disc8(G, q). Then (G, q) ∼= uk if and only if
(G, q) has scale 2k and

(
2
δ

)
= 1, while (G, q) ∼= vk if and only

if (G, q) has scale 2k and
(

2
δ

)
= −1.

We can interpret these results in the following way. Let us define
Q√ (resp. T√, resp. G√) to be the monoid of isomorphism classes

of nondegenerate quadratic Zp-modules (resp. nondegenerate torsion
quadratic forms over Zp, resp. good and special nondegenerate torsion
quadratic forms over Zp). (The operation in the monoid is direct sum.)
Then for p odd, Q√ is generated by {W ε

p,k for k ≥ 0} and T√ = G√
is generated by {wεp,k for k ≥ 1}, while for p = 2, Q∈ is generated by
{Uk−1, Vk−1,W

ε
2,k for k ≥ 1}, T∈ is generated by {uk, vk, wε2,k for k ≥

1}, and G∈ is generated by {uk−1, vk−1, w
ε
2,k for k ≥ 2}.

We recall one more important property of these forms of ranks one
and two, which is a direct consequence of the computations in Lemmas
(I.9.4) and (I.9.5).

Proposition 1.3. Let (L,Q) be one of the forms W ε
p,k, Uk, or Vk.

Then the natural map O(L) → O(GL)is surjective.

Next, we would like to offer the reader recognition criteria for decid-
ing, given a specific rank one or rank two quadratic Zp-module, how it
splits as a direct sum of the generators given above. This will become
useful in the proof of the relations among these forms.

We begin with the rank one case, which is no more than formalizing
the discussion following Example (I.7.1).

Lemma 1.4. Fix a prime p, and let Q(r) = upkr2 define a quadratic
form on Zp, with u a unit mod p.

(1.4.1) If p is odd, then Q ∼= W ε
p,k, where ε =

(
2u
p

)
.

(1.4.2) If p is 2, then Q ∼= W ε
2,k+1, where ε ≡ u mod 8.

The rank two case (which we will only discuss for p = 2) is more
interesting. We begin with a decomposability criterion.
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Lemma 1.5. Let Q(r, s) = 2k(ar2 + brs + cs2) be a quadratic form
on Z2

2, and assume that not all of a, b, and c are even. Then Q is
nondegenerate if and only if b2 6= 4ac. In this case, Q splits into two
rank one forms if and only if b is even. If so, let d = ac − b2/4 and
write d = 2`d̄ with d̄ odd. Then

(1.5.1) If a is odd, then Q ∼= W a mod 8
2,k+1 ⊕W ad̄ mod 8

2,k+`+1 .

(1.5.2) If c is odd, Q ∼= W c mod 8
2,k+1 ⊕W cd̄ mod 8

2,k+`+1 .

Proof. The nondegeneracy statement is clear. Suppose first that
b is even. In case a is odd, let x = (1, 0) and y = (−b/2, a); they also
form a basis for Z2

2, and in this basis Q(rx + sy) = Q(r − sb/2, as) =
2k(a(r− sb/2)2 + b(r− sb/2)(as) + c(as)2) = 2k(ar2− abrs+ ab2s2/4 +
abrs−ab2s2/2+ ca2s2) = 2k(ar2 +(ca2−ab2/4)s2) = 2kar2 +2k+`ad̄s2.
This proves this case, and the other is the symmetric argument.

The converse is equivalent to proving that when the diagonal form
Q(r, s) = 2k(ar2 + cs2) is re-written with any new basis for Z2

2, the
resulting form has an even coefficient for the rs term. We may assume
that a is odd. Let x = (α, β), y = (γ, δ) be a new basis for Z2

2. Note
that then αδ − βγ is odd. In terms of this basis, Q has the form

Q(rx+ sy) = 2k((aα2 + cβ2)r2 + 2(aαγ + cβδ)rs+ (aγ2 + cδ2)s2)

and it suffices for our statement to show that at least one of the coef-
ficients aα2 + cβ2 or aγ2 + cδ2 is odd.

If α is odd and β is even, then aα2 + cβ2 is odd since a is odd.
Assume α and β are both odd. Then since αδ− βγ is odd, δ− γ must
be odd, so δ and γ have opposite parity. If γ is odd and δ is even, then
aγ2 + cδ2 is odd. If γ is even and δ is odd, then aα2 + cβ2 ≡ a + c
mod 2 and aγ2 + cδ2 ≡ c mod 2, so since a is odd at least one of these
is odd.

Hence we may assume α is even. This implies that both β and γ are
odd, since αδ − βγ is odd. If δ is even, then aγ2 + cδ2 is odd. Finally,
if δ is odd, then aα2 + cβ2 ≡ c mod 2 and aγ2 + cδ2 ≡ a + c mod 2,
so since a is odd at least one of these is odd. Q.E.D.

The recognition of the indecomposable forms is now easy.

Lemma 1.6. Let Q(r, s) = 2k(ar2+brs+cs2) be a quadratic form on
Z2

2, with b odd. Then Q is nondegenerate and indecomposable. More-
over,

Q ∼= Uk if ac is even, and

Q ∼= Vk if ac is odd.
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Proof. Since b is odd, b2−4ac is odd, so that Q is nondegenerate;
hence it is indecomposable by Lemma (1.5). Also, since b is odd, 2k+1

does not divide all the values of Q, but 2k clearly does; hence Q ∼= Uk
or Vk. Applying Lemma (I.7.7.1), we see that Q ∼= Uk if and only if
there is an isotropic vector. An isotropic vector for Q corresponds to a
root of the quadratic equation az2+bz+c = 0, so we see that Q ∼= Uk if
and only if b2−4ac is a square, or, equivalently, if b2−4ac ≡ 1 mod 8.
Since b is odd, b2 ≡ 1 mod 8, so b2 − 4ac ≡ 1 mod 8 if and only if ac
is even. Q.E.D.

Finally let us briefly mention without proofs the relevant state-
ments for inner product modules over Zp. Denote by Ip the monoid
of isomorphism classes of inner product Zp-modules. Then if p 6= 2,
we have Ip = Qp since every bilinear form is even. However if p = 2,
then we have the odd rank one forms W ε

2,0; indeed, I2 is generated by
{Uk, Vk,W ε

2,k for k ≥ 0}.

2. Quadratic Forms over Zp, p odd

When p is odd, the relations which hold among the generators W ε
p,k

of the monoid Q√ of isomorphism classes of nondegenerate quadratic

Zp-modules (as well as the relations in the torsion cases T√ and G√)

are quite easy to describe.

Lemma 2.1. Let p be an odd prime.

(2.1.1) For all k ≥ 0, there is an isomorphism of nondegenerate qua-
dratic Zp-modules

W−1
p,k ⊕W−1

p,k
∼= W 1

p,k ⊕W 1
p,k.

(2.1.2) For all k ≥ 1, there is an isomorphism of torsion quadratic
forms over Zp

w−1
p,k ⊕ w−1

p,k
∼= w1

p,k ⊕ w1
p,k.

Proof. Discriminant-forms allow the second statement to be de-
duced from the first, so we will only address the first. Choose a basis
{x, y} forW 1

p,k⊕W 1
p,k with Q(rx+sy) = pk(r2+s2)/2. The squares mod

p are not closed under addition; find two integers m and n, relatively
prime to p, such that j = m2 +n2 is not a square, and is still relatively
prime to p. Let x′ = mx+ny and y′ = −nx+my. Then {x′, y′} is also
a basis for the free rank 2 module, and Q(rx′ + sy′) = pk(r2j + s2j)/2.
Thus the form is also isomorphic to W−1

p,k ⊕W−1
p,k . Q.E.D.
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As we will see below, the relations listed here generate all relations
among the generators of Q√ (respectively T√) for p odd. The first step

in establishing that fact is finding a normal form for quadratic forms
on p-groups.

Definition 2.2. When p is odd, a decomposition of a quadratic
form (G, q) on a finite abelian p-group is in normal form if

(G, q) =
⊕
k≥1

((w1
p,k)

⊕n(k) ⊕ (w−1
p,k)

⊕m(k))

where m(k) ≤ 1 for each k.

Given a normal form decomposition, we define

G(k) := (w1
p,k)

⊕n(k) ⊕ (w−1
p,k)

⊕m(k).

Lemma 2.3. Every nondegenerate quadratic form (G, q) on a finite
abelian p-group with p odd has a normal form decomposition.

Proof. (G, q) can be written as a sum of terms isomorphic to w1
p,k

or w−1
p,k. By using the isomorphism (2.1.2), we can easily guarantee that

each homogeneous piece of the decomposition contains at most 1 term
of type w−1

p,k. Q.E.D.

It remains to show that we actually have a normal form, i.e., that
the normal form is unique.

Proposition 2.4. If p is odd, a nondegenerate torsion quadratic
form on a finite abelian p-group has a unique normal form decomposi-
tion.

Proof. Let (G, q) be such a form, and suppose that

(G, q) =
⊕
k≥1

((w1
p,k)

⊕n(k) ⊕ (w−1
p,k)

⊕m(k))

is a normal form decomposition, i.e., the exponents m(k) ar either
0 or 1 for each k. Our task is to show that the n(k)′s and m(k)′s
are determined. Let (G, 〈, 〉) be the associated bilinear form to (G, q).
Applying the functor ρp,k (section II.2) to (G, 〈, 〉) gives a nondegenerate
bilinear form on a homogeneous p-group of scale p, and by Lemma
(II.2.7), this biliinear form is

ρp,k(G) = (w̄1
p,1)

⊕n(k) ⊕ (w̄−1
p,1)

⊕m(k).

Let r(k) = n(k) +m(k) be the rank of this form over Z/p; the order of
ρp,k(G) is ∆ = pr(k). The discriminant of this form takes values in the
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two-element set
1

∆
D(R/p) = {p−r(k), p−r(k)u}

(where u is a non-square mod p). From the computations given in
Table (II.3.2),

disc(ρp,k(G)) =

{
p−r(k) if m(k) = 0
p−r(k)u if m(k) = 1

Therefore the discriminants of these associated bilinear forms deter-
mine m(k); since the ranks r(k) are also determined, the exponents
n(k) are invariants and the normal form is unique. Q.E.D.

Since the normal form is unique, and the construction of the normal
form uses the relations of Lemma (2.1.2) only, it immediately follows
that there are no other relations:

Corollary 2.5. If p is odd, the relations listed in Lemma (2.1.2)
among the generators of T√ (p odd) generate all the relations.

We now deduce normal forms for decompositions of nondegenerate
quadratic Zp-modules into rank one summands from the corresponding
results for p-torsion quadratic forms. We use the discriminant-form
construction, which provides a natural map d : Q√ → T√ assigning the

isomorphism class of a quadratic Zp-module to that of its discriminant-
form. Unfortunately, this map d fails to be an isomorphism, because of
the existence of the unimodular forms W ε

p,0. However, this is the only
essential difference between the two monoids.

We begin by making the analogous definition of normal form for
the quadratic Zp-modules.

Definition 2.6. If p is odd, a decomposition of a quadratic Zp-
module (L,Q) is in normal form if

(L,Q) =
⊕
k≥0

((W 1
p,k)

⊕n(k) ⊕ (W−1
p,k )⊕m(k))

where m(k) ≤ 1 for each k.

Proposition 2.7. If p is odd, every quadratic Zp-module (L,Q)
has a unique normal form decomposition.

Proof. The same argument as was used in the proof of Lemma
(2.3) shows that normal forms exist. To check the uniqueness, suppose
that

(L,Q) =
⊕
k≥0

((W 1
p,k)

⊕n(k) ⊕ (W−1
p,k )⊕m(k))
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(where m(k) ≤ 1 for each k), is a normal form decomposition for a
quadratic Zp-module (L,Q). Applying the discriminant-form functor
d, we obtain the torsion form (G, q), and a normal form decomposition

(G, q) =
⊕
k≥1

((w1
p,k)

⊕n(k) ⊕ (w−1
p,k)

⊕m(k))

and thus by the uniqueness of normal forms for the torsion forms, we
have that the exponents n(k) and m(k) for k ≥ 1 are all determined.
It only remains to show that n(0) and m(0) are also determined. Their
sum is determined by the rank of L, and so both are determined by
either. Finally, the discriminant of L detects m(0). Q.E.D.

A series of corollaries can now be immediately deduced.

Corollary 2.8. If p is odd, the relations listed in Lemma (2.1.1)
among the generators of Q√ generate all the relations.

Corollary 2.9. If p is odd, let Q(∞)
√ be the sub-monoid of Q√

generated by the forms W ε
p,k with k ≥ 1. Then the map d : Q(∞)

√ → T√
is an isomorphism of monoids.

Proof. Let F be the free monoid on the generators {wεp,k for k ≥
1} of T√, and define a map e : F → Q(∞)

√ as follows: e(wεp,k) = W ε
p,k.

Each relation among the generators of T√ maps under e to a valid

relation among the generators of Q(∞)
√ ; thus e descends to a map ē :

T√ → Q(∞)
√ , which provides an inverse for d. Q.E.D.

Corollary 2.10. Let p be an odd prime.

(2.10.1) Given any torsion quadratic form (G, q) over Zp there is a
unique quadratic Zp-module L(q) (up to isomorphism) such
that rank(L(q)) = `(G) and the discriminant-form of L(q) is
isomorphic to (G, q).

(2.10.2) If L is any quadratic Zp-module whose discriminant-form is
isomorphic to (G, q), then there is a unique unimodular qua-
dratic Zp-module M such that L ∼= M ⊕ L(q).

(2.10.3) disc(L(q)) · disc(q) = 1.

Proof. L(q) is simply the pre-image in Q(∞)
√ of (G, q): if we write

q as a direct sum of wεp,k’s, then L(q) is isomorphic to the corresponding
direct sum of W ε

p,k’s. This proves the first statement, and the second
follows easily from the uniqueness of the normal form.
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The third statement requires some explanation, since the two dis-
criminants lie in different groups. The discriminant of L(q) lies in
Zp/(Up)

2 ∼= N × {±1}, and every element can be represented as pnu,
for some unit u in Up. If G has order pm, and scale d1 = ps, then its
discriminant lies in p−m(Z/ps)×/((Z/ps)×)2 ∼= p−m{±1} and every ele-
ment here can be thought of as p−mv, for some unit v ∈ (Z/ps)×. The
statement means that the p-parts of disc(L(q)) and disc(q) cancel, as
do the unit parts, both of which come from groups naturally identified
with {±1}.

The proof is now easy. Since both discriminants are multiplicative,
it suffices to prove it for the rank one forms, in which case it is clear.

Q.E.D.

Corollary 2.11. If p is odd, a nondegenerate quadratic Zp-module
is determined up to isomorphism by its rank, discriminant, and discriminant-
form.

Proof. This follows from the argument given above in the proof
of Proposition 2.7. Q.E.D.

A natural question now arises: for which possible ranks, discrimi-
nants, and discriminant-forms does a quadratic Zp-module exist? The
answer when p is odd is not too difficult to arrive at; it is in fact a mild
restatement of Corollary 2.10.

Proposition 2.12. Let p be an odd prime. Fix an integer r, an
element d ∈ Zp−{0}/U2

p, and a finite p-torsion quadratic form (G, q).
Then there exists a quadratic Zp-module L with rank(L) = r, disc(L) =
d, and (GL, qL) ∼= (G, q) if and only if:

(1) r ≥ `(G),
(2) if d = pku mod U2

p with u ∈ Up, then |G| = pk, and
(3) if r = `(G) then χ(d) = χ(disc(q)).

Moreover, if so, then L is unique up to isomorphism.

Proof. Clearly the first condition that r ≥ `(G) is necessary, as
is the second. The third condition follows by Corollary II.8.7. To see
that these conditions are sufficient, decompose (G, q) into normal form
as

(G, q) =
⊕
k≥1

((w1
p,k)

⊕n(k) ⊕ (w−1
p,k)

⊕m(k)).

Set ` =
∑

k≥1(n(k) + m(k)) which is the length of G. Then the qua-
dratic Zp-module

(L,Q) = (W 1
p,0)

r−` ⊕
⊕
k≥1

((W 1
p,k)

⊕n(k) ⊕ (W−1
p,k )⊕m(k))
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has the correct rank r and has discriminant-form (G, q). Moreover the
power of p occurring in disc(L) is the order |G| of the group G, and
hence by the second condition the power of p in disc(L) is the same
as the power of p in d. Therefore to finish we need only show that
χ(disc(L)) = χ(d). If r = `, this is guaranteed by the third condition
and Corollary II.8.7. If r > ` and this is not the case, simply replace
one of the W 1

p,0 factors by a W−1
p,0 factor, which does not spoil any of

the other conditions.
This proves the existence of L, and the uniqueness statement is

exactly Corollary 2.11. Q.E.D.

It is useful to express conditions (2) and (3) of the above Proposition
by saying that d · disc(q) is a unit, and is 1 if r = `, with the obvious
abuses of notation being understood.

We close this section with a statement concerning the lifting of
isometries.

Theorem 2.13. Let p be an odd prime, and let L1 and L2 be two
nondegenerate quadratic Zp-modules such that rank(L1) = rank(L2)
and disc(L1) = disc(L2). Suppose that σ : GL1 → GL2 is an isometry
between the discriminant forms of L1 and L2. Then there exists an
isometry s : L1 → L2 inducing σ.

Proof. The assumptions imply, by Corollary (2.11), that L1 and
L2 are isomorphic. Decompose GL1 into an (internal) orthogonal direct
sum of cyclic torsion forms wεp,k; denote this by

GL1 = ⊕iw
(1)
i .

Now transport this decomposition to GL2 via the isomorphism σ, and
denote this by

GL2 = ⊕iw
(2)
i .

Since σ is an isometry, w
(1)
i

∼= w
(2)
i for each i. Now by Proposition

(II.11.6), both L1 and L2 can be decomposed compatibly with their
discriminant-forms. Specifically, we have direct sum decompositions

L1 = M1 ⊕
⊕
i

W
(1)
i and L2 = M2 ⊕

⊕
i

W
(2)
i

with M1 and M2 unimodular, W
(1)
i and W

(2)
i rank one for each i, and

the natural inclusions inducing the obvious correspondence of discriminant-
forms.

Note that by the classification of rank one forms, since w
(1)
i
∼= w

(2)
i

for each i, the same is true for the W ’s: W
(1)
i

∼= W
(2)
i for each i.

Therefore M1 and M2 are isomorphic, since they have the same rank
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and discriminant. Therefore the pieces of the decompositions of L1

and L2 match up perfectly, and this allows us to define an isometry
s′ : L1 → L2 by identifying the pieces.

The isometry s′ induces an isometry σ′ : GL1 → GL2 , which pre-
serves the decompositions. Therefore σ′ and σ differ only by automor-
phisms of the pieces: i.e., there is an automorphism τ of GL1 which
preserves the decomposition, such that σ = σ′ ◦ τ . By Proposition
(1.3), the automorphism τ lifts to an automorphism t of L1, and the
desired isometry from L1 to L2 is then s = s′ ◦ t. Q.E.D.

Applying the above with L1 = L2 gives the following:

Corollary 2.14. If p is odd, and L is a nondegenerate quadratic
Zp-module, then the natural map O(L) → O(GL) is surjective.

3. Relations for Quadratic Forms over Z2

The relations which hold among the generators W ε
2,k, Uk, and Vk

of the monoid Q∈ of isomorphism classes of nondegenerate quadratic
Z2-modules (as well as the relations in the torsion cases T∈ and G∈) are
rather complicated. We begin with the quadratic Z2-modules.

Proposition 3.1. The following relations hold among quadratic
Z2-modules.

(I) For k ≥ 1,

W ε1
2,k ⊕W ε2

2,k
∼= W 5ε1

2,k ⊕W 5ε2
2,k

(II) Let ε = (ε1, ε2, ε3), s1(ε) = ε1 + ε2 + ε3, and s2(ε) = ε1ε2 +
ε2ε3 + ε3ε1. Then if s2(ε) ≡ 3, we have for k ≥ 1

W ε1
2,k ⊕W ε2

2,k ⊕W ε3
2,k
∼= W

s1(ε)
2,k ⊕ Vk

while if s2(ε) ≡ 7, we have for k ≥ 1

W ε1
2,k ⊕W ε2

2,k ⊕W ε3
2,k
∼= W

s1(ε)
2,k ⊕ Uk.

(III) For k ≥ 0,
U⊕2
k
∼= V ⊕2

k .

(IV) For k ≥ 1,

W ε
2,k ⊕ Uk ∼= (W ε

2,k)
⊕2 ⊕W−ε

2,k

and
W ε

2,k ⊕ Vk ∼= (W 3ε
2,k)

⊕3.

(V) If ε1 ≡ ε2 mod 4, then for k ≥ 1,

Uk ⊕W ε1
2,k ⊕W ε2

2,k
∼= Vk ⊕W ε1−2

2,k ⊕W ε2+2
2,k .
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(VI) For k ≥ 2,

W ε1
2,k−1 ⊕W ε2

2,k
∼= W ε1+2ε2

2,k−1 ⊕W ε2+2ε1
2,k .

(VII) For k ≥ 2,

W ε
2,k−1 ⊕ Uk ∼= W 5ε

2,k−1 ⊕ Vk.

(VIII) For k ≥ 1,

Uk−1 ⊕W ε
2,k
∼= Vk−1 ⊕W 5ε

2,k.

(IX) If ε1 ≡ ε2 mod 4, then for k ≥ 2,

W ε1
2,k−1 ⊕W ε2

2,k−1 ⊕W 1
2,k
∼= W ε1−2

2,k−1 ⊕W ε2+2
2,k−1 ⊕W 5

2,k.

(X) For k ≥ 3,

W ε1
2,k−2 ⊕W ε2

2,k
∼= W 5ε1

2,k−2 ⊕W 5ε2
2,k .

It is worth remarking at the outset that the relations (II) and (IV)
are completely equivalent (each set of relations amounts to reading the
other set backwards, possibly using the relations (I)). We should also
remark that the relations listed here generate all relations among the
generators of Q∈, as will be proved in Section 5.

Proof. The verification of these relations is a long computation
of which we will not present every detail. The proof will be given by
assuming that the form presented on the left side of each relation is
a sum of the standard forms on ZN

p given by the formulas of Table
(I.7.1), in the standard basis; our job will be to find a new basis which
exhibits the decomposition on the right side of the relation.

We abuse notation and view the quantities ε for the rank one forms
as being defined mod 8 when appearing in the exponents of the rank one
form notation, but as being the corresponding units 1, 3, 5, or 7 in Z2

when appearing in other formulas. We repeatedly use the recognition
criteria given in Lemmas (1.5) and (1.6).

Let us present relation (I) in detail. Let W ε1
2,k⊕W

ε2
2,k have the stan-

dard basis, so that the quadratic form is given by Q(r, s) = 2k−1(ε1r
2 +

ε2s
2). Let u = (1, 2) and v = (2ε2,−ε1). The pair {u, v} is also a basis

for Z2
2, and in this basis we have

Q(ru+ sv) = Q(r(1, 2) + s(2ε2,−ε1)) = Q(r + 2ε2s, 2r − ε1s)

= 2k−1(ε1(r + 2ε2s)
2 + ε2(2r − ε1s)

2)

= 2k−1((ε1 + 4ε2)r
2 + (4ε1ε

2
2 + ε2ε

2
1)s

2).

Since ε1 + 4ε2 ≡ 5ε1 mod 8 and 4ε1ε
2
2 + ε2ε

2
1 ≡ 5ε2 mod 8, this basis

realizes the decomposition W 5ε1
2,k ⊕W 5ε2

2,k .
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For relation (II), it is useful to remark that if we write s3(ε) =
ε1ε2ε3, then the identity s1(ε)s3(ε) = s2(ε) holds, as a check of the
various cases verifies immediately. Assume that Q(r, s, t) = 2k−1(ε1r

2+
ε2s

2 + ε3t
2), and let x = (1, 1, 1), y = (ε2,−ε1, 0) and z = (ε3, 0,−ε1).

Then {x, y, z} is a new basis for Z3
2, and y and z are orthogonal to x.

Since Q(rx) = 2k−1s1(ε)r
2, the span of x represents the form W

s1(ε)
2,k .

Now Q(ry + sz) = Q(rε2 + sε3,−rε1,−sε1) = 2k−1(ε1(rε2 + sε3)
2 +

ε2(−rε1)
2 + ε3(−sε1)

2) = 2k−1((ε1ε
2
2 + ε2ε

2
1)r

2 + (2ε1ε2ε3)rs + (ε1ε
2
3 +

ε3ε
2
1)s

2). Note that the coefficients of r2 and s2 are even, so this can

be written as Q(ry+sz) = 2k((
ε1ε22+ε2ε21

2
)r2 +(ε1ε2ε3)rs+(

ε1ε23+ε3ε21
2

)s2).
The middle coefficient is odd, so by Lemma (1.6), the span of {y, z}
is indecomposable, and we detect which form it is by the parity of

(
ε1ε22+ε2ε21

2
)(
ε1ε23+ε3ε21

2
). This quantity is exactly (s2

3 +ε2
1s1s3)/4; using the

identity mentioned above, this is equal to (s2
3 + ε2

1s2)/4, and clearly its
parity is determined by the value of s2

3 + ε2
1s2 mod 8. Since squares

are all 1 mod 8, this equals 1 + s2 mod 8; hence the parity is even if
s2 ≡ 7 mod 8 and is odd if s2 ≡ 3 mod 8. This proves relation (II).

For relation (III), write Q(r, s, t, u) = 2k(rs+ tu), representing the
form U⊕2

k . Let x = (1, 1, 0, 0), y = (0, 1, 1, 1), z = (1,−1,−1, 0), and
w = (1,−1, 0,−1). The set {x, y, z, w} is a basis for Z4

2, and both z
and w are orthogonal to both x and y, giving an alternate splitting
of the form Q. On the span of {x, y}, Q has the form Q(rx + sy) =
Q(r, r+s, s, s) = 2k(r2 + rs+s2), which is exactly the form Vk. On the
span of {z, w}, Q has the form Q(rz+sw) = Q(r+s,−r−s,−r,−s) =
2k((r+ s)(−r− s) + rs) = 2k(−r2− rs− s2), which also represents Vk.

As mentioned above, relation (IV) is simply (II) read backwards, so
we will move on to relation (V). WriteQ(r, s, t, u) = 2k(rs)+2k−1(ε1t

2+
ε2u

2). Let x = (1, 1, 0, 0), y = (0, 1, 1, 1), z = (−ε1, ε1, 1, 0), and
w = (−ε2, ε2, 0, 1). Again the set {x, y, z, w} is a basis for Z4

2, and
both z and w are orthogonal to both x and y, giving an alternate
splitting of the form Q. On the span of {x, y}, Q has the form Q(rx+
sy) = Q(r, r + s, s, s) = 2k(r2 + rs+ ( ε1+ε2

2
)s2). Under the assumption

that ε1 ≡ ε2 mod 4, the quantity ε1 + ε2 is always congruent to 2
mod 4, hence the coefficient of s2 in the above is odd; by Lemma (1.6),
this represents the form Vk. On the span of {z, w}, Q has the form
Q(rz + sw) = Q(−ε1r − ε2s, ε1r + ε2s, r, s) = 2k−1((−2ε2

1 + ε1)r
2 −

(4ε1ε2)rs+ (−2ε2
2 + ε2)s

2), which we see decomposes by Lemma (1.5).
Using the notation of that Lemma, we have a = −2ε2

1 +ε1, b = −4ε1ε2,
and c = −2ε2

2 + ε2; hence d = d̄ = ε1ε2(1 − 2ε1 − 2ε2). Note that
a is odd, and a ≡ ε1 − 2 mod 8. Since ε1 + ε2 is congruent to 2
mod 4, 1− 2ε1 − 2ε2 ≡ 5 mod 8, and ad̄ ≡ 5ε2 − 2ε1ε2 mod 8. Since
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ε1 ≡ ε2 mod 4, ε1ε2 ≡ 1 mod 4; hence ad̄ ≡ 5ε2 − 2 mod 8. Since
5ε−2 ≡ ε+2 mod 8 for any ε, the result follows from Lemma (1.5.1).

Relation (VI) is a bit easier. Represent the form by Q(r, s) =
2k−2ε1r

2 + 2k−1ε2s
2. Let x = (1, 1) and y = (−2ε2, ε1); x and y form

a new basis for Z2
2, and in this basis Q has the form Q(rx + sy) =

Q(r−2ε2s, r+ ε1s) = 2k−2ε1(r−2ε2s)
2 +2k−1ε2(r+ ε1s)

2) = 2k−2(ε1 +
2ε2)r

2 + 2k−1(ε2ε
2
1 + 2ε1ε

2
2)s

2; since ε2ε
2
1 + 2ε1ε

2
2 ≡ ε2 + 2ε1 mod 8, the

result follows.
For relation (VII), represent the form by Q(r, s, t) = 2k−2εr2 +2kst.

Let x = (1, 1, 1), y = (−2, ε, 0), and z = (−2, 0, ε); they form a new
basis for Z3

2, and both y and z are orthogonal to x. Since Q(rx) =
Q(r, r, r) = 2k−2(ε + 4)r2, and since for any ε, ε + 4 ≡ 5ε mod 8,
the span of x represents W 5ε

2,k−1. On the span of {y, z}, Q has the

form Q(ry + sz) = Q(−2r − 2s, εr, εs) = 2k−2ε(−2r − 2s)2 + 2kε2rs =
2k(εr2 + (2ε+ ε2)rs+ εs2), which by Lemma (1.6) represents Vk.

Relation (VIII) is similar; represent the form byQ(r, s, t) = 2k−1(rs+
εt2). Let x = (2, 2, 1), y = (ε, 0,−1), and z = (0, ε,−1); they form
a new basis for Z3

2, and both y and z are orthogonal to x. Since
Q(rx) = Q(2r, 2r, r) = 2k−1(ε + 4)r2, the span of x represents W 5ε

2,k.
On the span of {y, z}, Q has the form Q(ry+sz) = Q(εr, εs,−r−s) =
2k−1(ε2rs+ε(−r−s)2) = 2k−1(εr2+(2ε+ε2)rs+εs2), which by Lemma
(1.6) represents Vk−1.

For relation (IX), represent the form by Q(r, s, t) = 2k−2ε1r
2 +

2k−2ε2s
2 + 2k−1t2. Let x = (1, 0, 1), y = (−2, 0, ε1), and z = (0, 1, 0);

they form a new basis for Z3
2, and are pairwise orthogonal. Since

Q(rx) = Q(r, 0, r) = 2k−2(ε1 + 2)r2, the span of x represents W ε1+2
2,k−1.

Since Q(ry) = 2kε1r
2+2k−1ε2

1r
2 = 2k−1(ε2

1+2ε1)r
2, the span of y repre-

sents the formW 1+2ε1
2,k . Clearly the span of z represents the formW ε2

2,k−1.
Now use relation (VI), which tells us that the span of {y, z} is isomor-
phic to W 1+2ε1+2ε2

2,k ⊕W ε2+2+4ε1
2,k−1 . Since ε1 ≡ ε2 mod 4, 1+2ε1+2ε2 ≡ 5

mod 8, and ε2 + 2 + 4ε1 ≡ ε2 − 2. This proves the required decompo-
sition.

Finally, represent the form for relation (X) by Q(r, s) = 2k−3ε1r
2 +

2k−1ε2s
2. Let x = (1, 1) and y = (−4ε2, ε1); they form a new ba-

sis for Z2
2, and are pairwise orthogonal. Since Q(rx + sy) = Q(r −

4ε2s, r+ε1s) = 2k−3ε1(r−4ε2s)
2+2k−1ε2(r+ε1s)

2 = 2k−3(ε1+4ε2)r
2+

2k−1(ε2ε
2
1 +4ε1ε

2
2)s

2, and ε1 +4ε2 ≡ 5ε1 mod 8, and ε2ε
2
1 +4ε1ε

2
2 ≡ 5ε2

mod 8, the result follows. Q.E.D.

We remark that if we want to consider the bilinear formsW ε
2,0, which

are not quadratic Z2-modules but are inner product modules over Z2,
then all of the same relations as stated in Proposition 3.1 hold, when
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they make sense. Thus for example relations (I), (II), (IV), (V), and
(VIII) hold for k ≥ 0; relations (VI), (VII), and (X) hold for k ≥ 1;
and relation (X) holds for k ≥ 2.

From the relations in Proposition (3.1), we immediately derive the
corresponding relations on discriminant forms. This gives us a large
set of relations among torsion quadratic Z2-modules. Recall also that
we know one further relation for torsion quadratic forms: by Lemma
(1.1.2), w1

2,1
∼= w5

2,1 and w3
2,1
∼= w7

2,1. (This also follows from considering
the discriminant forms in relation (VIII) with k = 1.) Thus we have
proved:

Proposition 3.2. The following relations hold among torsion qua-
dratic forms over Z2.

(0)

w1
2,1
∼= w5

2,1 and w3
2,1
∼= w7

2,1.

(I) For k ≥ 1,

wε12,k ⊕ wε22,k
∼= w5ε1

2,k ⊕ w5ε2
2,k .

(II) Let ε = (ε1, ε2, ε3), s1(ε) = ε1 + ε2 + ε3, and s2(ε) = ε1ε2 +
ε2ε3 + ε3ε1. Then if s2(ε) ≡ 3, we have for k ≥ 1

wε12,k ⊕ wε22,k ⊕ wε32,k
∼= w

s1(ε)
2,k ⊕ vk

while if s2(ε) ≡ 7, we have for k ≥ 1

wε12,k ⊕ wε22,k ⊕ wε32,k
∼= w

s1(ε)
2,k ⊕ uk.

(III) For k ≥ 1,

u⊕2
k
∼= v⊕2

k .

(IV) For k ≥ 1,

wε2,k ⊕ uk ∼= (wε2,k)
⊕2 ⊕ w−ε2,k

and

wε2,k ⊕ vk ∼= (w3ε
2,k)

⊕3.

(V) If ε1 ≡ ε2 mod 4, then for k ≥ 1,

vk ⊕ wε12,k ⊕ wε22,k
∼= uk ⊕ wε1−2

2,k ⊕ wε2+2
2,k .

(VI) For k ≥ 2,

wε12,k−1 ⊕ wε22,k
∼= wε1+2ε2

2,k−1 ⊕ wε2+2ε1
2,k .

(VII) For k ≥ 2,

wε2,k−1 ⊕ vk ∼= w5ε
2,k−1 ⊕ uk.
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(VIII) For k ≥ 2,

vk−1 ⊕ wε2,k
∼= uk−1 ⊕ w5ε

2,k.

(IX) If ε1 ≡ ε2 mod 4, then for k ≥ 2,

wε12,k−1 ⊕ wε22,k−1 ⊕ w5
2,k
∼= wε1−2

2,k−1 ⊕ wε2+2
2,k−1 ⊕ w1

2,k.

(X) For k ≥ 3,

wε12,k−2 ⊕ wε22,k
∼= w5ε1

2,k−2 ⊕ w5ε2
2,k .

We will see in Section 4 that the relations listed here generate all
relations among the generators of the monoid T∈ of isomorphism classes
of nondegenerate 2-torsion quadratic forms.

4. Normal forms for 2-torsion quadratic forms

In this section, we will establish several normal forms for decom-
positions of nondegenerate quadratic forms on 2-groups into rank one
and two summands. We will often refer to the relations given in Propo-
sition (3.2) during the discussion. In addition, the signature invariants
σ` introduced in Section III.3 play a crucial role. We begin with a
rather crude normal form.

Definition 4.1. A decomposition of a quadratic form (G, q) on a
finite abelian 2-group is in partial normal form if

(G, q) =
⊕
k≥1

(u
⊕n(k)
k ⊕ v

⊕m(k)
k ⊕ w(k))

where m(k) ≤ 1, rank(w(k)) ≤ 2, and w(k) is a sum of forms of type
wε2,k.

Given a partial normal form decomposition, we define

G(k) := u
⊕n(k)
k ⊕ v

⊕m(k)
k ⊕ w(k),

and
x(k) := v

⊕m(k)
k ⊕ w(k).

Lemma 4.2. Every nondegenerate quadratic form (G, q) on a finite
abelian 2-group has a partial normal form decomposition. Moreover,
the quantities n(k) +m(k) and rank(w(k)) are invariants of the form
(G, q).

Proof. Using relation (II), we can easily guarantee that each ho-
mogeneous piece of the decomposition contains at most 2 terms of type
wε2,k. Then using relation (III), we can guarantee that each homoge-
neous piece contains at most one vk term. This is exactly the partial
normal form.
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Group A Group B σk−1 disc8(A) disc8(B)
0 - 1 1 -
- vk −1 - 3

w1
2,k w5

2,k eπi/4 1 5

vk ⊕ w3
2,k vk ⊕ w7

2,k e3πi/4 1 5

vk ⊕ w5
2,k vk ⊕ w1

2,k e5πi/4 7 3

w7
2,k w3

2,k e7πi/4 7 3
w1

2,k ⊕ w1
2,k w1

2,k ⊕ w5
2,k i 1 5

vk ⊕ w1
2,k ⊕ w3

2,k vk ⊕ w1
2,k ⊕ w7

2,k −1 1 5
w7

2,k ⊕ w7
2,k w3

2,k ⊕ w7
2,k −i 1 5

w1
2,k ⊕ w7

2,k w1
2,k ⊕ w3

2,k 1 7 3

Table 4.1. Homogeneous normal forms

To see that n(k) + m(k) and rank(w(k)) are invariants, note first
that their sum n(k) + m(k) + rank(w(k)) is simply the Z/2-rank of
the module ρk(G), defined in Section II.2. Hence the sum depends
only on (G, q), and so either one determines both. Consulting Table
(III.3.1), we see that w(k) = 0 if and only if σk 6= 0. In this case,
n(k)+m(k) = rk/2. Otherwise, rank(w(k)) = 1 or 2 depending on the
parity of rk, and n(k) +m(k) = (rk − rank(w(k)))/2. Q.E.D.

This partial normal form is just a setup for the actual normal form
to be described below. We next find a true normal form for each
homogeneous piece.

Definition 4.3. A decomposition of a quadratic form on a ho-
mogeneous abelian 2-group is in homogeneous normal form if it is in
partial normal form, if x(k) is one of the possibilities appearing in Table
(4.1), and if in case k = 1 x(k) belongs to ”group A” in the table.

Before proving that this homogeneous normal form can actually be
achieved, we want to point out some of the properties of Table (4.1).
The value of the (k−1)st signature invariant σk−1 has been recorded in
the table, as well as the mod 8 discriminant values (which are defined
if k ≥ 2 in all cases, and for u1 and v1).

Lemma 4.4.

(4.4.1) Let x(k) be one of the entries in Table (4.1) such that either
k ≥ 2 or w(k) = 0, and let δ = disc8(x(k)). Then

(
2
δ

)
= −1

if and only if x(k) lies in group B. In particular, for x(k) in
group A, σ`(x(k)) = σk−1(x(k)) for all 0 ≤ ` < k, while for
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x(k) in group B, σ`(x(k)) = (−1)`σk−1(x(k)) for all 0 ≤ ` < k.
(See Proposition (III.4.4)).

(4.4.2) For each x(k) in group B other than x(k) = vk, if we replace
exactly one of the wε2,k summands with w5ε

2,k, we get (a form
isomorphic to) the entry in group A of the table in the same
row.

(4.4.3) If (G, q) is in homogeneous normal form (with G homogeneous
of scale 2k) and if we know
(a) whether σk = 0,
(b) whether x(k) belongs to group A or group B, and
(c) the value of σ` for some ` with 0 ≤ ` < k,

then we know x(k). If in addition we know rk, then we know
(G, q).

Proof. Statement (4.4.1) is clear from Table (4.1), using Proposi-
tion (III.4.4)), and (4.4.2) is a straightforward verification (occasionally
using relation (I)). To prove (4.4.3), note first that (G, q) and x(k) have
the same signature invariants, since all signature invariants of uk are
1. Next note that whether rank(w(k)) is zero or not is determined by
(a), and that if the rank is zero, then x(k) is either 0 or vk, and so is
determined by (b). If rank(w(k)) ≥ 1, then (b) and (c) determine the
value of σk−1(x(k)), by the formula in part (4.4.1). Now for each value
of this signature invariant σk−1, there is exactly one possibility for x(k)
in group A, and one possibility in group B. Q.E.D.

It remains to show that we actually have a normal form.

Proposition 4.5. Every quadratic form (G, q) on a homogeneous
2-group has a decomposition in homogeneous normal form, and the
terms appearing in the decomposition are uniquely determined by (G, q).

Proof. We first show that a homogeneous normal form decompo-
sition exists. By Lemma (4.2), we can find a decomposition in partial
normal form. For each such decomposition with rank(w(k)) ≤ 1, the
corresponding x(k) occurs in Table (4.1), so in those cases we are al-
ready in homogeneous normal form. When rank(w(k)) = 2, there are
4 a priori possibilities for w(k) which do not appear in Table (4.1):

w3
2,k ⊕ w3

2,k, w
3
2,k ⊕ w5

2,k, w
5
2,k ⊕ w5

2,k, and w5
2,k ⊕ w7

2,k.

But by using relation (I), these are isomorphic to (respectively)

w7
2,k ⊕ w7

2,k, w
1
2,k ⊕ w7

2,k, w
1
2,k ⊕ w1

2,k, and w1
2,k ⊕ w3

2,k.
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Furthermore, among the 6 remaining rank 2 choices for w(k), 4 out of
the 12 a priori possibilities for x(k) do not appear in the table:

vk ⊕w1
2,k ⊕w1

2,k, vk ⊕w1
2,k ⊕w5

2,k, vk ⊕w3
2,k ⊕w7

2,k, and vk ⊕w7
2,k ⊕w7

2,k.

But by using relation (V), these are isomorphic to (respectively)

uk⊕w3
2,k⊕w7

2,k, uk⊕w7
2,k⊕w7

2,k, uk⊕w1
2,k⊕w1

2,k, and uk⊕w1
2,k⊕w5

2,k.

Therefore these forms can be transformed into the forms with the uk
summands, and then the uk term is absorbed into the other part of
the normal form; hence the associated x(k) terms can be made into
(respectively)

w3
2,k ⊕ w7

2,k, w
7
2,k ⊕ w7

2,k, w
1
2,k ⊕ w1

2,k, and w1
2,k ⊕ w5

2,k,

which do appear in the table.
Finally, since wε2,1

∼= w5ε
2,1 (relation (0)), by Lemma (4.4.2) we may

ensure that x(1) lies in group A. (For later convenience, we should
point out that this is the only place in this section where relation (0)
is used.)

We now turn to the uniqueness of the terms appearing in the homo-
geneous normal form. If k = 1, then x(1) lies in group A by assumption,
and so according to Lemma (4.4.3) it is determined by σ0 and σ1. If
k > 1, then the invariants σk−1 and σk−2 are both defined and nonzero.
By Lemma (4.4.1), the ratio σk−1/σk−2 determines the group to which
x(k) belongs (it is group A when the ratio is 1, and group B when the
ratio is −1). Now the values of σk and σk−1 will determine x(k) (again
by Lemma (4.4.3)). Therefore in all cases x(k) is determined; since

the remaining term u
n(k)
k is determined by the rank, the homogeneous

normal form is unique. Q.E.D.

Note that up to this point we have used only relations (0)-(V).
We come finally to the task of finding a normal form decomposition

for an arbitrary quadratic form on a finite abelian 2-group, using the
remaining relations (VI) - (X). Our strategy is to first attempt to limit
the summands to uk, w

1
2,k, and w5

2,k, and then to attempt to make x(k)

belong to group A (and so have a discriminant δ with
(

2
δ

)
= 1).

Definition 4.6. A decomposition

(G, q) =
⊕
k≥1

(u
⊕n(k)
k ⊕ v

⊕m(k)
k ⊕ w(k))

with x(k) = v
⊕m(k)
k ⊕ w(k) is in normal form provided that all of the

following hold.
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(a) Each homogeneous piece G(k) = u
⊕n(k)
k ⊕ v

⊕m(k)
k ⊕ w(k) is in

homogeneous normal form,
(b) If w(k − 1) 6= 0 then x(k) ∈ {0, w1

2,k, w
5
2,k, w

1
2,k ⊕ w1

2,k, w
1
2,k ⊕

w5
2,k}.

(c) If n(k−1)+m(k−1) 6= 0, or if w(k−2) 6= 0, or if w(k−1) is in
{w1

2,k−1⊕w1
2,k−1, w

1
2,k−1⊕w5

2,k−1, w
7
2,k−1⊕w7

2,k−1, w
3
2,k−1⊕w7

2,k−1},
then either w(k) = 0 or x(k) belongs to group A.

One convenient thing to notice about this definition is that by Table
(4.1), when k ≥ 2 the condition w(k − 1) ∈ {w1

2,k−1 ⊕ w1
2,k−1, w

1
2,k−1 ⊕

w5
2,k−1, w

7
2,k−1 ⊕ w7

2,k−1, w
3
2,k−1 ⊕ w7

2,k−1} is equivalent to: σk−2(G(k −
1)) = ±i.

Proposition 4.7. Every quadratic form on a finite abelian 2-group
has a normal form decomposition.

Proof. By proposition (4.5), we may put each homogeneous piece
G(k) into homogeneous normal form. Since G(k) = 0 for k � 0, we
will use descending induction on k: we assume that the conditions
specified for G(`) (and particularly the form of x(`)) hold for all ` > k,
and we work on G(k). It may happen that in the course of using the
relations (VI) - (X), the homogeneous normal form on some lower pieces
G(`) for ` < k may be disturbed; it is understood that we restore the
homogenous normal form for such pieces after each step.

By using relation (VI), if w(k − 1) 6= 0 we may change any w3
2,k or

w7
2,k to a w1

2,k or w5
2,k. In addition, by using relation (VII), if w(k−1) 6= 0

we may change any vk to a uk. This leaves us with an x(k) which
satisfies condition (b).

To ensure that condition (c) is satisfied, note that we may assume
k ≥ 2, since x(1) already belongs to group A. Under each of the three al-
ternate hypotheses of condition (c), there is a relation (relations (VIII),
(X), and (IX) respectively) which will enable us to convert a term of
type wε2,k to a term of type w5ε

2,k. By Lemma (4.4.2), then, if w(k) 6= 0
we may use such a relation to make x(k) belong to group A.

It remains to show that the operations we have carried out have
not caused any of the terms G(`) for ` > k to fall out of normal
form. Since we have changed no summands in any such terms, and
since n(k) +m(k), rank(w(k)) and rank(w(k− 1)) are all invariants of
the form, the only way this could have happened is if w(k), while not
previously in the set {w1

2,k ⊕ w1
2,k, w

1
2,k ⊕ w5

2,k, w
7
2,k ⊕ w7

2,k, w
3
2,k ⊕ w7

2,k},
has now become an element of that set (forcing a new requirement
that x(k + 1) be in group A). This implies that before our operations,
w(k) = wε12,k⊕w

ε2
2,k with ε1 6≡ ε2 mod 4, but that this is no longer true



110 Quadratic Forms over Zp

after our operations. However, the only operation in our process which
changes a wε2,k to a wε̄2,k with ε̄ 6≡ ε mod 4 is the use of relation (VI) in
achieving condition (b). If this relation has been used, then w(k−1) 6=
0; but then the conditions on the normal form for G(k+ 1) imply that
x(k + 1) was already in group A, so nothing has changed. Q.E.D.

We now come to the task of showing that our normal form is unique.
As a corollary, we will find that the relations we have given among the
standard quadratic forms on 2-groups in fact generate the full set of
relations.

Proposition 4.8. The normal form decomposition of a quadratic
form (G, q) on a finite abelian 2-group is unique. Moreover, the terms
appearing are completely determined by the invariants rk(G) and σk(G).

Proof. We begin with a decomposition

(G, q) =
⊕
j≥1

(u
⊕n(j)
j ⊕ v

⊕m(j)
j ⊕ w(j))

which we assume is in normal form. We must show, then, that the

invariants rj(G) and σj(G) determine x(j) = v
⊕m(j)
j ⊕ w(j) for each j.

(The remaining terms u
n(j)
j will then be determined by the ranks rj.)

Let k be the largest index for which G(k) 6= 0. Our first task will be
to show that x(k) is determined, and then we will use a straightforward
induction argument to finish the proof.

To prove that x(k) is determined, we have several cases to consider.
Notice for the purpose of dividing into cases that since σ0 is always
nonzero, if we assume that σk−1 = 0 then automatically k ≥ 2 so that
σk−2 is defined.

Case 1: σk 6= 0.
In this case w(k) = 0, so x(k) is either 0 or vk. If σk−1 6= 0, and

k = 1, then σ1/σ0 =
(

2
δ

)
where δ = disc8(G) distinguishes these. If

σk−1 6= 0, and k ≥ 2, then the ratio σk−2/σk−1 distinguishes these by
Lemma (4.4.1). Finally, if σk−1 = 0, then w(k − 1) 6= 0, so x(k) must
be 0 by condition (b).

Case 2: σk = 0.
In this case we then have that w(k) 6= 0. This case breaks further

by considering σk−1.

Case 2A: σk = 0 and σk−1 6= 0.
Suppose first that k ≥ 2, rk−1 = 0, and σk−2 6= 0. Since rk−1 = 0,

there are no G(k−1) terms; moreover, G(k−2) has only uk−2 and vk−2

terms. Hence σk−1 = σk−1(G(k)) and σk−2 = σk−2(G(k)). Therefore
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the ratio σk−2/σk−1 determines whether x(k) is in Group A or Group
B, by Lemma (4.4.1). Therefore x(k) is determined, by Lemma (4.4.3).

Next assume that either k = 1, rk−1 ≥ 1, or σk−2 = 0. We claim
that under any of these hypotheses, x(k) must be in Group A. If k = 1,
then this is true by definition of the homogeneous normal form. If
rk−1 ≥ 1, then since σk−1 6= 0, we must have w(k − 1) = 0. Hence
n(k − 1) + m(k − 1) = rk−1 is not zero, so x(k) is in Group A by
condition (c). Finally, if σk−2 = 0, then w(k − 2) 6= 0, so that again
x(k) is in Group A by condition (c).

Now that we know x(k) must be in Group A, it is determined by
Lemma (4.4.3).

Case 2B: σk = 0 and σk−1 = 0.
In this case we have w(k) 6= 0 and w(k − 1) 6= 0; in addition we

must have k ≥ 2. Condition (b) now forces x(k) to come from the set
{w1

2,k, w
5
2,k, w

1
2,k ⊕ w1

2,k, w
1
2,k ⊕ w5

2,k} and we must distinguish between
these four forms.

If either σk−2 = 0, rk−1 > 2, or σk−2(G(k − 1)) = ±i, then by
condition (c) we know that x(k) is in Group A, forcing x(k) to be
either w1

2,k or w1
2,k ⊕ w1

2,k. The parity of the rank rk distinguishes
between these two.

Hence we may suppose that σk−2 6= 0, rk−1 ≤ 2, and σk−2(G(k −
1)) 6= ±i.

Since w(k − 1) 6= 0, and since rk−1 is equal to 1 or 2, x(k − 1)
cannot have any vk−1 term. Therefore the only possibilities for G(k−1)
are the forms wε2,k−1, w

1
2,k−1 ⊕ w7

2,k−1, and w1
2,k−1 ⊕ w3

2,k−1, given that

σk−2(G(k−1)) 6= ±i. Note then that σk−2(G(k−1)) ∈ {eπi/4, e7πi/4, 1},
since this is true for each one of these. Since σk−2 6= 0, w(k − 2) = 0,
and so σk−2(G(k − 2)) = 1; hence the value of σk−2 is determined only
by x(k − 1) and x(k), i.e., σk−2 = σk−2(G(k − 1)) · σk−2(x(k)). Since
σk−2(G(k − 1)) ∈ {eπi/4, e7πi/4, 1}, we see that σk−2 and σk−2(x(k)) lie
in the same complex half-plane; therefore the complex half-plane in
which σk−2(x(k)) lies is determined.

The proof is now completed by noting that the possibilities for
x(k) with the same rank have opposite σk−2; therefore if one knows the
complex half-plane in which they lie, we know x(k).

This finishes the proof of the statement that x(k) (and hence G(k))
is determined by the given invariants, and is the crux of the induction
proof for the general statement.

Our inductive hypothesis is as follows. We fix an integer k ≥ 1,
and we assume that the normal form decomposition for any quadratic
form on a group G′ with G′(j) = 0 for all j ≥ k is unique, and is
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determined by the rank and signature invariants. We must then prove
the statement for a group G with G(k) 6= 0 but with G(j) = 0 for all
j > k.

Write G = G′⊕G(k), with G′ having no terms of scale 2k or greater.
By the first part of the argument, the normal form for the G(k) piece
is determined. Moreover, for each ` with 0 ≤ ` < k, the signature
invariants σ`(G(k)) are all nonzero. Hence for each such ` we may
define

σ̃` = σ`(G)/σ`(G(k))

and we have immediately that

σ`(G
′) = σ̃`

for these `. Therefore the rank and signature invariants of G′ are
determined from those of G. By induction, G′ has a unique normal
form decomposition. Hence so does G. Q.E.D.

As in the case with p odd, the uniqueness of the normal form and
the construction using the relations of Proposition (3.2) only, implies
that there are no other relations:

Corollary 4.9. The relations (0) - (X) listed in Proposition (3.2)
among the generators of T∈ generate all the relations. In addition, the
relations (I) - (X) among the generators of G∈ generate all the relations
between them.

Note that G∈ is exactly the set of torsion quadratic Z2-modules
which have no summand of type wε2,1 in any decomposition.

5. Normal forms for quadratic Z2-modules

In this section, we will deduce normal forms for decompositions of
nondegenerate quadratic Z2-modules into rank one and two summands
from the corresponding results for 2-torsion quadratic forms. The
discriminant-form construction provides a natural map d : Q∈ → T∈
assigning the isomorphism class of a quadratic Z2-module to that of its
discriminant-form. This is not an isomorphism of monoids, for two rea-
sons: firstly, the unimodular forms U0 and V0 have trivial discriminant-
form groups, and secondly, the relation (0) wε2,1

∼= w5ε
2,1 does not lift to

a corresponding relation between W ε
2,1’s.

For the purpose of finding normal forms, it is more useful to de-
fine a different map d2 : Q∈ → G∈ as follows: given a quadratic
Z2-module (L,Q), consider the form (L(2), Q(2)), where L(2) ∼= L
and Q(2)(x) = 2Q(x). Then d2(L,Q) is the isomorphism class of the
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discriminant-form (GL(2), qL(2)). Note that this discriminant form con-
tains no summands of type wε2,1, so that its isomorphism class lies in
G∈. We have d2(W

ε
2,k) = wε2,k+1, d2(Uk) = uk+1, and d2(Vk) = vk+1.

Proposition 5.1. The map d2 : Q∈ → G∈ is an isomorphism of
monoids.

Proof. Let F be the free monoid on the generators {uk−1, vk−1, w
ε
2,k for k ≥

2} of G∈, and define a map e : F → Q∈ as follows: for k ≥ 2,
e(uk−1) = Uk−2, e(vk−1) = Vk−2, and e(wε2,k) = W ε

2,k−1. Each relation
among the generators of G∈ maps under e to a valid relation among
the generators of Q∈; thus e descends to a map ē : G∈ → Q∈, which
provides an inverse for d2. Q.E.D.

Corollary 5.2. The relations listed in proposition (3.1) among
the generators of Q∈ generate all the relations.

Proof. The existence of the isomorphism d2 precludes the possi-
bility of further relations. Q.E.D.

Definition 5.3. A decomposition of a quadratic Z2-module (L,Q)
is in partial normal form, or homogeneous normal form, or normal form
exactly when the induced decomposition of GL(2) has the corresponding
property.

Corollary 5.4. Every nondegenerate quadratic Z2-module (L,Q)
has a unique normal form decomposition.

This follows directly from the corresponding statement for T∈ (and
hence for G∈).

We have the following analogue of Corollary (2.11):

Corollary 5.5. A nondegenerate quadratic Z2-module is deter-
mined up to isomorphism by its rank, discriminant, and discriminant-
form.

Proof. Let (L,Q) be a nondegenerate quadratic Z2-module, and
decompose it into normal form L ∼=

⊕
k≥0 L(k) where for each k, L(k)

is a direct sum of Uk’s, Vk’s, and W ε
2,k’s, The discriminant-form deter-

mines L(k) for k ≥ 2, and it remains to show that L(0) and L(1) are
also determined. We have that

L(0)⊕ L(1) ∼= U
⊕n(0)
0 ⊕ V

⊕m(0)
0 ⊕ U

⊕n(1)
1 ⊕ V

⊕m(1)
1 ⊕W (1)

where W (1) is either trivial or a sum of 1 or 2 rank one forms W ε
2,1’s.

The discriminant-form of this part of L is u
⊕n(1)
1 ⊕v⊕m(1)

1 ⊕w(1), where
w(1) is the corresponding sum of cyclic forms to W (1). Note that the
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only part of this data which is not seen by the discriminant-form is
n(0), m(0), and the difference between W 5

2,1 and W 1
2,1, and between

W 7
2,1 and W 3

2,1. Hence n(1) and m(1) are always determined, as is the
rank of W (1), by the discriminant-form: the only ambiguity in W (1) is
because of relation (0). Therefore also the rank of L(0) is determined,
by the total rank. If the rank of W (1) is zero, then L(1) is determined;
since the rank of L(0) is determined, and whether m(0) is 0 or 1 is
distinguished by the discriminant, we are done in this case.

Therefore assume that W (1) 6= 0. If L(0) = 0, then the normal

form requires that X(1) = V
⊕m(1)
1 ⊕W (1) come from the capital letter

version of Table (4.1). In this case, the knowledge of the discriminant-
form tells us which row of the table we are on; since the (capitalized)
entries in each row differ in their discriminants, we are done in this
case.

If L(0) 6= 0, then the normal form requires that X(1) = V
⊕m(1)
1 ⊕

W (1) come from the capital letter version of Group A of Table (4.1).
Therefore X(1) is determined by the discriminant-form. This deter-
mines L(1), and the two possibilities for L(0) are now distinguished by
the discriminant. Q.E.D.

We also have an analogue of Corollary (2.10) in the p = 2 case; we
leave the proof to the reader.

Corollary 5.6. Let p = 2.

(5.6.1) Given any torsion quadratic form (G, q) over Z2 in G2 (i,e,
with no summands of the form wε2,1) there is a unique quadratic
Z2-module L(q) (up to isomorphism) such that rank(L(q)) =
`(G) and the discriminant-form of L(q) is isomorphic to (G, q).

(5.6.2) If (G, q) is a torsion quadratic form over Z2 not in G2 (i.e., if
(G, q) has a direct summand of the form wε2,1 for some ε) then
there are exactly two quadratic Z2-modules L1(q) and L2(q)
(up to isomorphism) such that rank(L1(q)) = rank(L2(q)) =
`(G) and the discriminant-forms of both L1(q) and L2(q) are
isomorphic to (G, q). Moreover, disc(L1(q)) = 5 disc(L2(q))
mod U2

2.
(5.6.3) If L is any quadratic Zp-module whose discriminant-form is

isomorphic to (G, q), and L′ is a quadratic Z2-module such
that rank(L′) = `(G) and the discriminant-form of L′ is also
isomorphic to (G, q), then there is a unique unimodular qua-
dratic Z2-module M such that L ∼= M ⊕ L′.

It is useful to have at hand the analoque of Proposition 2.12:
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Proposition 5.7. Fix an integer r, an element d ∈ Z2 − {0}/U2
2,

and a finite 2-torsion quadratic form (G, q). Then there exists a quadra-
tic Z2-module L with rank(L) = r, disc(L) = d, and (GL, qL) ∼= (G, q)
if and only if:

(1) r ≥ `(G);
(2) r ≡ `(G) mod 2;
(3) if d = 2ku mod U2

2 with u ∈ U2, then |G| = 2k;
(4) if r = `(G) + 2n then χ(d) ≡ (−1)nχ(disc(q)) mod 4.
(5) if r = `(G) and if G has no summand of the form wε2,1 (i.e.,

G is good and special), then χ(d) = χ(disc8(q)).

Moreover, if so, then L is unique up to isomorphism.

Proof. Clearly the first and third conditions are necessary, and
the fifth condition follows by Corollary II.8.7. The second and fourth
conditions follow from Corollary 5.6.3, noting that any unimodular
quadratic Z2-module has even rank, and decomposes completely into
rank two pieces (U0’s and V0’s); these pieces have discriminants equal
to −1 mod 4.

To see that these conditions are sufficient, let L′ be a quadratic Z2-
module with discriminant-form equal to (G, q) such that rank(L′) =
`(G); such an L′ exists by Corollary 5.6, and there are two choices for
L′ if G contains one of the forms wε2,1 as a summand; these two have
discriminants which differ by a factor of 5. We seek the desired module
L in the form

L = U
N(0)
0 ⊕ V

e(0)
0 ⊕ L′

with e(0) ≤ 1; note that in this case disc(L) = 7N(0) · 3e(0) · disc(L′).
This module L has rank 2N(0) + 2e(0) + `(G), and disc(L) = |G|u for
some unit u. Moreover χ(disc(L)) = 7N(0) · 3e(0) · χ(disc(q)).

First assume that G has no summand of the form wε2,1, so that
either disc(q) is defined modulo 8 or the mod 8 discriminant disc8(q) is
defined, and L′ is unique. (In the rest of this paragraph we write only
disc(q), but if necessary the reader should use disc8(q).) If r = `(G),
we may take N(0) = e(0) = 0, so that L = L′; by (3) and (5) we see
that disc(L) = d and we are done. If r = `(G) + 4n + 2 with n ≥ 0,
then by (4) either χ(d) = 3 disc(q) mod 8 or χ(d) = 7 disc(q) mod 8; in
the former case we take N(0) = 2n and e(0) = 1 and in the latter case
we take N(0) = 2n + 1 and e(0) = 0. If r = `(G) + 4n with n ≥ 1,
then by (4) either χ(d) = disc(q) mod 8 or χ(d) = 5 disc(q) mod 8; in
the former case we take N(0) = 2n and e(0) = 0 and in the latter case
we take N(0) = 2n − 1 and e(0) = 1. Thus we are done in case G is
good and special.
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Suppose G has a summand of the form wε2,1 so that disc(q) is only
defined modulo 4. Here there are two choices for L′, as noted above.
Write r = `(G) + 2n, and set N(0) = n and e(0) = 0, so that L =
Un

0 ⊕L′. We have disc(L) = 7n disc(L′) so that χ(disc(L)) = χ(d) mod
4 by (4). By altering L′ if necessary we can therefore achieve that
χ(disc(L)) = χ(d) mod 8, so that disc(L) = d as required.

This proves the existence of L, and the uniqueness statement is
exactly Corollary 2.11. Q.E.D.

We note that many of the above statements hold for inner product
modules over Z2, where we have in addition the forms W ε

2,0. In par-
ticular, the relations in Proposition 3.1 generate all the relations, the
partial normal form, homogeneous normal form, and normal form all
make sense and exist, and the normal form decomposition is unique.
We leave all the extensions of the statements and results to the monoid
I2 to the reader.

We close this section with the analogue of Theorem (2.13) concern-
ing the lifting of isometries.

Theorem 5.8. Let L1 and L2 be two nondegenerate quadratic Z2-
modules such that rank(L1) = rank(L2) and disc(L1) = disc(L2). Sup-
pose that σ : GL1 → GL2 is an isometry between the discriminant forms
of L1 and L2. Then there exists an isometry s : L1 → L2 inducing σ.

Proof. The proof is formally the same as that of Theorem (2.13).
The assumptions imply, by Corollary (5.5), that L1 and L2 are isomor-
phic. Decompose GL1 into an (internal) normal form decomposition;
denote this by

GL1 = ⊕ig
(1)
i .

Now transport this decomposition to GL2 via the isomorphism σ, and
denote this by

GL2 = ⊕ig
(2)
i .

Since σ is an isometry, g
(1)
i

∼= g
(2)
i for each i. Now by Proposition

(II.11.6), both L1 and L2 can be decomposed compatibly with their
discriminant-forms. Specifically, we have direct sum decompositions

L1 = M1 ⊕
⊕
i

L
(1)
i and L2 = M2 ⊕

⊕
i

L
(2)
i

with M1 and M2 unimodular, L
(1)
i and L

(2)
i indecomposable and rank

one or two for each i, and the natural inclusions inducing the obvious
correspondence of discriminant-forms.

Since the decompositions of the GLi
are in normal form, these de-

compositions of the Li are almost in normal form. They are certainly
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in normal form for any pieces except possibly any W ε
2,1’s,, and the uni-

modular pieces. The only departure from normal form is a possible
failure to use relation (VIII) when k = 1, so that some W ε

2,1 should be

a W 5ε
2,1 at the expense of changing the unimodular part of the decom-

position. (This is not visible at the discriminant-form level, because
of relation (0).) If this is so, we may alter the decomposition of the
Li appropriately and still have a lifting of the GLi

decomposition; thus
we may assume that the decomposition of the Li above are in normal
form. Since L1 and L2 are isomorphic, the pieces of their decompo-
sitions (which are now in normal form) are unique and so match up
perfectly. This allows us to define an isometry s′ : L1 → L2 by identi-
fying the pieces.

The isometry s′ induces an isometry σ′ : GL1 → GL2 , which pre-
serves the decompositions. Therefore σ′ and σ differ only by automor-
phisms of the pieces: i.e., there is an automorphism τ of GL1 which
preserves the decomposition, such that σ = σ′ ◦ τ . By Proposition
(1.3), the automorphism τ lifts to an automorphism t of L1, and the
desired isometry from L1 to L2 is then s = s′ ◦ t. Q.E.D.

Finally, applying the above with L1 = L2 gives the 2-adic analogue
of Corollary (2.14):

Corollary 5.9. If L is a nondegenerate quadratic Z2-module, then
the natural map O(L) → O(GL) is surjective.





CHAPTER V

Rational Quadratic Forms

In this chapter we will collect results concerning quadratic vector
spaces over the rationals Q, the p-adic rationals Qp, and the reals R.
All of the definitions and results are quite standard and can be found in
any number of good texts, for example, [Cassels 78], [O’Meara 63],
and [Lam 73]. We will therefore not give proofs of all the statements,
but we will give complete definitions and proofs of several of the simpler
results to give the reader some feeling for the subject.

1. Forms over Q and Qp

Let K be a field of characteristic 0; in our applications, K will be
either Q or Qp for some p. (We allow p = ∞, where Q∞ denotes the
field of real numbers R.) Let (V,Q) be a quadratic vector space over
K, with associated bilinear form 〈−,−〉. If {ei} is a basis for V over
K, let AQ be the matrix of the form: (AQ)ij = 〈ei, ej〉. This matrix
is a nonsingular symmetric matrix over K, with even values on the
main diagonal. The determinant of AQ is non-zero, and induces the

discriminant disc(Q) which lies in D(K) = K×/(K×)
2
. Let us remind

the reader of these value groups for the fields in question; the following
comes directly from Lemma (I.3.6).

Lemma 1.1.

(1.1.1) D(Q) is a free Z/2-module on the set {−1} ∪ {p > 1 | p is a
prime in Z}.

(1.1.2) D(R) = D(Q∞) = {1,−1} is a cyclic group of order 2.
(1.1.3) If p is an odd prime, then D(Qp) = {1, p, r, pr} is a Klein 4-

group generated by the prime p and the class r of a non-square
unit in Zp.

(1.1.4) For p = 2, D(Q2) = {1, 2, 3, 5, 6, 7, 10, 14} is isomorphic to
(Z/2)3, generated by {2, 3, 5}.

If AQ = (aij) with respect to some basis {ei} for V over K, then
the quadratic form Q can be written as

Q(
∑
i

xiei) = Q(x) =
∑
i

Q(ei)x
2
i +

∑
i<j

aijxixj.

119
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for xi in K. (Note that in characteristic 0, Q(ei) = aii/2.) This
polynomial notation for Q will be used frequently in this chapter.

With this notation, the form Q is diagonalizable if and only if there
is a basis {ei} for V over K such that Q(

∑
i xiei) =

∑
iQ(ei)x

2
i .

With our hypothesis of characteristic 0 on K, we see by Proposition
(I.5.8) that every quadratic K-vector space is diagonalizable.

If a ∈ K, we say that the form Q represents a if there is a non-zero
vector v in V such that Q(v) = a.

2. The Hilbert norm residue symbol and the Hasse invariant

Let a and b be elements of Q×
p (p = ∞ is allowed).

Definition 2.1. The Hilbert Norm Residue Symbol (a, b)p (or sim-

ply (a, b) if no confusion is likely) is defined by

(a, b)p =

{
1 if ax2 + by2 − z2 represents 0
−1 otherwise.

Note that the value of (a, b)p depends only on the classes of a and b

modulo squares in Q×
p . Hence the function (−,−)p descends to a map

(−,−)p : Qp
×/(Q×

p )
2 → {1,−1}.

The following lemma records the elementary facts concerning the
Hilbert Norm Residue Symbol. For proofs, see [Cassels 78, Chapter
3, Section 2].

Lemma 2.2.

(2.2.1) The Hilbert Norm residue Symbol (−,−)p is a nondegenerate

bilinear function from Qp
×/(Q×

p )
2

to {1,−1}.
(2.2.2) (a,−a) = 1 for every a ∈ Q×

p .
(2.2.3) (−1,−1)∞ = −1.
(2.2.4) If p 6= 2,∞ and r is a non-square unit modulo p, then (1, 1)p =

(1, r)p = (r, r)p = 1, (p, r)p = −1, and (p, p)p = (−1)(p−1)/2.

(2.2.5) (2, 2)2 = (3, 5)2 = (5, 5)2 = 1 and (2, 3)2 = 2, 5)2 = (3, 3)2 =
−1.

Since Q ⊂ Qp for all p, we may evaluate (a, b)p for a, b ∈ Q× also.
The behavior of these values is governed by the so-called “Product For-
mula” for the Hilbert Norm Residue Symbol, which is equivalent to the
law of Quadratic Reciprocity. A proof may be found in [Cassels 78,
Chapter 3, Lemma 3.4].

Lemma 2.3. Let a, b ∈ Q×. Then
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(2.3.1) (a, b)p = 1 for all but finitely many p.

(2.3.2)
∏

all p (a, b)p = 1.

We will hereafter use the phrase ”almost all p” to mean all but
finitely many p.

Definition 2.4. Let (V,Q) be a quadratic vector space over Qp,
p ≤ ∞. Choose a diagonalizing basis for V , so that in this basis Q has
the form

Q(
∑
i

xiei) =
∑
i

aixi.

The Hasse invariant of (V,Q), denoted by cp(V,Q) (or cp(V ) or cp(Q)
as the situation warrants) is defined by the product

cp(V,Q) =
∏
i<j

(ai, aj)p.

If the dimension of V is one, we define cp(V,Q) = 1.

A priori of course the Hasse invariant depends on the choice of
diagonalizing basis for V . In fact it is well-defined, independent of this
choice. (See [Cassels 78, Chapter 4, Section 2].) In addition, we have
the following direct sum formula for the Hasse invariant.

Lemma 2.5. If (V1, Q1) and (V2, Q2) are two quadratic vector spaces
over Qp, then

cp(V1 ⊕ V2) = cp(V1)cp(V2)(disc(V1), disc(V2))p.

Proof. Assume Q1 and Q2 are diagonalized as Q1(x) =
∑

i aixi
and Q2(y) =

∑
j bjyj. Then Q1 + Q2 =

∑
i aixi +

∑
j bjyj is the qua-

dratic form on V1 ⊕ V2. Hence

cp(V1 ⊕ V2) =

(∏
i<k

(ai, ak)p

)(∏
i,j

(ai, bj)p

)(∏
j<n

(bj, bn)p

)
= cp(V1)(

∏
i

ai,
∏
j

bj)pcp(V2) by the bilinearity of (−,−)p

= cp(V1)cp(V2)(disc(V1), disc(V2))p.

Q.E.D.

Recall that a quadratic vector space over Q∞ = R is classified by its
rank and signature. The Hasse invariant can be immediately computed
using Lemma (2.2.3):

Lemma 2.6. Let (V,Q) be a real quadratic vector space, with sig-

nature (s+, s−). Then c∞(V,Q) = (−1)(
s−
2 ).
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The main global result concerning the Hasse invariant is a conse-
quence of the Product Formula (Lemma (2.3)) for the Hilbert Norm
Residue Symbol.

Lemma 2.7. Let V be a quadratic vector space over Q, and let
Vp = V ⊗ Qp be the induced quadratic vector space over Qp. Then
cp(Vp) = 1 for almost all p, and∏

all p

cp(Vp) = 1.

Proof. Diagonalize the form Q on V as Q(x) =
∑

i aixi, where
the ai are fixed rational numbers. This polynomial formula is also
the formula for the induced form Qp for every p. Hence cp(Vp) =∏

i<j(ai, aj)p for all p. Since the ai’s are independent of p, cp(Vp) = 1

for almost all p by Lemma (2.3.1). The second statement now follows
from Lemma (2.3.2):∏

all p

cp(Vp) =
∏
i<j

∏
all p

(ai, aj)p =
∏
i<j

1 = 1.

Q.E.D.

3. Representations of numbers by forms over Q and Qp

Recall that a quadratic vector space (V,Q) represents a number
a ∈ K if there is a nonzero vector v in V such that Q(v) = a. The
following observation is sometimes useful:

If a 6= 0, then V represents a if and only if V ⊕ 〈−a〉K represents 0.
(3.1)

The next theorem tells when a form over Qp for finite p represents
a given number.

Theorem 3.2. Fix a prime p 6= ∞, and let V be a quadratic vector
space over Qp. Let n be the rank of V , d the discriminant of V , and cp
the Hasse invariant of V . Let a be a non-zero element of Qp. Then V
represents a if and only if one of the following holds:

(1) n = 1 and a ≡ d mod (Q×
p )2

(2) n = 2 and (a,−d)p = cp
(3) n = 3 and a 6= −d mod (Q×

p )2

(4) n = 3, a ≡ −d mod (Q×
p )2, and (−1,−d)p = cp

(5) n ≥ 4.
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The reader may find proofs of this theorem in [Cassels 78, Chapter
4, Section2], [Serre 73, Chapter IV, Section 2.2], or [B-S 66, Chapter
1, Section 6].

The following corollary is immediate.

Corollary 3.3. Fix a prime p 6= ∞, and let V be a quadratic
vector space over Qp of rank n ≥ 3, discriminant d, and Hasse invariant
cp. Let a ∈ Q×

p . Then V fails to represent a if and only if n = 3, a ≡ −d
mod (Q×

p )2, and (−1,−d)p = −cp. In particular, V represents all but

possibly one coset in Q×
p /(Q×

p )2.

The next corollary is an easy consequence of the previous results.

Corollary 3.4. Fix a prime p 6= ∞, and let V be a quadratic
vector space over Qp of rank n ≥ 5. Then V represents 0.

Proof. Not every vector of V can be isotropic, so find a nonzero
vector w such that Q(w) 6= 0. If W is the span of w, then W⊥ is of
dimension 4, and so by the previous corollary W⊥ represents −Q(w).
Since W ∼= 〈+Q(w)〉, the result follows from (3.1). Q.E.D.

Of course, the situation over Q∞ = R is different. The following is
immediate.

Lemma 3.5. Let V be a real quadratic vector space with sign(V ) =
(s+, s−). Then V represents 0 if and only if s−s+ 6= 0, i.e., V is
indefinite.

Corollary 3.6. If V is an indefinite real quadratic vector space,
then V represents all real numbers.

The Hasse-Minkowski Theorem reduces representation of numbers
with quadratic forms over Q to representation over Qp for all p. It is
one of the cornerstones of the theory of rational quadratic forms.

Theorem 3.7. Let V be a quadratic vector space over Q. Then V
represents 0 if and only if V ⊗Qp represents 0 for all p ≤ ∞.

Proofs of the Hasse-Minkowski Theorem appear in [Cassels 78,
Chapter 6 Section 11], [Serre 73, Chapter IV, Section 3.2], and [B-S 66,
Chapter 1, section 7].

The following corollary is often referred to as Meyer’s Theorem.

Corollary 3.8. Let V be an indefinite quadratic vector space over
Q of dimension n ≥ 5. Then V represents 0.
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4. Isometries

The rank, discriminant, and Hasse invariants serve to classify qua-
dratic vector spaces over the fields Qp for p 6= ∞. Expressed in terms
of isometries, the precise statement is given below. (See [Cassels 78,
Chapter 4,Theorem 1.1] or [Serre 73, Chapter IV, Section 2.3, Theo-
rem 7].)

Theorem 4.1. Fix a finite prime p, and let V1 and V2 be quadratic
vector spaces over Qp. Then there exists an isometry between V1 and
V2 if and only if they have the same rank n, discriminant d, and Hasse
invariant cp.

The analogous statement for Q∞ = R is false; for example, the
forms with signature (1, 6) and (5, 2) have the same rank (7), the
same discriminant (1) and the same Hasse invariant c∞ (−1), but are
clearly not isomorphic. If p = ∞, such an isometry exists if and only
rank(V1) = rank(V2) and sign(V1) = sign(V2).

The Weak Hasse Principle state that isometries of rational forms
depend only on p-adic isometries:

Theorem 4.2. Let V1 and V2 be quadratic vector spaces over Q.
Suppose that there exist isometries σp : V1 ⊗ Qp → V2 ⊗ Qp for every
p ≤ ∞. Then there exists an isometry σ : V1 → V2.

Proofs may be found in [Cassels 78, Chapter 6, Theorems 1.2],
[Serre 73, Chapter IV, Section 3.3, Theorem 4], and [B-S 66, Chapter
1, section 7, Theorem 2].

5. Existence of forms over Q and Qp

The main result concerning the existence of quadratic vector spaces
over Qp is given below. (See [Cassels 78, Chapter 6, Theorems 1.3],
or [Serre 73, Chapter IV, Section 2.3, Proposition 6].)

Theorem 5.1. Fix a finite prime p, and let (n, d, c) ∈ N×
(
Q×

p /(Q×
p )2)×

{1,−1} be given, such that

(1) if n = 1 then c = 1, and
(2) if n = 2 and d ≡ −1 mod (Q×

p )2 then c = 1

Then there exists a quadratic vector space V over Qp such that dim(V ) =
n, disc(V ) ≡ d mod (Q×

p )2, and cp(V ) = c.

The existence of quadratic vector spaces over Q forms a converse
to Lemma (2.7):

Theorem 5.2. Fix n ≥ 1 and d ∈ Q×. Suppose that for every
p ≤ ∞, we are given a quadratic vector space Vp over Qp such that
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(1) dim(Vp) = n for every p,
(2) disc(Vp) ≡ d mod (Q×

p )2 for every p,
(3) cp(Vp) = 1 for almost all p, and
(4)

∏
p≤∞ cp(Vp) = 1.

Then there exists a quadratic vector space V over Q such that dim(V ) =
n, disc(V ) ≡ d mod (Q×)2. Moreover, there exist isometries σp :
V ⊗Qp → Vp for every p.

It will be convenient to rephrase this existence theorem by singling
out p = ∞.

Corollary 5.3. Fix a pair (s+, s−) ∈ N2, and d ∈ Q×, such
that d = (−1)s−|d|. Assume that for every finite prime p <∞ there is
given a quadratic vector space Vp over Qp of dimension n = s+ + s−,
satisfying the following:

(1) disc(Vp) ≡ d mod (Q×
p )2 for every p,

(2) cp(Vp) = 1 for almost all p, and

(3) (−1)(
s−
2 )∏

p6=∞ cp(Vp) = 1.

Then there exists a quadratic vector space V over Q such that dim(V ) =
n, disc(V ) ≡ d mod (Q×)2, and sign(V ) = (s+, s−). Moreover, there
exist isometries σp : V ⊗Qp → Vp for every p.

Proof. Since d∞ = d/|d|, it is necessary that d = (−1)s−|d|, since
d∞ = (−1)s− . This assures that (2) of Theorem (5.2) holds for all p;
(2) is the same condition, and (3) follows from the calculation of c∞(V )
given in Lemma (2.6). Q.E.D.

6. Orthogonal Groups and the surjectivity of (det,spin)

The reader will recall from Chapter I, Section 9 the definition of a
reflection. Let (V,Q) be a quadratic vector space over K and assume
that v ∈ V has Q(v) 6= 0. Then the isometry τv defined by

τv(w) = w − (〈v, w〉/Q(v))v

has det(τv) = − and spin(τv) = Q(v) mod (K×)2. Moreover, every
element ofO(V ) can be written as a product of reflections (see Theorem
(I.9.10)).

We want to apply the theory to compute the image of the map

(det, spin) : O(V ) → {+,−} ×K×/(K×)2.

in case K = Q or Qp.

Proposition 6.1. Let V be a quadratic vector space over K with
dim(V ) ≥ 3.
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(6.1.1) If K = Qp with p 6= ∞ then (det, spin) is surjective.
(6.1.2) If K = Q and V is indefinite, then (det, spin) is surjective.

Proof. To prove the first statement, let k = |Q×
p /(Q×

p )2|. Note
that k = 4 if p 6= 2 and k = 8 if p = 2. By Corollary (3.3), there exist
v1, . . . , vk−1 ∈ V such that the values ai = Q(Vi) range over all but one
of the cosets of Q×

p mod (Q×
p )2. In particular, Q(vi) 6= 0 for any i, so

the reflections τvi
are defined. In this case

(det(τvi
), spin(τvi

)) = (−1, ai)

and

(det(τv1τvi
), spin(τv1τvi

)) = (1, a1ai)

and these images are all distinct. Therefore the image of (det, spin)
contains at least 2k − 2 elements; since the image group {+,−} ×
Q×
p /(Q×

p )2 has 2k elements, and k ≥ 4, the surjectivity follows.
To prove the second statement, let d = disc(V ) and cp = cp(V ⊗Qp).

By Corollary (3.3), a rational number a ∈ Q fails to be represented by
V ⊗Qp if and only if n = 3, a ≡ −d mod (Q×

p )2, and (−1,−d)p = −cp.
But (−1,−d)p = 1 and cp = 1 for almost all p, by Lemmas (2.3.1) and
(2.7), so that (−1,−d)p 6= −cp for almost all p. Thus, there is a finite
set S of primes (those for which (−1,−d)p = −cp) such that a ∈ Q×

fails to be represented by V ⊗ Qp, p 6= ∞, if and only if p ∈ S and
a ≡ −d mod (Q×

p )2.
For any a ∈ Q×, by the Chinese Remainder Theorem, we can find

b and c in Q× such that a = bc and b, c 6= −d mod (Q×
p )2 for all

p ∈ S. Therefore b and c are represented by V ⊗ Qp for all p 6= ∞;
by Corollary (3.6), since V is indefinite, both b and c are represented
by V ⊗ Q∞ as well. Hence by the Hasse-Minkowski Theorem (3.7),
there exists v and w in V such that Q(v) = b and Q(w) = c. In
particular, spin(τvτw) = bc = a. This shows that spin : O+(V ) →
Q×/(Q×)2 (where O+(V ) is the kernel of the det map) is surjective.
Since O(V ) 6= O+(V ), this proves that (det, spin) defined on all of
O(V ) is surjective as well. Q.E.D.

7. The strong approximation theorem for the spin group

Let (V,Q) be a quadratic vector space over K. For the fields Q and
Qp, the (det, spin) map tends to be surjective, onto a well-understood
group, by the results of the previous section. Therefore computations
with the orthogonal group of (V,Q) can often be reduced to the kernel
of (det, spin).
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Definition 7.1. Let R be an integral domain with quotient field
K, and let (L,Q) be a quadratic R-module. Let V = L⊗RK, with the
induced quadratic form, also denoted Q. Note that in this situation we
may consider L ⊆ V , and also O(L) ⊆ O(V ), and hence both det and
spin are defined on O(L). Define

Θ(L) = Ker(det, spin) : O(L) → {+,−} ×K×/(K×)2.

Θ(L) is also denoted by Θ(L,Q) or Θ(Q).

The reader should not confuse Θ(L) with O++(L), which was de-
fined in Section (I.10) also as the kernel of (det, spin). That was a
slightly different spin, only over the real numbers.

The Strong Approximation Theorem for the Spin Group can now
be stated.

Theorem 7.2. Let L be an indefinite quadratic Z-module, of rank
at least 3. Let V = L⊗Z Q be the induced quadratic vector space over
Q. For each p 6= ∞, let Vp be a nonempty open subset (in the p-adic
topology) of Θ(V ⊗ Qp) such that Vp = Θ(L ⊗ Zp) for almost all p.
Then there is an isometry σ ∈ Θ(V ) such that σ ∈ Vp for all p.

A proof may be found in [Cassels 78, Chapter 10, Section 7].





CHAPTER VI

The Existence of Integral Quadratic Forms

1. The monoids Q and Qp

Recall that an integral quadratic form is a free finitely generated
Z-module L together with a Z-valued quadratic form Q defined on L.
(This is a quadratic Z-module.) Let Q be the monoid of isomorphism
classes of integral quadratic forms. (The operation in the monoid is
direct sum.) There are two natural maps

rank : Q → N

and

disc : Q → Z
defined on Q as we have seen.

There is another more “discriminating” function on Q given by the
discriminant-form construction. Let T be the monoid of isomorphism
classes of torsion quadratic Z-modules; these are finite abelian groups
G together with a Q/Z-valued quadratic form q defined on G. The
discriminant-form construction gives a natural map

d : Q → T

which we have investigated in the p-adic context in Chapter IV.
Namely, recall that Qp denotes the monoid of isomorphism classes

of quadratic Zp-modules, and Tp denotes the monoid of isomorphism
classes of torsion quadratic Zp-modules. We have a natural map

d : Qp → Tp
defined by the discriminant-form construction for each prime p.

By the Sylow splitting (Proposition (II.1.1)), the monoid T is nat-
urally the direct sum of the monoids Tp:

T ∼=
⊕
p

Tp.

In addition, localization gives a map Q → Qp induced by sending
an integral quadratic form L to L⊗Z Zp. For each prime p we have the

129
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obvious commutative diagram

Q → Qp

d ↓ d ↓
T → Tp

where the vertical arrows are the discriminant-form construction, the
upper horizontal arrow is the localization map, and the lower horizontal
arrow is the projection onto the p-Sylow part.

If we set Z∞ = R, the real numbers, then most of this notation can
be applied to the case p = ∞. Let Q∞ be the monoid of isomorphism
classes of real quadratic vector spaces. We have the natural localization
map Q → Q∞ induced by sending an integral quadratic form L to
L ⊗Z R. (There is no analogue T∞ of the monoids Tp.) We will often
use Q∞ rather than Z∞ to denote R, as is more standard.

Putting these localization maps together, we obtain a natural map

g : Q →
⊕
all p

Qp,

where here “all p” means that p = ∞ is included. This map g is the
genus map, and a genus is any element of

⊕
all pQp which is in the

image of g.
In this chapter we will investigate the existence of integral quadratic

forms with prescribed “local” data. In the standard treatment of the
theory, “local” data means essentially the genus. Our point of view is
that “local” data means the discriminant-form. The existence theorem
from this point of view was first proved by Nikulin in [Nikulin 80b]; we
give this theorem in section 5. The proof depends on the corresponding
theorem over Q (Corollary (V.5.3)), and the analyses of discriminant-
forms and p-adic integral quadratic forms given in Chapters II, III, and
IV.

2. The surjectivity of Q → T

We begin the study of the existence of integral quadratic forms by
showing in this section that any torsion quadratic form over Z (that is,
a finite abelian group with a Q/Z-valued quadratic form on it) is, up
to isomorphism, the discriminant-form of some integral quadratic form.
In other words, we will show that the map d : Q → T is surjective. We
begin with the following lemma.

Lemma 2.1. Fix a0, a1, . . . , am in Q. Define dm = am, dm−1 =
am−1dm−2 − 1, and di−2 = ai−2di−1 − di for 2 ≤ i ≤ m. Then the
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determinant of the tridiagonal matrix

a0 1 0
1 a1 1 0
0 1 a2

. . .
0 1 am−1 1

0 1 am


with the ai’s on the diagonal, 1’s on the sub- and super-diagonals, and
0’s elsewhere, is d0.

Proof. This is a straightforward induction on m. If m = 0 or
m = 1, the result is clear. Assume then that m ≥ 2 and that the result
is true for all sizes less than m. Denote the above tridiagonal matrix
by [a0, a1, . . . , am]. By expanding the determinant along the first row,
we see that

det[a0, a1, . . . , am] = a0 det[a1, . . . , am]− det[a2, . . . , am]

= a0d1 − d2 by the inductive hypothesis

= d0 by definition.

Q.E.D.

We begin by exhibiting integral qudratic forms whose discriminant-
forms are equal to the cyclic generators of Tp.

Lemma 2.2. Fix a prime p, and an integer k ≥ 1. Then for any ε
(= ±1 if p is odd, = 1, 3, 5, 7 if p = 2) there exists an integral quadratic
form L whose discriminant-form represents wεp,k.

Proof. Let G = Z/pk, and define the Q/Z-valued quadratic form
q on G by setting q(1) = p−kn/2, where (n, p) = 1, |n| < pk, and
n is even if p is odd. Any wεp,k is represented by such a q, and we
will produce an integral quadratic form (L,Q) with discriminant-form
(GL, qL) ∼= (G, q).

Write 1 = nd1 − pkd2; since |n| < pk, we must have |d2| < |d1|.
Certainly d1 and d2 cannot both be even. If they are both odd, then
since n and p have opposite parity we may replace d1 by d1 + pk and
d2 by d2 +n to make one even and one odd. Therefore we may assume
that d1 and d2 have opposite parity. Set d0 = p−k and a0 = p−kn; then
d0 = a0d1 − d2. Recursively define sequences (ai) and (di) as follows.

Given di and di+1 with |di+1| > 1, choose the even number ai so that
aidi+1 is the closest even multiple of di+1 to di, and set di+2 = aidi+1−di.
In this case note that
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(a) di = aidi+1 − di+2

(b) 0 6= |di+2| < |di+1|
(c) the parity of di is that of di+2.

If |di+1| = 1, set ai = di and stop.
By (b) above, this construction ends, and produces sequences (a0, . . . , am)

and (d0, . . . , dm) (dm+1 = ±1). Also, since d1 and d2 have opposite par-
ity, the parity of the integers di (for i > 0) alternate, by (c). Hence the
last members am = dm are even, since dm+1 is odd; therefore each ai is
even, for i ≥ 1.

Let L# be the free Z-module with basis {e#0 , . . . , e#m}. Define a
symmetric Q-valued bilinear form 〈−,−〉 on L# by setting the matrix

A# = (〈e#i , e
#
j 〉) equal to the tridiagonal matrix [a0, a1, . . . , am] (using

the notation of Lemmma (2.1)). By Lemma (2.1), the determinant of
A# is d0 = p−k, using (a) above. Hence by Cramer’s Rule, the inverse
A of A# is integral, since every maximal minor of A# has determinant
s/pk for some s ∈ Z. (The only non-integral entry of A# is the upper
left corner entry a0.)

Let L be the dual module to L#, i.e., L = {x ∈ L#⊗Q|〈x,y〉 ∈ Z
for all y ∈ L#}. By Lemma (II.7.8), the matrix of the induced bilinear
form on L is A. Note that a basis for L over Z is {e0, . . . , em}, where

e0 = pke#0 and ei = e#i for i > 0.
We next note that the matrix A has all even entries on its main

diagonal. Indeed, if i > 0, then 〈ei, ei〉 = ai and is therefore even. For

the upper left entry, we have that 〈e0, e0〉 = 〈pke#0 , pke
#
0 〉 = pkn, which

is even if p is odd since then n is even, and is obviously even if p = 2.
Therefore the bilinear form 〈−,−〉 on L comes from a unique Z-

valued quadratic form Q, (defined by Q(x) = 〈x, x〉/2), and the pair
(L,Q) is an integral quadratic form. The discriminant-form group

L#/L is generated by the class of e#0 , and has order pk. Its quadratic

form qL is determined by qL(e#0 mod L) = Q(e#0 ) mod Z = 〈#0 ,
#
0 〉/2

mod Z = a0/2 mod Z = p−kn/2 mod Z. Thus (GL, qL) ∼= (G, q) as
desired. Q.E.D.

The rank two indecomposable torsion forms over Z2 are obtainable
as follows.

Lemma 2.3.

(2.3.1) The rank 2 integral form (L,Q) defined by Q(x, y) = 2kxy has
uk as discriminant-form.

(2.3.2) The rank 4 integral form (L,Q) defined by Q(x, y, z, w) =
2kx2 + 2ky2 + az2 + bw2 + 2kxy + 2kyz + zw, where a =
(2k− (−1)k)/3 and b = (−1)k−1, has vk as discriminant-form.
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Proof. In the first case the dual module L# is easily seen to be
generated by f1 = (2−k, 0) and f2 = (0, 2−k), and the result follows
directly. In the second case, the determinant of the matrix of the
form is exactly 22k, and it is easy to see that f1 = (2−k, 0, 0, 0) and
f2 = (0, 2−k, 0, 0) are in the dual lattice L#. Therefore the dual lattice
is generated by f1, f2, (0, 0, 1, 0), and (0, 0, 0, 1) (there is no more room
left for anything bigger), and so the discriminant-form group GL is
generated by the image of f1 and f2. The reader can now easily check
that the induced form qL on GL represents vk. Q.E.D.

Since the forms wεp,k, uk, and vk generate the monoids Tp, and since
T =

⊕
p Tp, the above lemmas suffice to prove the desired surjectivity

result:

Theorem 2.4. The map d : Q → T is surjective.

3. Hasse invariants for Integral p-adic Quadratic Forms

In this section, we compute the Hasse invariants (defined in Chapter
V, section 2) for the unimodular p-adic integral quadratic forms, i.e.,
the unimodular quadratic Zp-modules. If L is a quadratic Zp-module,
define its Hasse invariant cp(L) = cp(L⊗Qp).

Proposition 3.1. Let L be a unimodular p-adic integral quadratic
form.

(3.1.1) If p is odd, then cp(L) = 1.
(3.1.2) If p = 2, write L ∼= U⊕n

0 ⊕ V ⊕m
0 with m ≤ 1. Then c2(L) =

(−1)m(n+1)+(n
2).

Proof. To prove the first statement, we use induction on the rank.
Since any 1-dimensional form has Hasse invariant 1, the formula holds
if L has rank 1.

If L has rank at least 2, then we may write L ∼= W ε
p,0⊕L′ with ε =

±1 and rank(L′) = rank(L)− 1. Let d = disc(W ε
p,0) and d′ = disc(L′).

Then by Lemma (V.2.5),

cp(L) = cp(W
ε
p,0)cp(L

′)(d, d′)p.

The first term on the right is 1 since the rank of the form is one, and
the second term is 1 by the inductive hypothesis. Finally, the third
term is also 1 by Lemma (V.2.2), since both d and d′ are prime to p.

To prove the second statement, we use induction on n; we must
start by computing c2(U0) and c2(V0).
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U0 has matrix

(
0 1
1 0

)
, so that U0⊗Q2 is equivalent to a form with

matrix

(
2 0
0 −2

)
; hence, disc(U0) = −1 and c2(U0) = (2,−2)2 = 1.

V0 has matrix

(
2 1
1 2

)
, so that V0 ⊗ Q2 is equivalent to a form

with matrix

(
2 0
0 6

)
; hence, disc(V0) = 3 and c2(V0) = (2, 6)2 = −1.

Therefore the result is true when n = 0. Assume the results holds
for n− 1, and let us show it for n. Let L ∼= U⊕n

0 ⊕ V ⊕m
0 , with m ≤ 1.

Let L′ = U
⊕(n−1)
0 ⊕V ⊕m

0 , so that L ∼= U0⊕L′. Then by Lemma (V.2.5),

c2(L) = c2(U0)c2(L
′)(−1, (−1)n−13m)2

= 1 · (−1)mn+(n−1
2 )(−1,−1)n−1

2 (−1, 3)m2

which gives the desired result after noting that (−1,−1)2 = (−1, 3)2 =
−1.

Q.E.D.

4. Localization of Z-modules

In this section, we study a pair of free Z-modules inside a fixed
vector space over Q, and show the extent to which they are determined
by local data. The theorem we desire is the following.

Theorem 4.1. Let Λ be a free Z-module of finite rank.

(4.1.1) Suppose that there is a Z-module L ⊂ Λ⊗Q such that L⊗Q =
Λ⊗Q. Then for almost all p, L⊗ Zp = Λ⊗ Zp.

(4.1.2) Suppose one is given Zp-modules Lp ⊂ Λ⊗ Qp for all p, such
that
(a) Lp ⊗Qp = Λ⊗Qp for all p, and
(b) Lp = Λ⊗ Zp for almost all p.
Then there is a Z-module L ⊂ Λ ⊗ Q such that L ⊗ Zp = Lp
for all p.

Proof. The first statement is easy: let {x1, . . . , xn} and {y1, . . . , yn}
be bases of L and Λ repsectively. Then there exist aij ∈ Q with
det(aij) 6= 0 and xi =

∑
j aijyj for each i. If p is any prime such

that aij ∈ Zp and det(aij) ∈ Up, then L ⊗ Zp = Λ ⊗ Zp; this holds for
almost all p.

To see the second statement, note that without loss of generality
we may assume that Lp ⊂ Λ⊗ Zp for all p, by replacing Λ by aΛ for a
suitable rational number a ∈ Q.
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Since Λ ∩ Lp = Λ ∩ (Λ⊗ Zp) = Λ for almost all p, the intersection⋂
p(Λ ∩ Lp) is actually an intersection of finitely many Z-modules; let

L =
⋂
p(Λ ∩ Lp).

There are non-negative integers e(p), defined by each prime p, which
are almost all 0, such that pe(p)(Λ ⊗ Zp) ⊂ Lp. Thus if we let k =∏

p p
e(p), we have kΛ ⊂ L ⊂ Λ so that L is a free Z-module with

L⊗Q = Λ⊗Q.
By definition, L ⊗ Zp ⊂ Lp for each p. Thus, we must only show

that Lp ⊂ L⊗Zp for each p. For this, it is enough to show that for every
x ∈ Lp and for every ε > 0, there is a y ∈ L such that ‖ x − y ‖p< ε.
Therefore fix p, and such an x and an ε.

Let {x1, . . . , xn} be a basis for Λ, and write x =
∑

i aixi where
ai ∈ Zp since Lp ⊂ Λ ⊗ Zp. Let N > max(e(p), logp(

√
n/ε)). By the

Chinese Remainder Theorem, there exist integers b1, . . . , bn such that

bi ≡ ai mod pN

and
bi ≡ 0 mod qe(q) for all q 6= p.

(This is only finitely many conditions since e(q) = 0 for almost all q.)
Let y =

∑
i bixi. Then y ∈ Λ since bi ∈ Z, and for every q 6= p,

y ∈ qe(q)(Λ⊗Zq) ⊂ Lq. Also, x− y ∈ pe(p)(Λ⊗Zp) ⊂ Lp so that y ∈ Lp
since x ∈ Lp. Thus, by the definition of L, y ∈ L.

On the other hand,

‖ x− y ‖2
p =

∑
‖ ai − bi ‖2

p≤ np−2N < ε2.

Q.E.D.

5. Nikulin’s Existence Theorem

In this section we formulate a necessary and sufficient condition on
a signature, discriminant, and discriminant-form, to guarantee the exis-
tence of an integral quadratic form having that signature, discriminant,
and discriminant-form.

Recall that if L is an integral quadratic form, with discriminant-
form group GL = L#/L, and sign(L) = (s+, s−), then disc(L) =
(−1)s−|GL|.

If (G, q) is any torsion quadratic form over Z, we will denote by
(Gp, qp) the induced torsion quadratic form over Zp on the p-Sylow
subgroup Gp of G.

If (Gp, qp) is a torsion quadratic form over Zp, denote by L(qp)
a quadratic Zp-module with discriminant-form isomorphic to (Gp, qp)
and rank(L(qp)) = `(Gp). L(qp) is unique up to isomorphism if p is
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odd, or if p = 2 and wε2,1 does not split off qp for any ε, by Corollaries
(IV.2.10) and (IV.5.6). If p = 2 and wε2,1 does split off q2, we will write
L(q2) for either of the two quadratic Z2-modules which are possible;
this ambiguity should not cause any confusion in what follows. Recall
that in this case disc(L(q2)) is well-defined up to multiplication by 5,
mod U2

2, by Corollary (IV.5.6).
Using this terminology, we have the following necessary conditions

for the existence of an integral quadratic form. Recall that `(G) is the
length of a finite abelian group, and γL(1) is one of the Gauss sum
invariants of an integral quadratic form, defined in Chapter 3.

Proposition 5.1. Let L be an integral quadratic form with discriminant-
form (G, q), and with signature sign(L) = (s+, s−). Let r = rank(L) =
s+ + s−. Then

(5.1.1) r ≥ `(G).
(5.1.2) If s = s+ − s−, then γL(1) = exp(πis/4).
(5.1.3) If r = `(Gp), and if either p is odd, or if p = 2 and wε2,1 does

not split off q2, then (−1)s−|G| = disc(L(qp))( mod U2
p ).

(5.1.4) If r = `(Gp), p = 2, and wε2,1 does split off q2, then (−1)s−|G| =
disc(L(q2))( mod (5,U2

p )).

Proof. SinceG = L#/L, it is generated by the classes of a basis for
L#; since L and L# have the same rank r, the first statement follows.
The second statement is Milgram’s Theorem, Theorem (III.5.1).

If r = `(Gp), then Lp = L⊗Zp has rank r = `(Gp), with discriminant-
form (Gp, qp); therefore Lp ∼= L(qp), and so disc(Lp) = disc(L(qp))(
mod U2

p in the situation of (5.1.3) and mod (5,U2
p ) in the situation of

(5.1.4). Since disc(Lp) = disc(L) mod U2
p = (−1)∼−|G|, the last two

statements follow. Q.E.D.

Nikulin’s Existence Theorem is essentially a converse to the above
Proposition. It turns out that conditions (5.1.3) and (5.1.4) can be
weakened slightly. The statement follows.

Theorem 5.2. Fix a pair of nonegative integers (s+, s−) ∈ N2, and
a torsion quadratic form (G, q) over Z. Then there exists an integral
quadratic form L such that sign(L) = (s+, s−), with discriminant-form
isomorphic to (G, q), if and only if the following conditions are satisfied:

(5.2.1) r = s+ + s− ≥ `(G).
(5.2.2) γq(1) = exp(πi(s+ − s−)/4).
(5.2.3) If p is odd and r = `(Gp), then (−1)s−|G| = disc(L(qp))(

mod U2
p ).
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(5.2.4) If r = `(G2) and wε2,1 does not split off q2 for any ε,

then |G| = ± disc(L(qp))( mod U2
2).

Proof. The necessity follows from the previous Proposition. Note
that if we assume that the theorem is true, it follows that the above 4
conditions imply the (a priori) stronger conditions of the Proposition.
This can be checked directly also, which we will leave as an exercise
for the reader.

It remains to demonstrate the sufficiency of the conditions. By The-
orem (2.4), there is an integral quadratic form E with discriminant-
form (G, q). The problem with E is that its signature sign(E) =
(e+, e−) may be wrong. Let U be hyperbolic plane over Z; recall that

this is the rank 2 integral quadratic form whose matrix is

(
0 1
1 0

)
.

Recall also that disc(U) = −1 and sign(U) = (1, 1), so that U is uni-
modular and, for any k ≥ 1, sign(E ⊕ U⊕k) = (e+ + k, e− + k).

Choose k such that e+ + k ≡ s+ mod 8, e− + k ≡ s− mod 8, and
e+ + e− + 2k ≥ r = s+ + s−. (This is possible because of the Gauss
sum condition (5.2.2).) Set M = E ⊕ U⊕k, and write m± = e± + k, so
that sign(M) = (m+,m−). Therefore

(i) m+ ≡ s+ mod 8 and m− ≡ s− mod 8,
(ii) rank(M) = m+ +m− ≥ r, and
(iii) the discriminant-form (GM , qM) of M is isomorphic to (G, q),

and m+−m− ≡ s+−s− mod 8, so that γq(1) = exp(πi(m+−
m−)/4).

For each prime p, write Mp = M⊗Zp. By Corollaries (IV.2.10) and
(IV.5.6) and the classification of unimodular quadratic Zp-modules, we
may write

Mp = (W 1
p,0)

⊕αp ⊕ (W−1
p,0 )⊕βp ⊕ L(qp)

if p is odd, and

M2 = (U0)
⊕α2 ⊕ (V0)

⊕β2 ⊕ L(q2),

where αp ≥ 0 and βp = 0 or 1 for each p. Moreover we may assume
that

(iv) β2 = 0 if wε2,1 splits off q2 for some ε,

by using relation VIII of Proposition (IV.3.1) if necessary. (Note that
this switches L(q2) in the above expression for M2.)

Set
γp = r − `(Gp)− βp = r − rank(M) + αp

if p is odd, and

γ2 = (r − `(G2)− 2β2)/2 = (r − rank(M) + 2α2)/2
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Since `(G2) = rank(L(q2)), the quantity r−`(G2)−2β2 = r−rank(M)+
2α2 is even by (i); therefore γp is an integer for all p. In addition

(v) γp ≡ αp mod 8 if p is odd, and γ2 ≡ α2 mod 4 if p = 2,

by (i).
We will next show that γp ≥ 0 for all p. Since r ≥ `(G) ≥ `(Gp) for

all p by (5.2.1), and since βp ≤ 1 for all p, the only way that γp could
be negative is if r = `(Gp) and βp = 1. Therfore fix a prime p and
assume that r = `(Gp); we will show that βp = 0. This follows from a
discriminant calculation.

If p is odd, fix a non-square a ∈ Up. Then

disc(L(qp)) = (−1)s−|G| mod U2
p by (5.2.3)

= (−1)m−|G| mod U2
p by (i)

= disc(M) mod U2
p by (iii)

= disc(Mp) = aβp disc(L(qp))

by the decomposition of Mp. Therefore aβp = 1 mod U2
p , forcing βp to

be even, hence 0.
If p = 2 and wε2,1 splits off q2, then β2 = 0 by the assumption (iv).
Finally, if p = 2 and wε2,1 does not split off q2, then

disc(L(q2)) = ±|G| mod U2
2 by (5.2.4)

= ± disc(M) mod U2
2 by (iii)

= ± disc(M2) = ±(−1)α23β2 disc(L(q2))

by the decomposition ofM2. Note that these are all equalities mod U2
2,

not also mod 5, since we have fixed L(q2) throughout. Therefore
(−1)α23β2 = ±1 mod U2

2, again forcing β2 to be even, hence 0.
This proves that γp ≥ 0 for all p.
Now define quadratic Zp-modules Lp for each p by setting

Lp = (W 1
p,0)

⊕γp ⊕ (W−1
p,0 )⊕βp ⊕ L(qp)

if p is odd, and

L2 = (U0)
⊕γ2 ⊕ (V0)

⊕β2 ⊕ L(q2),

where we use the same L(q2) as in the decomposition of M2.
These quadratic Zp-modules will be isomorphic to the localizations

of the desired integral quadratic form L. Note that the discriminant-
form of Lp is (Gp, qp), and rank(Lp) = r, for all p. Set d = (−1)s−|G|;
then d = (−1)s−d. Moreover, if p is odd,

disc(Lp) = disc(Mp) = (−1)m−|G| = (−1)s−|G| = d( mod U2
p ),
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and if p = 2,

disc(L2) = (−1)α2−γ2 disc(M2) since disc(U0) = −1

= disc(M2) by (v)

= (−1)s−|G| = d mod U2
2 as above.

Hence

(vi) disc(Lp) = d mod U2
p for every p 6= ∞.

The Hasse invariants of these Lp’s can be calculated using Lemma
(V.2.5) and Proposition (3.1).

If p is odd, then

cp(Lp) = cp((W
1
p,0)

⊕(αp−γp) ⊕Mp)

= cp((W
1
p,0)

αp−γp)cp(Mp)(1, disc(Mp))p

= cp(Mp).

If p = 2,

c2(L2) = c2(U
⊕(α2−γ2)
0 ⊕M2)

= c2(U
⊕(α2−γ2)
0 )c2(M2)((−1)α2−γ2 , disc(M2))2

= c2(M2) since α2 − γ2 ≡ 0 mod 4.

Therefore for each p we have cp(Lp) = cp(Mp). Hence

(vii) cp(Lp) = 1 for almost all p

since this is true of the cp(Mp) by Lemma (V.2.7). Finally, we have

(viii) (−1)(
s−
2 )∏

p6=∞ cp(Lp) = 1

since this is true for the cp(Mp), and s− ≡ m− mod 8.
The statements (vi), (vii), and (viii) are precisely the hypotheses of

Corollary (V.5.3). Hence, there is a quadratic vector space (V,Q) over
Q such that rank(V ) = r, disc(V ) = d mod (Q×)2, and sign(V ) =
(s+, s−). Moreover, there are isometries σp : V ⊗ Qp → Lp ⊗ Qp for
each p <∞.

Let Λ be any Z-module in V such that Λ⊗Q = V, and define

L′p =

{
Λ⊗ Zp if both Lp and Λ⊗ Zp are unimodular
σ−1
p (Lp) if not.

Since disc(Lp) ≡ d ≡ disc(Λ ⊗ Zp) mod (Q×
p )2 for all p, if Lp and

Λ ⊗ Zp are both unimodular then Lp ∼= Λ ⊗ Zp; in particular, the
discriminant-forms of L′p and of Lp are isomorphic for all p <∞.

Since L′p ⊗ Qp = Λ ⊗ Qp for all p, by Theorem (4.1) there is a
Z-module L ⊂ V such that L ⊗ Zp = L′p for every p. When the form
Q on V is restricted to L, it is Z-valued, since the induced form on
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L′p is Zp-valued for every p. Moreover, sign(L) = sign(V ) = (s+, s−).
Finally, the discriminant-form qL of L is

qL =
⊕
p

qL⊗Zp =
⊕
p

qL′p = q

as desired. Therefore L is the required integral quadratic form. Q.E.D.

6. The Genus

In this section we wish to remark that the two invariants, the signa-
ture sign(L) and the discriminant-form (GL, qL), determine the genus
of an integral quadratic form. Recall that the genus of L is the collec-
tion {L⊗Zp} of quadratic Zp-modules, for all p (including p = ∞), up
to isomorphism.

By Sylvester’s Theorem, sign(L) determines L ⊗ Z∞ = L ⊗ R,
and the rank r of L ⊗ Zp for all p. Since disc(L ⊗ Zp) = (−1)s−|GL|
and qL⊗Zp = (qL)p, both of these invariants of L ⊗ Zp are dtermined.

Therefore, by Theorem (5.2), we have the following.

Theorem 6.1. The invariants sign(L) and (GL, qL) determine the
genus of an integral quadratic form L, and conversely.

It is in this sense that we consider these invariants, the signature and
the discriminant-form, to be “local” data for an integral quadratic form:
they are equivalent to the data of the genus. There are two advantages
to this approach. Firstly, the data is more compactly represented, and
secondly, in many situations the signature and discriminant-form come
more readily from other given data without further calculation.



CHAPTER VII

Local Orthogonal Groups

1. The Cartan-Dieudonné Theorem Recalled

In this chapter, we study the orthogonal group O(L) of a free qua-
dratic Zp-module L. One of our goals is to give an analogue of the
Cartan-Dieudonné Theorem I.9.10 for this group (and for certain sub-
groups of it). We begin by recalling the statement of that theorem
over a field K of characteristic not 2; the proof motivates many of the
calculations which follow.

Recall that if (V,Q) is a quadratic form space over K, and v ∈ V
is anisotropic, then V gives rise to τv ∈ O(V ), called the reflection in
V , defined as follows:

τv(w) = w − 〈v, w〉
Q(v)

v = w − 2〈v, w〉
〈v, v〉

v

for all w ∈ V .

Theorem 1.1 (Cartan-Dieudonné).

(1.1.1) Let (V,Q) be a quadratic form space over a field K of char-
acteristic not 2. Let v, w ∈ V with Q(v) = Q(w) 6= 0. Then
at least one of τv−w and τv+wτv is well-defined, and gives an
element σ ∈ O(V ) such that σ(v) = w.

(1.1.2) The orthogonal group O(V ) is generated by reflections.

We recall that the Cartan-Dieudonné theorem was used to define
the spinor norm, a homomorphism

spin: O(V ) → K∗/(K∗)2

as follows: if ρ ∈ O(V ), write

ρ = τv1 . . . τvr

for suitable anisotropic vectors v1, . . . , vr. Then

spin(ρ) = Q(v1) . . . Q(vr) mod (K∗)2.

If R is an integral domain with quotient field K, and (L,Q) is a
quadratic R-module, then (L⊗K,Q) is quadratic vector space over K

141
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and there is a natural inclusion

O(L,Q) ⊂ O(L⊗K,Q).

We define

spin : O(L,Q) → K∗/(K∗)2

by restriction; note that to compute spin ρ for ρ ∈ O(L,Q) we must
factor ρ into a product of reflections inside O(L ⊗ K,Q); such a fac-
torization may not be possible in O(L,Q) itself.

We note at this juncture that if (L,Q) is a quadratic R-module
with associated bilinear form 〈−,−〉, then the set of automorphisms
of L preserving the quadratic form Q is exactly the same set as those
preserving the bilinear form 〈−,−〉. Hence from this point of view
there is no particular advantage to having the quadratic form avail-
able. Indeed, it is somewhat artificial to restrict oneself to studying
orthogonal groups of only quadratic forms; this is equivalent to study-
ing the orthogonal groups of the even bilinear forms. We have seen
that the even-ness of the bilinear form, which allows the definition of
the quadratic form, is of real importance in other areas. However for
orthogonal groups this is less so, for a simple reason: one can expand,
or scale, an odd bilinear form by 2 and make it even, without changing
the orthogonal group. Conversely, if all values of the bilinear form are
even, (so that the bilinear form is even, and is induced by a quadratic
form), then one may divide all the values by 2, to produce a possibly
odd bilinear form; again this has the same orthogonal group.

For these reasons we will deal in the first few sections of this chapter
with inner product modules over Zp, not quadratic Zp-modules. There
is of course no difference if p 6= 2. When p = 2 the only difference
in the relevant decompositions is the existence of the rank one inner
product Z2-modules W ε

2,0.
We will still freely use the notation of the quadratic form, namely

Q(x), defined in terms of the bilinear form by Q(x) = 1
2
〈x, x〉. When

p = 2, it may be the case that Q has values in 1
2
Z2, and one should not

assume that Q(x) ∈ Z2 for all x ∈ L.

2. The groups O(L) and O#(L)

Let L be an inner product Zp-module, and let GL = L#/L be
its discriminant form group. As we discussed in Chapter II, there is
a natural homomorphism O(L) → O(GL). We let O#(L) denote the
kernel of this homomorphism. The homomorphisms det : O(L⊗Qp) →
{±1} and spin : O(L⊗Qp) → Q∗

p/(Q∗
p)

2 restrict to homomorphisms of

O(L) and O#(L).
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The Cartan-Dieudonné theorem 1.1 tells us that elements of O(L⊗
Qp) can be expressed as products of reflections in O(L ⊗ Qp). We
will spend the next several sections finding analogues of this statement
(and of the preliminary Lemma I.9.9) for the groups O(L) and O#(L).
The goal is to find a collection of “elementary” isometries in O(L)
or O#(L) which generate the group. Of course, when regarded as
elements ofO(L⊗Qp), these “elementary” isometries will have a further
factorization into a product of reflections, but this factorization does
not in general hold in O(L) or O#(L).

We first consider reflections in O(L).

Lemma 2.1. Let x ∈ L be primitive and anisotropic. Then the
following are equivalent:

(2.1.1) τx ∈ O(L)
(2.1.2) 〈x, t〉 ∈ Q(x)Zp for all t ∈ L
(2.1.3) there is a k such that Q(x) ∈ pkUp and 〈x, t〉 ∈ pkZp for all

t ∈ L.

Moreover, if x is simply anisotropic without being primitive, then it is
still the case that (2.1.2) and (2.1.3) are equivalent, and each implies
(2.1.1).

Proof. This is immediate from the formula

τx(t) = t− 〈x, t〉
Q(x)

x

since 〈x,t〉
Q(x)

x ∈ L if and only if 〈x,t〉
Q(x)

∈ Zp because x is assumed to be

primitive. Q.E.D.

We now turn to the group O#(L). If ρ ∈ O(L), then the induced
ρ ∈ O(GL) is defined by extending ρ to L ⊗ Qp by linearity, then
restricting to L#, and descending to GL = L#/L. We can thus phrase
the condition that ρ be in O#(L) as follows: for every ξ ∈ L#, the
element ρ(ξ)− ξ is in fact in L.

It is slightly more convenient to view the dual lattice L# as being
isomorphic to the dual module L∗ via the adjoint mapping α : L# → L∗

defined by sending x ∈ L# to the functional Ad(x)|L = 〈x,−〉. Then
GL

∼= L∗/L, where we view L ⊂ L∗ via the adjoint mapping. With
this point of view the induced map ρ acts via the adjoint; if ξ ∈ L∗ is
a functional on L, then

ρ(ξ mod Ad(L)) = ρ∗(ξ) mod Ad(L) = ξ ◦ ρ mod Ad(L)
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Hence the condition that ρ be in O#(L) is as follows: for every ξ ∈ L∗,
there is some z ∈ L (depending on ξ) such that

ρ∗(ξ)− ξ = Ad(z).

This observation is sufficient to give the following criterion.

Lemma 2.2. Let ρ ∈ O(L) and suppose that there exist x1, . . . , xk, y1, . . . , yk ∈
L such that

ρ(t) = t+
∑

〈yi, t〉xi

for all t ∈ L. Then ρ ∈ O#(L).

Proof. Given ξ ∈ L∗, consider z =
∑
ξ(xi)yi. Since ξ(xi) ∈ Zp

and yi ∈ L for every i, z ∈ L. Moreover, for every t ∈ L,

(ρ∗(ξ)− ξ)(t) = ξ(ρ(t))− ξ(t)

= ξ(
∑

〈yi, t〉xi)

=
∑

〈yi, t〉ξ(xi)

= 〈
∑

ξ(xi)yi, t〉
= 〈z, t〉

so that ρ∗(ξ)− ξ = Ad(z); hence ρ ∈ O#(L). Q.E.D.

Proposition 2.3. Let x ∈ L be primitive and anisotropic. Then
τx ∈ O#(L) if and only if p - Q(x).

Even if x is not primitive, if x is anisotropic and p - Q(x) then
τx ∈ O#(L).

Proof. Suppose that p - Q(x). Then 1
Q(x)

∈ Zp so that τx ∈ O(L)

by Lemma 2.1. Also, −1
Q(x)

x ∈ L so that

τx(t) = t+

(
−1

Q(x)
x

)
〈x, t〉

satisfies the hypotheses of Lemma 2.2. Hence τx ∈ O#(L).
Conversely, suppose that τx ∈ O#(L). Since x is primitive, there

is some ξ ∈ L∗ with ξ(x) = 1. Since τx ∈ O#(L), there is then some
z ∈ L with

τ ∗x(ξ)− ξ = Ad(z).
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Thus, for every t ∈ L

〈z, t〉 = Ad(z)(t) = (τ ∗x(ξ)− ξ)(t)

= ξ(τx(t)− t)

= −ξ(x)〈x, t〉/Q(x)

= 〈−x/Q(x), t〉

which implies that x/Q(x) = −z is in L. But since x is primitive, this
can only happen if 1/Q(x) ∈ Zp, i.e., if p - Q(x). Q.E.D.

We let Oref(L) (resp. O#,ref(L)) denote the subgroup of O(L) (resp.
O#(L)) generated by reflections. Lemmas 2.1 and 2.3 describe the
generators of these groups.

We need one additional fact about O#(L). Let us say that L has
scale ≥ k if 〈x, y〉 ∈ pkZp for all x, y ∈ L. We will say that L has scale
k if L has scale ≥ k and does not have scale ≥ k+ 1; this is equivalent
to saying that L has scale ≥ k and there are elements x, y ∈ L with
〈x, y〉 ∈ pkUp. By convention, the zero lattice has scale ∞.

Note that if L has scale ≥ 1, then scale(L) = scale(GL). Also note
the if L has scale ≥ k, then Q(x) ∈ 1

2
pkZp for all x ∈ L. If L has

scale ≥ k, then L can be decomposed as a direct sum of the rank one
forms {W ε

p,m;m ≥ k} if p 6= 2, and if p = 2, then L can be decomposed
into the pieces {Um, Vm,W ε

2,m;m ≥ k}. In particular, if p = 2 and L
has scale ≥ 1, then the bilinear form is even and the quadratic form in
Z2-valued.

Lemma 2.4. Let L be an inner product Zp-module of scale ≥ k, and
let ρ ∈ O#(L). Then for all x ∈ L, ρ(x)− x ∈ pkL.

Proof. We first note that ρ−1 ∈ O#(L) as well, and that for every
t ∈ L,

(ρ−1)∗(Adx)(t) = Adx(ρ−1(t))

= 〈x, ρ−1(t)〉
= 〈ρ(x), t〉
= Ad(ρ(x))(t)

so that (ρ−1)∗(Adx) = Ad(ρ(x)).
Now since pk | 〈x, y〉 for every x, y ∈ L, we have 1

pk Ad(x) ∈

L∗. Then there must exist some z ∈ L with (ρ−1)∗
(

1
pk Ad(x)

)
−
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1
pk Ad(x)

)
= Ad(z). But then,

pk Ad(z) = (ρ−1)∗(Ad(x))− Ad(x)

= Ad(ρ(x))− Ad(x)

= Ad(ρ(x)− x)

which implies that ρ(x)− x = pkz. Q.E.D.

3. The Generalized Eichler Isometry

In this section, we introduce our basic “elementary” isometry for
use in factoring elements of O(L) and O#(L).

Proposition 3.1. Let L be an inner product Zp-module, and let
x, y ∈ L, such that 2 | 〈x, x〉 and 2 | 〈y, y〉. (I.e., Q(x) and Q(y) are
integral.) Suppose that either

(a) Q(x) = 〈x, y〉 = 0, or

(b) 1− 〈x, y〉+Q(x)Q(y) ∈ Up, and Q(y) | 〈y, t〉 for every t ∈ L.

Define

Ex
y (t) = t+

x−Q(x)y

1− 〈x, y〉+Q(x)Q(y)
〈y, t〉

+
−y −Q(y)x+ 〈x, y〉y
1− 〈x, y〉+Q(x)Q(y)

〈x, t〉

Then:

(3.1.1) In case (a), we have Ex
y (t) = t+ x〈y, t〉+ (−y −Q(y)x) 〈x, t〉.

(3.1.2) If Q(y) divides 〈y, t〉 for all t ∈ L, (in particular, in case (b)),
we have

τy ∈ O(L), τy−Q(y)x ∈ O(L) and Ex
y = τyτy−Q(y)x.

(3.1.3) In both cases (a) and (b), Ex
y ∈ O#(L).

(3.1.4) If Q(x) = 〈x, y1〉 = 〈x, y2〉 = 0 then Ex
y1
Ex
y2

= Ex
y1+y2

.

(3.1.5) det(Ex
y ) = 1 and spin(Ex

y ) = 1− 〈x, y〉+Q(x)Q(y).

Ex
y is called a generalized Eichler isometry.

Proof. Statement (3.1.1) is clear.
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To prove (3.1.2), first notice that since Q(y) divides 〈y, t〉 for all t
and this is sufficient to ensure that τy ∈ O(L). Also note that

Q (y −Q(y)x) = Q(y)−Q(y)〈x, y〉+Q(y)2Q(x)

= Q(y)(1− 〈x, y〉+Q(y)Q(x)).

If we let ε = 1 − 〈x, y〉 + Q(y)Q(x), then Q(y − Q(y)x) = Q(y)ε and
we see that the assumption also implies that Q(y − Q(y)x) divides
〈y −Q(y)x, t〉 for all t; hence also τy−Q(y)x) ∈ O(L).

Next note that

τy (y −Q(y)x) = y −Q(y)x− 〈y, y〉 −Q(y)〈x, y〉
Q(y)

y

= y −Q(y)x− (2− 〈x, y〉)y
= −y −Q(y)x+ 〈x, y〉y

Then

τyτy−Q(y)x(t) = τy

(
t− 〈y, t〉 −Q(y)〈x, t〉

Q(y)ε
(y −Q(y)x)

)
= τy(t)−

〈y, t〉 −Q(y)〈x, t〉
Q(y)ε

τy(y −Q(y)x)

= t− 〈y, t〉
Q(y)

y − 〈y, t〉 −Q(y)〈x, t〉
Q(y)ε

(−y −Q(y)x+ 〈x, y〉y)

= t+
〈y, t〉
Q(y)ε

(−εy + y +Q(y)x− 〈x, y〉y) +
〈x, t〉
ε

(−y −Q(y)x+ 〈x, y〉y)

= t+
〈y, t〉
Q(y)ε

(−Q(y)Q(x)y +Q(y)x) +
〈x, t〉
ε

(−y −Q(y)x+ 〈x, y〉y)

= t+
〈y, t〉
ε

(−Q(x)y + x) +
〈x, t〉
ε

(−y −Q(y)x+ 〈x, y〉y)

= Ex
y (t).

This completes the proof of (3.1.2).
To see (3.1.3), we first check that Ex

y ∈ O(L). In case (b), this
follows from (3.1.2). In case (a), (3.1.1) shows that Ex

y maps L to L.
Moreover,

Q(Ex
y (t)) = Q (t+ x〈y, t〉+ (−y −Q(y)x) 〈x, t〉)

= Q(t) + 〈x, t〉2Q(y) + 〈y, t〉〈x, t〉 − 〈y +Q(y)x, t〉〈x, t〉
= Q(t) + 〈x, t〉2Q(y) + 〈y, t〉〈x, t〉 − 〈y, t〉〈x, t〉 −Q(y)〈x, t〉2

= Q(t)

so that Ex
y ∈ O(L).
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Now Lemma 2.2 can be used to conclude that in both cases Ex
y ∈

O#(L). Indeed, no further statements are necessary in case (a). In
case (b) we need only note that our hypotheses guarantee that

x−Q(x)y

1− 〈x, y〉+Q(x)Q(y)
and

−y −Q(y)x+ 〈x, y〉y
1− 〈x, y〉+Q(x)Q(y)

are both in L, so Lemma 2.2 also applies and Ex
y ∈ O#(L). This

finishes statement (3.1.3).
Moving on to (3.1.4), note that if Q(x) = 〈x, yi〉 = 0, then we

are in case (a), and 1 − 〈x, yi〉 + Q(x)Q(yi) = 1 so that Ex
yi

(t) =
t+ x〈yi, t〉 − (yi +Q(yi)x)〈x, t〉 by (3.1.1).
Thus,

Ex
y1

(x) = x

and

Ex
y1

(y2 +Q(y2)x) = Ex
y1

(y2) +Q(y2)x

= y2 + x〈y1, y2〉+Q(y2)x

so that

Ex
y1
Ex
y2

(t) = Ex
y1

(t+ x〈y2, t〉 − (y2 +Q(y2)x)〈x, t〉)
= t+ x〈y1, t〉 − (y1 +Q(y1)x)〈x, t〉+ x〈y2, t〉

−〈x, t〉(y2 + x〈y1, y2〉+Q(y2)x)

= t+ x〈y1 + y2, t〉 − ((y1 + y2) + (Q(y1) +Q(y2) + 〈y1, y2〉)x)〈x, t〉
= t+ x〈y1 + y2, t〉 − ((y1 + y2) +Q(y1 + y2)x)〈x, t〉
= Ex

y1+y2
(t).

proving (3.1.4).
Finally we show (3.1.5). If Q(y) 6= 0, then as we showed in the

proof of (3.1.2), Ex
y = τyτy−Q(y)x. Thus, det(Ex

y ) = 1 and spin(Ex
h) =

Q(y)Q (y −Q(y)x) = Q(y)2 (1− 〈x, y〉+Q(x)Q(y)) so spin(Ex
y ) ≡ 1−

〈x, y〉+Q(x)Q(y) mod (Q∗
p)

2.
On the other hand, if Q(y) = 0 then we are in case (a), and Q(x) =

〈x, y〉 = 0. The non-degeneracy of L guarantees that there is some
z ∈ x⊥ such that Q(z) 6= 0. Choose λ ∈ Zp such that

Q(y − λz) = −λ〈y, z〉+ λ2Q(z) 6= 0

Then Ex
λz and Ex

y−λz are well-defined (using case (a)), and 〈x, λz〉 =
〈x, y − λz〉 = 0 so that

Ex
y = Ex

y−λzE
x
λz
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by (3.1.4). But now since Q(y − λz) 6= 0 and Q(λz) 6= 0, we have by
the previous analysis that

det(Ex
y−λz) = det(Ex

λz) = 1

and

spin(Ex
y−λz) = spin(Ex

λz) = 1

so that det(Ex
y ) = 1 and spin(Ex

y ) = 1(= 1 − 〈x, y〉 + Q(x)Q(y)).
Q.E.D.

4. Factorization for Forms Containing W ε
p,k

In this and the next two sections, we study factorizations of ele-
ments in the groups O(L) and O#(L). In Chapter IV, we decomposed
quadratic (and inner product) Zp-modules L as direct sums of certain
pieces W ε

p,k, Uk, and Vk; our factorization proceeds by induction on the
rank of L, assuming that L contains one of these pieces as a direct
summand (with k minimal). We treat the case of W ε

p,k in this section,
and the cases of Uk and Vk in subsequent sections.

In addition to factoring isometries, we wish to keep track of the
determinants and spinor norms introduced along the way, with the
ultimate goal being the calculation of the images

Σ(L) = Im((det, spin) : O(L) → {±1} ×Q∗
p/(Q∗

p)
2)

Σ#(L) = Im((det, spin) : O#(L) → {±1} ×Q∗
p/(Q∗

p)
2).

For this purpose, it is convenient to introduce some subgroups Γp,k ⊂
{±1} ×Q∗

p/(Q∗
p)

2, defined as follows:

Γp,0 = {(1, 1), (1, up), (−1, 1), (−1, up)} for p odd, and some non-square up ∈ Up

Γp,k = {(1, 1), (−1, 1)} for p odd, k ≥ 1

Γ2,0 = {(1, 1), (1, 3), (1, 5), (1, 7), (−1, 1), (−1, 3), (−1, 5), (−1, 7)}
Γ2,1 = {(1, 1), (1, 3), (1, 5), (1, 7)}
Γ2,2 = {(1, 1), (1, 5)}
Γ2,k = {(1, 1)} for k ≥ 3.

Theorem 4.1. Let L be an inner product Zp-module of scale k ≥ 1.
Let x, y ∈ L such that x− y ∈ pkL and Q(x) = Q(y) ∈ 1

2
pkUp. Assume

that either p > 2 and k ≥ 1, or p = 2 and k ≥ 2. Then there is a
σ ∈ O#(L) such that

(1) σ(x) = y

(2) det(σ) = 1 and spin(σ) = 1 + Q(x−y)
Q(x+y)
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(3) (det(σ), spin(σ)) ∈ Γp,k

(4) if p = 2 and (det(σ), spin(σ)) 6= (1, 1), then k = 2 and there is
some z ∈ L with 〈y, z〉 = 0 and Q(z) ∈ 2U2.

Proof. Since k ≥ 1, x−y ∈ 2L so that x+y ∈ 2L. Define s, t ∈ L
by x− y = pks, x + y = 2t and write Q(s) = pkα/2, Q(t) = pkβ/2 for
some α, β ∈ Zp. Then Q(x− y) = p3kα/2 and Q(x+ y) = 2pkβ.

We first claim that with these assumptions β is a unit. If p = 2,
since k ≥ 2 we get 4pk+1 = 2k+3 | 23k−1α, while if p > 2, since k ≥ 1
we get 4pk+1 | p3kα/2; in either case 4pk+1 | Q(x − y). On the other
hand, if p > 2 then 4pk+1 - 4Q(x); since

4Q(x) = Q(x− y) +Q(x+ y)

we have that 4pk+1 - Q(x + y) = 2pkβ. Hence β ∈ Up if p > 2. If
p = 2, then 4pk - 4Q(x); hence arguing in the same way we see that
4pk - Q(x+ y) = 2pkβ, so that 2 - β and β ∈ U2.

Note that 〈s, t〉 = 1
2pk 〈x − y, x + y〉 = 0 since Q(x) = Q(y). Thus,

if we define

γ = 1− 〈t,−β−1s〉+Q(t)Q(β−1s)

= 1 + p2kβ−1α/4 = 1 +
Q(x− y)

Q(x+ y)

then our hypotheses on k guarantee that γ ≡ 1 mod p, and that
Q(t), Q(−β−1s) ∈ 2Zp. Also, Q(t) = pkβ/2 ∈ 1

2
pkUp, and since L

has scale k, pk | 〈t, z〉 for all z ∈ L; in particular Q(t) | 〈t, z〉 for
all z ∈ L. Thus case (b) of Proposition 3.1 applies, and there is a

σ = E−β−1s
t ∈ O#(L) with det(σ) = 1 and spin(σ) = γ. Moreover,

in O(L), σ = τtτt+Q(t)β−1s. This is the desired σ, and we see that we
automatically have (2). But

t+Q(t)β−1s = t+ pks/2 = 1
2
(x+ y) + 1

2
(x− y) = x

so that
σ = τ 1

2
(x+y)τx = τx+yτx

and this implies that σ(x) = y, giving us (1).
We must still check (3) and (4), noting that (det(σ), spin(σ)) =

(1, γ). Since γ ≡ 1 mod p, we have (1, γ) = (1, 1) ∈ Γp,k when p > 2.
So we may assume that p = 2.

If k ≥ 3, then 1
4
p2k = 22k−2 is divisible by 8, so that γ = 1 +

1
4
p2kβ−1α ≡ 1 mod 8, and (1, γ) = (1, 1) ∈ Γ2,k.

If k = 2, then γ = 1 + 4β−1α so that γ ≡ 1 mod 4; this implies
(1, γ) ∈ Γ2,2. This completes the proof of (3).
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Finally, to check that (4) holds, we may assume that p = 2, k = 2,
and γ ≡ 5 mod 8; then β−1α ∈ U2, so that α ∈ U2.

Note that 〈x, y〉 = Q(x) + Q(y) − Q(x − y) = 2Q(y) − 16Q(s) =
2Q(y) − 32α, and that since 4 - Q(y) we have that Q(y) | 4α. Hence
8Q(y) | −32α = 〈x, y〉 − 2Q(y) = 〈y, x − y〉; this implies that 2Q(y) |
〈y, s〉, and we may set δ = 〈y, s〉/2Q(y) ∈ Z2 and z = s− δy ∈ L. Note
that 〈y, z〉 = 0 by the choice of δ. Let Q(y) = 2ε, with ε ∈ U2. Now

Q(z) = Q(s)− δ2Q(y) = 2α− 2δ2ε

so if we let ϕ = α− δ2ε then Q(z) = 2ϕ.
Since x = y + 4s = (1 + 4δ)y + 4z, we get

2ε = Q(x) = (1 + 4δ)2(2ε) + 16(2ϕ)

so that (2δ2+δ)ε+2ϕ = 0, which implies 2 | δ. But then ϕ = α−δ2ε ∈
U2 since α ∈ U2; in particular, Q(z) = 2ϕ ∈ 2U2. Q.E.D.

Corollary 4.2. Let L = W ε
p,k⊕L′ be an inner product Zp-module

of scale k such that either

(1) p > 2, k ≥ 1;

(2) p = k = 2 and Q(L′) ∩ 2U2 = ∅; or

(3) p = 2, k ≥ 3.

Then for every ρ ∈ O#(L) there is a σ ∈ O#(L) such that σρ ∈ O#(L′)
and (det(σ), spin(σ)) = (1, 1). In particular, Σ#(L) = Σ#(L′).

Proof. Let y generate W ε
p,k and let x = ρ(y). By Lemma 2.4,

x− y ∈ pkL and we may apply Theorem 4.1. Q.E.D.

Theorem 4.3. Let L = W ε
2,2 ⊕Wϕ

2,2 ⊕ L′ be an inner product Z2-
module of scale 2. Then:

(4.3.1) For every ρ ∈ O#(L), there is a σ ∈ O#(L) such that σρ ∈
O#(L′) and (det(σ), spin(σ)) ∈ Γ2,2.

(4.3.2) Σ#(L) = Γ2,2 · Σ#(L′).

Proof. Statement (4.3.1) follows from two applictions of Theo-
rem 4.1, as in Corollary 4.2. From (4.3.1), we see that Σ#(L) ⊂
Γ2,2 ·Σ#(L′). So to prove (4.3.2), we must show that Γ2,2 ⊂ Σ#(L); or
in other words, that (1, 5) ∈ Σ#(L).

Let s, t span W ε
2,2 and Wϕ

2,2 respectively, and write Q(s) = 2α

and Q(t) = 2β for some α, β ∈ U2. Let γ = −αβ−1. Since γ2 + 16γ ≡
1 mod 8, there exist two square roots of γ2+16γ in U2. Choose a square

root such that 4 - γ+
√
γ2 + 16γ, and let δ = 1

2

(
γ +

√
γ2 + 16γ

)
; note
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that δ ∈ U2. Then δ satisfies δ2 = γδ + 4γ, i.e.,

β + αδ−1 + 4αδ−2 = 0.

Let x = (1 + 8δ−1)s+ 4t and y = s. Then

Q(x) = (1 + 8δ−1)
2
(2α) + 16(2β)

= 2α+ 32(δ−1α+ 4δ−2α+ β)

= 2α = Q(y)

while x−y = 4(2δ−1s+t) ∈ 4L. We may thus apply Theorem 4.1 (with
p = 2 and k = 2) to this x and y to get a σ ∈ O#(L) with det(σ) = 1
and spin(σ) = 1 + Q(x − y)/Q(x + y). As shown in the proof of 4.1,
Q(x+ y) ∈ 8U2. On the other hand,

Q(x− y) = Q(8δ−1s+ 4t)

= 64δ−2(2α) + 16(2β)

= 32(4δ−2α+ β) ∈ 32U2

so that Q(x−y)/Q(x+y) ∈ 4U2 and spin(σ) = 1+Q(x−y)/Q(x+y) ≡
5 mod 8. Q.E.D.

Lemma 4.4. Let L be an inner product Zp-module of scale k. Let
x, y ∈ L such that x − y ∈ pkL and Q(x) = Q(y) ∈ 1

2
pkUp. Suppose

that either

(1) p > 2 and k = 0; or

(2) p = 2, k = 0, and 2 - Q(x− y); or

(3) p = 2 and k = 1.

Then there is a σ ∈ O#,ref(L) such that σ(x) = y.

Proof. Let x−y = pkz for some z ∈ L. First suppose that p2k+1 -
Q(x − y). Then p - Q(z), so that by Proposition 2.3, τz ∈ O#,ref(L).
Since τz = τx−y, τz(x) = y so that σ = τz works in this case.

Now suppose that p2k+1 | Q(x − y); since in this case k = 1 when
p = 2, this is the same as 4p | Q(x−y). We also get x−y ∈ 2L so that
x+ y ∈ 2L; write x+ y = 2t for some t ∈ L. But now our hypotheses
imply that p - Q(x); and since 4Q(x) = Q(2x) = Q((x+y)+(x−y)) =
Q(x + y) +Q(x− y) = 4Q(t) +Q(x− y), we see that p - Q(t). Again
by Proposition 2.3, σ = τtτx ∈ O#,ref(L). But

σ = τtτx = τx+yτx

so that σ(x) = y by Theorem 1.1.1. Q.E.D.
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Corollary 4.5. Let L = W ε
p,k⊕L′ be an inner product Zp-module

of scale k with either p > 2 and k = 0, or p = 2 and k = 1. For every
ρ ∈ O#(L), there is a σ ∈ O#,ref(L) such that σρ ∈ O#(L′). Moreover
Σ#(L) is generated by Σ#(L′) and {(−1, Q(z)) | z ∈ L, p - Q(z)}.

Proof. Let y span W ε
p,k, x = ρ(y) and apply Lemma 4.4. The

last statement follows from the proof of the Lemma, in which σ was
found to be a reflection τz with p - Q(z) or a product of two such
reflections. Q.E.D.

Corollary 4.6. Let L = W ε
p,0⊕L′ be an inner product Zp-module

(of scale 0) with p > 2. For every ρ ∈ O(L), there is a σ ∈ O#,ref(L)
such that σρ ∈ O(L′). In particular, Σ(L) is generated by Σ(L′) and
{(−1, Q(z)) | z ∈ L, p - Q(z)}.

Proof. Let y span W ε
p,0 x = ρ(y) and apply Lemma 4.4. Q.E.D.

Lemma 4.7. Let L = L1⊕L2 be an (odd) inner product Z2-module
such that L1 is odd and unimodular, rank(L1) ≤ 2, and scale(L2) ≥ 1.
Let x, y ∈ L such that Q(x) = Q(y) ∈ 1

2
U2 and y ∈ L1. Suppose that

2 | Q(x− y). Then for every t ∈ L, 〈x− y, t〉 ∈ 2Z2.

Proof. Note that the hypotheses imply that L1 either has rank
one and is isomorphic to W ε

2,0, or has rank two and decomposes as a
direct sum of two W ε

2,0’s. Let y, z be an orthogonal basis for L1 (where
z = 0 if rank(L1) = 1), and write

x = (α+ 1)y + βz + s

for some α, β ∈ Z2, s ∈ L2. Then

Q(x) = (α+ 1)2Q(y) + β2Q(z) +Q(s) = Q(y)

so that

(∗) (α2 + 2α)Q(y) + β2Q(z) +Q(s) = 0.

Then

Q(x− y) = α2Q(y) + β2Q(z) +Q(s) = −2αQ(y).

Since 2 | Q(x − y) and Q(y) ∈ 1
2
U2 we have that 2 | α; write α =

2α0. Since L2 has scale ≥ 1, Q(s) ∈ Z2 so that (∗) now implies that
β2Q(z) ∈ Z2. But either z = 0 or Q(z) ∈ 1

2
U2, so in either case we

may write β = 2β0. Thus,

〈x− y, t〉 = 2α0〈y, t〉+ 2β0〈z, t〉+ 〈s, t〉.

But scale(L2) ≥ 1 implies 〈s, t〉 ∈ 2Z2, so that 〈x−y, t〉 ∈ 2Z2. Q.E.D.
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Theorem 4.8. Let L = W ε
2,0 ⊕ L′ be an inner product Z2-module

(of scale 0). Assume that either scale(L′) ≥ 1 or that L′ = W ε
2,0 ⊕ L′′

with scale(L′′) ≥ 1. Then:

(4.8.1) For every ρ ∈ O(L) there is a σ ∈ Oref(L) such that σρ ∈
O(L′)

(4.8.2) Σ(L) is generated by Σ(L′) and S = {(−1, Q(z)) | z ∈ L, 4 -
Q(z) and if 2 | Q(z) then 2 | 〈z, t〉 for all t ∈ L}.

Proof. (4.8.1): Let y span W ε
2,0 and let x = ρ(y); we must find

σ ∈ Oref(L) such that σ(x) = y.
If 2 - Q(x− y), this follows from Lemma 4.4.2, with σ ∈ O#,ref(L).

So assume 2 | Q(x− y); then by Lemma 4.7, the functions

t 7−→ 〈x− y, t〉
t 7−→ 〈x+ y, t〉

take on only even values for t ∈ L.
If 4 - Q(x− y), then σ = τx−y ∈ Oref(L) by Lemma 2.1, Q(x− y) ∈

2U2 and σ(x) = y. On the other hand, if 4 | Q(x − y) then since
4 - 4Q(x) = Q(x−y)+Q(x+y) we have that 4 - Q(x+y). In this case
we see that Q(x + y) ∈ 2U2, so that by Lemma 2.1, τx+y ∈ Oref(L);
also τx ∈ O#,ref(L) so that σ = τx+yτx ∈ Oref(L) and σ(x) = y.

(4.8.2): The σ constructed in the proof of (4.8.1) is a product of
reflections from O#,ref, together with (perhaps) a reflection τz with
Q(z) ∈ 2U2 and 2 | 〈z, t〉 for all t ∈ L. Moreover all of the reflections
τw from O#,ref used in the above are such that 4 - Q(w). Hence we see
that σ(L) is contained in the group generated by Σ(L′) and S.

Conversely, to see that every element of S is in Σ(L), note that if
z satisfies the conditions given in S, then τz ∈ O(L) by Lemma 2.1.
Thus, (−1, Q(z)) ∈ Σ(L). Q.E.D.

5. Factorization for Forms Containing Uk

We now turn to the case of inner product Z2-modules containing
a factor of Uk. If L is an inner product Z2-module, and x, y ∈ L, we
say that x, y is a k-hyperbolic pair if the matrix of 〈−,−〉|span(x,y) with
respect to x and y is (

0 2k

2k 0

)
If L has scale k, then any k-hyperbolic pair splits off as a direct sum-
mand of L.
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Lemma 5.1. Let L be an inner product Z2-module of scale k, let
x, y be a k-hyperbolic pair in L and let α ∈ U2 satisfy α ≡ 1 mod 2k.
Define σ : L→ L by

σ(x) = α−1x

σ(y) = αy

σ(z) = z for all z ∈ (span(x, y))⊥

Then σ ∈ O#(L) and (det(σ), spin(σ)) = (1, α).

Proof. Write α = 1 + 2kβ for some β ∈ Z2. Then

Q(βx) = 0 ∈ 2Z2

Q(x− y) = −2k ∈ 2kU2

〈x− y, βx〉 = −2kβ

1− 〈x− y, βx〉+Q(x− y)Q(βx) = 1 + 2kβ = α

Moreover, since L has scale k, 2k | 〈x− y, t〉 for every t ∈ L.

By case (b) of Proposition 3.1, Eβx
x−y ∈ O#(L) with (det(Eβx

x−y), spin(Eβx
x−y)) =

(1, α). Now for any t ∈ L,

Eβx
x−y(t) = t+ α−1βx〈x− y, t〉+ α−1((−1− 2kβ)(x− y) + 2kβx)〈βx, t〉

= t+ α−1β((1 + 2kβ)x+ (−1− 2kβ)(x− y))〈x, t〉 − α−1βx〈y, t〉
= t+ βy〈x, t〉 − α−1βx〈y, t〉

Thus, Eβx
x−y(z) = z for any z ∈ (span(x, y))⊥, while

Eβx
x−y(x) = x− α−1β2kx = α−1x

and

Eβx
x−y(y) = y + 2kβy = αy.

Thus σ = Eβx
x−y and has the desired properties. Q.E.D.

Lemma 5.2. Let L be an inner product Z2-module of scale k. Let x1,
y1 and x2, y2 be k-hyperbolic pairs in L such that x1 − x2 and y1 − y2

are in 2kL and 〈x2, y1〉 = 2k (so that x2 and y1 form a k-hyperbolic
pair also). Then there is a σ ∈ O#(L) with (det(σ), spin(σ)) = (1, 1),
σ(x1) = x2 and σ(y1) = y2.

Proof. Let

x2 − x1 = 2kαx1 + 2kβy1 − 2kz

y2 − y1 = 2kγx2 + 2kδy1 − 2ks



156 VII. LOCAL ORTHOGONAL GROUPS

with α, β, γ, δ ∈ Z2, z ∈ (span(x1, y1))
⊥ and s ∈ (span(x2, y1))

⊥. Now

2k = 〈x2, y1〉 = 〈(1 + 2kα)x1 + 2kβy1 − 2kz, y1〉 = 2k(1 + 2kα)

and

2k = 〈x2, y2〉 = 〈x2, 2
kγx2 + (1 + 2kδ)y1 − 2ks〉 = 2k(1 + 2kδ)

so that α = δ = 0 and

x2 = x1 + 2kβy1 − 2kz

y2 = 2kγx2 + y1 − 2ks.

Now

0 = Q(x2) = Q(x1 + 2kβy1) +Q(2kz) = 22kβ + 22kQ(z)

and

0 = Q(y2) = Q(2kγx2 + y1) +Q(2ks) = 22kγ + 22kQ(s)

so that Q(z) = −β and Q(s) = −γ. Since we also have 〈y1, z〉 =
〈x2, s〉 = Q(y1) = Q(x2) = 0, by case (a) of Proposition 3.1, Ex2

s , E
y1
z ∈

O#(L), with determinants and spinor norms 1. Let σ = Ex2
s ◦ Ey1

z , so
that (det(σ), spin(σ)) = (1, 1).

For any t ∈ L,

Ex2
s (t) = t+ x2〈s, t〉+ (−s+ γx2)〈x2, t〉

Ey1
z (t) = t+ y1〈z, t〉+ (−z + βy1)〈y1, t〉.

Thus,

Ey1
z (x1) = x1 + 2k(βy1 − z) = x2

Ey1
z (y1) = y1

while

Ex2
s (x2) = x2

Ex2
s (y1) = y1 + 2k(−s+ γx2) = y2

so that σ(x1) = x2 and σ(y1) = y2 as required. Q.E.D.

Lemma 5.3. Let L be an inner product Z2-module, and suppose that
t1, t2 ∈ L with Q(t1), Q(t2) ∈ Z2 and

4Q(t1)Q(t2)− 〈t1, t2〉2 ≡ 7 mod 8.

Then there is a z ∈ span(t1, t2) with Q(z) = 0 and 〈z, t1〉 = 1.
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Proof. The hypotheses guarantee that t1 and t2 span a unimod-
ular quadratic Z2-module, and so their span must be isometric to U0

or V0. Since det(U0) ≡ 7 mod 8 and det(V0) ≡ 3 mod 8, we see that
span(t1, t2) ∼= U0. But then there exists a 0-hyperbolic pair z1, z2

which is a basis for span(t1, t2). Choose i such that 〈t1, zi〉 ∈ U2; then
z = 1

〈t1,zi〉zi has the required properties. Q.E.D.

Lemma 5.4. Let L be an inner product Z2-module of scale k, and
let x1, y1 and x2, y2 be two k-hyperbolic pairs in L such that x1− x2 ∈
2kL. Then there is a σ ∈ O#(L) such that 〈x2, σ(y1)〉 ∈ 2kU2, and
(det(σ), spin(σ)) ∈ Γ2,k.

Proof. If k > 0, we may take σ to be the identity; if 〈x2, y1〉 = 2kα
then since x2 − x1 ∈ 2kL, 22k | 〈x2 − x1, y1〉 = 2kα − 2k so that
α ≡ 1 mod 2k.

If k = 0, write

x2 = αx1 + βy1 + t1

y2 = γx1 + δy1 + t2

with α, β, γ, δ ∈ Z2, t1, t2 ∈ (span(x1, y1))
⊥. We must consider three

cases.

Case 1: α ∈ U2.
Then 〈x2, y1〉 = α ∈ U2 so σ = identity will suffice as above.

Case 2: α ∈ 2Z2, β ∈ U2.
Then Q(x2 − x1) = −β ∈ U2 so that by Proposition 2.3, τx2−x1 ∈

O#(L). Let σ = τx2−x1 . Then (det(σ), spin(σ)) = (−1,−β) ∈ Γ2,0, and

〈x2, σ(y1)〉 = 〈σ−1(x2), y1〉 = 〈x1, y1〉 = 1 ∈ U2.

Case 3: α, β ∈ 2Z2.
Then the matrix of the bilinear form 〈−,−〉|span(t1,t2) with respect

to t1, t2 is (
−2αβ 1− αδ − βγ

1− αδ − βγ −2γδ

)
.

This has determinant 4αβγδ− (1− αδ − βγ)2; since α and β are even,
this determinant is congruent to 7 mod 8.

Thus, by Lemma 5.3, there is z ∈ span(t1, t2) with Q(z) = 0 and
〈z, t1〉 = 1, and hence 〈x2, z〉 = 1.

Now Q(x1) = Q(z) = 〈x1, z〉 = 0 so that Ex1
z is defined using case

(a) of Proposition 3.1; if σ = Ex1
z , then σ ∈ O#(L), and det(σ) =

spin(σ) = 1. Moreover,

σ(y1) = y1 + x1〈z, y1〉 − z〈x1, y1〉 = y1 − z
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so that 〈x2, σ(y1)〉 = 〈x2, y1 − z〉 = α− 1 ∈ U2. Q.E.D.

Theorem 5.5. Let L be an inner product Z2-module of scale k. Let
x1, y1 and x2, y2 be two k-hyperbolic pairs in L such that x1 − x2 and
y1 − y2 are in 2kL. Then there is a σ ∈ O#(L) such that σ(x1) = x2,
σ(y1) = y2 and (det(σ), spin(σ)) ∈ Γ2,k.

Proof. By Lemma 5.4, there is a σ1 ∈ O#(L) such that 〈x2, σ1(y1)〉 ∈
2kU2. By Lemma 2.4, σ1(t)− t ∈ 2kL for all t ∈ L, so that

σ1(x1)− x2 = (σ1(x1)− x1) + (x1 − x2) ∈ 2kL

σ1(y1)− y2 = (σ1(y1)− y1) + (y1 − y2) ∈ 2kL

and the hypotheses are still satisfied by the two k-hyperbolic pairs
σ1(x1), σ1(y1) and x2, y2.

Thus, if we write

x2 = ασ1(x1) + 2kβσ1(y1) + 2kz

for some α, β ∈ Z2, with α ≡ 1 mod 2k and z ∈ (span(σ1(x1), σ1(y1)))
⊥,

we have 〈x2, σ1(y1)〉 = 2kα ∈ 2kU2 so that α ∈ U2.
By Lemma 5.1, there is a σ2 ∈ O#(L) with σ2(σ1(x1)) = α−1σ1(x1)

and σ2(σ1(y1)) = ασ1(y1). Again by Lemma 2.4, a similar computation
to that above shows that σ−1

2 σ1(x1), σ
−1
2 σ1(y1) and x2, y2 are two k-

hyperbolic pairs satisfying the hypotheses of the theorem.
Now

〈x2, σ
−1
2 σ1(y1)〉 = 〈x2, α

−1σ1(y1)〉 = α−1〈x2, σ1(y1)〉 = 2k.

Thus, by Lemma 5.2, there is a σ3 ∈ O#(L) with

σ3(σ
−1
2 σ1(x1)) = x2

σ3(σ
−1
2 σ1(y1)) = y2.

Let σ = σ3σ
−1
2 σ1; we of course have σ(x1) = x2, σ(y1) = y2 by defini-

tion.
The isometry σ1 was obtained using Lemma 5.4, and therefore we

have that (det(σ1), spin(σ1)) ∈ Γ2,k. The isometry σ2 was obtained
using Lemma 5.1, hence det(σ2) = 1 and this is enough to ensure that
(det(σ2), spin(σ2)) ∈ Γ2,k. Finally, the isometry σ3 was obtained using
Lemma 5.2, hence (det(σ3), spin(σ3)) = (1, 1). Since (det σi, spin σi) ∈
Γ2,k for each i = 1, 2, 3, (det(σ), spin(σ)) ∈ Γ2,k. Q.E.D.

Corollary 5.6. Let L = Uk ⊕ L′ be an inner product Z2-module
of scale k. Then:

(5.6.1) For every ρ ∈ O#(L) there is a σ ∈ O#(L) such that σρ ∈
O#(L′) and (det(σ), spin(σ)) ∈ Γ2,k.
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(5.6.2) Σ#(L) = Γ2,k · Σ#(L′)

Proof. To see (5.6.1), let x2, y2 be a k-hyperbolic pair spanning
Uk, and let x1 = ρ(x2), y1 = ρ(y2). Since ρ ∈ O#(L), by Lemma
2.4 ρ(x2) − x2 and ρ(y2) − y2 are in 2kL. Thus, by Theorem 5.5,
there is a σ ∈ O#(L) with (det(σ), spin(σ)) ∈ Γ2,k and σ(ρ(x2)) = x2,
σ(ρ(y2)) = y2. Thus, σρ fixes Uk so that σρ ∈ O#(L′).

To check (5.6.2), by (5.6.1), Σ#(L) ⊂ Γ2,k ·Σ#(L′), so we must show
that Γ2,k ⊂ Σ#(L). Let (d, s) ∈ Γ2,k.

First suppose d = 1. Since s ≡ 1 mod 2k, by Lemma 5.1 there is a
σ ∈ O#(L) with (det σ, spin σ) = (d, s).

The case d = −1 occurs only if k = 0. In that case, choose z ∈
U0 such that Q(z) = 1. Then τz ∈ O#(L) by Proposition 2.3, and
(det(τz), spin(τz)) = (−1, 1). Since Γ2,0 is generated by (−1, 1) and
{(d, s) ∈ Γ2,0 | d = 1}, the statement follows. Q.E.D.

Corollary 5.7. Let L = U0 ⊕ L′ be an inner product Z2-module
(of scale 0). Then:

(5.7.1) For every ρ ∈ O(L) there is a σ ∈ O(L) such that σρ ∈ O(L′)
and (det(σ), spin(σ)) ∈ Γ2,0.

(5.7.2) Σ(L) = Γ2,0 · Σ(L′).

Proof. For (5.7.1), let x2, y2 be a 0-hyperbolic pair spanning U0,
and let x1 = ρ(x2), y1 = ρ(y2). Then x1 − x2, y1 − y2 ∈ 20L so by
Theorem 5.5, there is a σ ∈ O(L) with (det(σ), spin(σ)) ∈ Γ2,0 and
σρ ∈ O(L′).

To see (5.7.2), by (5.7.1), Σ(L) ⊂ Γ2,0 ·Σ(L′) and by Corollary 5.6.2,
Γ2,0 ⊂ Σ(L). Q.E.D.

6. Factorization for Forms Containing Vk

In this section, we factor isometries of lattices containing a copy of
Vk.

Lemma 6.1. Let L be an inner product Z2-module of scale k, and
suppose that r, s, t ∈ L satisfy

(1) Q(t) ∈ 2kU2

(2) 〈t, t− 2s〉 = 0

(3) Q(r) = Q(s)

(4) r − s ∈ 2kL

(5) if k = 0, either 2 - Q(r − s+ t) or 2 | 〈r − s, t〉.
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Then there is a σ ∈ O#(L) such that σ(r) = s and (det(σ), spin(σ)) ∈
Γ2,k. Moreover, if 〈r − s, t − 2s〉 = 0, then σ(t − 2s) = t − 2s. (Note
that in the case 〈r − s, t− 2s〉 = 0, (5) is automatic since 〈r − s, t〉 =
2〈r − s, s〉.)

Proof. Let r − s = 2kz and Q(t) = 2kα with z ∈ L and α ∈ U2.
We consider two cases.

Case 1: k = 0 and 2 | Q(z + t).
By (5), this implies that 2 | 〈z, t〉. Then since in this case Q(t) ∈ U2

we see that

Q(z) = Q(z + t)− 〈z, t〉 −Q(t) ≡ 1 mod 2,

so that Q(z) ∈ U2. By Proposition 2.3, σ = τz ∈ O#(L). Also,
τz = τr−s so that σ(r) = τz(r) = s. In addition, (det(σ), spin(σ)) =
(−1, Q(z)) ∈ Γ2,0.

In the case 〈r − s, t − 2s〉 = 〈z, t − 2s〉 = 0, we have immediately
that σ(t− 2s) = τz(t− 2s) = t− 2s.

Case 2: k ≥ 1, or k = 0 and 2 - Q(z + t).
Since L has scale k, 2k | 〈t, x〉 for all x ∈ L. Let

β = 1− 〈−α−1z, t〉+Q(−α−1z)Q(t)

= 1 + α−1〈z, t〉+ 2kα−1Q(z).

If k ≥ 1, 2k | 〈z, t〉 so that β ≡ 1 mod 2k. If k = 0,

α−1Q(z + t) = α−1Q(z) + α−1〈z, t〉+ α−1Q(t)

= α−1Q(z) + α−1〈z, t〉+ 1 = β;

since 2 - Q(z + t), β ∈ U2.
Thus in either case, using case (b) of Proposition 3.1, we may define

σ = E−α−1z
t ∈ O#(L) and (det(σ), spin(σ)) = (1, β) ∈ Γ2,k.

Since Q(t) 6= 0,
σ = τtτt+2kz = τtτt+r−s.

Now using (2) and (3) we see that Q(r) = Q(s) = Q(s− t) so that

τt+r−s(r) = τr−(s−t)(r) = s− t

and
τt(s− t) = τs−(s−t)(s− t) = s;

hence σ(r) = s.
Moreover, in the case that 〈r − s, t− 2s〉 = 0, then

〈t+ r − s, t− 2s〉 = 〈t, t− 2s〉+ 〈r − s, t− 2s〉 = 0

and 〈t, t− 2s〉 = 0
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so that σ(t− 2s) = τtτt+r−s(t− 2s) = τt(t− 2s) = t− 2s. Q.E.D.

Theorem 6.2. Let L be an inner product Z2-module of scale k. Let
x1, x2, y1, y2 be in L such that x1 − x2 and y1 − y2 are in 2kL, and for
each i = 1, 2 the matrix of 〈−,−〉|span(xi,yi) with respect to xi, yi is(

2k+1 2k

2k 2k+1

)
.

If k = 0, suppose that Q((span(x2, y2))
⊥) ∩ U2 = ∅. Then there is a

σ ∈ O#(L) such that σ(x1) = x2, σ(y1) = y2, and (det(σ), spin(σ)) ∈
Γ2,k.

Proof. We first apply Lemma 6.1 with r = x1, s = x2, and t = y2.
To verify the hypotheses:

(1) Q(t) = Q(y2) = 2k+1

(2) 〈t, t− 2s〉 = 〈y2, y2 − 2x2〉 = 2k+1 − 2k+1 = 0

(3) Q(r) = Q(x1) = 2k = Q(x2) = Q(s)

(4) r − s = x1 − x2 ∈ 2kL by assumption

(5) If k = 0, write

x1 = (α+ 1)x2 + (β − 1)y2 + z

with z ∈ (span(x2, y2))
⊥. Note that since k = 0 we have

Q(xi) = Q(yi) = 〈xi, yi〉 = 1 for each i. Then

r − s+ t = x1 − x2 + y2 = αx2 + βy2 + z

so that

Q(r − s+ t) = Q(x1 − x2 + y2) = α2 + αβ + β2 +Q(z)

and

〈r − s, t〉 = 〈x1 − x2, y2〉 = α+ 2β − 2.

Suppose that 2 - 〈r − s, t〉 = α + 2β − 2; then α must
be odd. This forces α2 + αβ + β2 to be odd. If in addition
2 | Q(r− s+ t) = Q(x1− x2 + y2) then Q(z) must be odd and
integral, i.e., Q(z) ∈ U2. This violates the assumption on the
values of Q on span(x2, y2))

⊥, and finishes the verification of
(5).

Thus, by Lemma 6.1, there is a σ1 ∈ O#(L) with (det(σ1), spin(σ1)) ∈
Γ2k and σ1(x1) = x2.
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We now apply Lemma 6.1 a second time with r = σ1(y1), s = y2,
and t = 2y2 − x2. In this case,

〈r − s, t− 2s〉 = 〈y2 − σ1(y1), 2y2 − x2 − 2y2〉
= −〈y2, x2〉+ 〈σ1(y1), x2〉
= −2k + 〈σ1(y1), σ1(x1)〉 = 0

so that we will invoke the last sentence of Lemma 6.1 as well (and do
not need to check hypothesis (5)). To check the other hypotheses:

(1) Q(t) = Q(2y2 − x2) = 3 · 2k ∈ 2kU2

(2) 〈t, t − 2s〉 = 〈2y2 − x2, 2y2 − x2 − 2y2〉 = 〈2y2 − x2,−x2〉 =
−2k+1 + 2k+1 = 0

(3) Q(r) = Q(σ1(y1)) = Q(y1) = 2k = Q(y2) = Q(s)

(4) σ1(y1) − y2 = (σ1(y1) − y1) + (y1 − y2) ∈ 2kL by Lemma 2.4,
since σ1 ∈ O#(L).

Thus, by Lemma 6.1, there is a σ2 ∈ O#(L) with (det(σ2), spin(σ2)) ∈
Γ2,k, σ2(σ1(y1)) = y2; in addition, since we have checked that 〈r−s, t−
2s〉 = 0, we have σ2(2y2− x2− 2y2) = 2y2− x2− 2y2, i.e., σ2(x2) = x2.

But then if σ = σ2σ1,

σ(x1) = σ2σ1(x1) = σ2(x2) = x2

σ(y1) = σ2σ1(y1) = y2

so that σ is the desired isometry. Q.E.D.

Lemma 6.3. Let L be an inner product Z2-module of scale k, and
let x, y ∈ L such that the matrix of 〈−,−〉|span(x,y) with respect to x, y
is (

2k+1 2k

2k 2k+1

)
For any α ∈ U2 with α ≡ 1 mod 2k there is a σ ∈ O#(L) with
(det(σ), spin(σ)) = (1, α).

Proof. For any β ∈ U2, consider

γ = 1− 〈x, βy〉+Q(x)Q(βy)

= 1− 2kβ + 22kβ2;

note that γ ∈ U2. Also Q(βy) = 2kβ2 ∈ 2kU2; Since L has scale k,
2k | 〈βy, t〉 for every t ∈ L. Thus, using case (b) of Proposition 3.1, we
may define Ex

βy ∈ O#(L) with (det(Ex
βy), spin(Ex

βy)) = (1, γ).
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Since odd spinor norms are determined by their values mod8, if
α ≡ 1 mod 8 we may take σ = identity to get spin(σ) ≡ α mod 8. If
α 6≡ 1 mod 8 then k ≤ 2; unless k = 1 and α ≡ 5 mod 8 we choose β
by the following table to guarantee that γ = spin(Ex

βy) ≡ α mod 8.

k β γ = 1− 2kβ + 22kβ2 mod 8

3 7
0 5 5

7 3
1 1 7

3 3
2 1 5

Since α ≡ 1 mod 4 when k = 2, all possibilities can be realized in this
way unless k = 1 and α ≡ 5 mod 8. To obtain this last case, simply
compose two isometries with spinor norm 3 and 7, which exist by the
table above. Q.E.D.

Corollary 6.4. Let L = Vk ⊕ L′ be an inner product Z2-module
of scale k, and if k = 0 assume that Q(L′) ∩ U2 = ∅. Then:

(6.4.1) For every ρ ∈ O#(L), there is a σ ∈ O#(L) such that

σρ ∈ O#(L′) and (det(σ), spin(σ)) ∈ Γ2,k.

(6.4.2) Σ#(L) = Γ2,k · Σ#(L′).

The proof is entirely analogous to that of Corollary 5.6, using The-
orem 6.2 and Lemma 6.3.

Corollary 6.5. Let L = V0 ⊕ L′ be an inner product Z2-module
(of scale 0) such that Q(L′) ∩ U2 = ∅. Then:

(6.5.1) For every ρ ∈ O(L) there is a σ ∈ O(L) such that σρ ∈ O(L′)
and (det(σ), spin(σ)) ∈ Γ2,0.

(6.5.2) Σ(L) = Γ2,0 · Σ(L′).

The proof is analogous to that of Corollary 5.7.

7. Cartan-Dieudonné-type Theorems for Quadratic
Z2-Modules

We now combine the calculations of the last few sections to get
analogues of the Cartan-Dieudonné thoerem for O#(L) and O(L).

It is convenient to introduce another “normal form” for a decompo-
sition of a quadratic (or inner product) Z2-module into indecomposable
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components. This is far from unique, but is useful for the isometry re-
sults of this section.

Definition 7.1. Let L be a quadratic (or inner product) Z2-module.
A decomposition

L =
⊕
k≥0

(U
⊕N(k)
k ⊕ V

e(k)
k ⊕W (k))

is in alternate normal form if:

(a) each piece U
⊕N(k)
k ⊕V e(k)

k ⊕W (k) of scale k is in homogeneous
normal form, and

(b) for each k ≥ 1, either e(k − 1) = 0 or W (k) = 0.

It is a simple matter to put a quadratic or inner product Z2-module
L into alternate normal form, working from the “bottom up”. We
take as given that each piece of scale k can be separately put into
homogeneous normal form; start by putting all pieces of scale k into
homogeneous normal form. Assume by induction that each piece of
scale ≤ m is in homogeneous normal form, and that condition (b)
is satisfied for all k ≤ m. If at that point we have e(m) = 1 and
W (m + 1) 6= 0, use relation (VIII) of Proposition IV.3.1 to increase
N(m) and decrease e(m). (This can always be done in such a way as
not to spoil the homogeneous normal form at either the m level or the
m+ 1 level.) Then proceed to the next level. Hence:

Proposition 7.2. Every quadratic (or inner product) Z2-module
L can be decomposed into alternate normal form.

We begin with two lemmas.

Lemma 7.3. Let L = W ε
2,k ⊕Wϕ

2,k. Then there is a z ∈ L such that

Q(z) ∈ 2kU2 if and only if ε+ ϕ 6≡ 0 mod 4.

Proof. Choose generators x and y for W ε
2,k and Wϕ

2,k, respec-

tively, so that Q(ax) = ε2k−1a2 and Q(by) = ϕ2k−1b2. (Here we
abuse notation slightly and consider ε and ϕ as coming from the set
{1, 3, 5, 7} ⊂ U2.) Let z = ax + by, so that Q(z) = (a2ε + b2ϕ)2k−1.
Then 2k | Q(z) if and only if a2ε+ b2ϕ is even; this happens if and only
if a ≡ b mod 2, since both ε and ϕ are odd. But if a and b are both
even then 2k+1 | Q(z). Thus Q(z) ∈ 2kU2 implies that a, b ∈ U2. In
that case, a2ε+ b2ϕ ≡ ε+ ϕ mod 8, so that a2ε+ b2ϕ ∈ 2U2 and only
if ε+ ϕ is not divisible by 4, i.e., ε+ ϕ 6≡ 0 mod 4. Q.E.D.

Lemma 7.4. Let L be an inner product Z2-module decomposed into
alternate normal form. Write

L = UN
0 ⊕ V e

0 ⊕W (0)⊕ L′
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with scale(L′) ≥ 1. If e 6= 0, then Q(W (0)⊕ L′) ∩ U2 = ∅.

Proof. Write

L′ = U
N(1)
1 ⊕ V

e(1)
1 ⊕W (1)⊕ L′′

with scale(L′′) ≥ 2. Hence Q(L′′) ⊂ 2Z2, so we need only worry about

the values of Q on W (0)⊕UN(1)
1 ⊕V e(1)

1 ⊕W (1). Since e = e(0) 6= 0, we
have (by the alternate normal form assumption) that W (1) = 0. Since
the values of Q on both U1 and V1 are all even, we see that Q(L′) ⊂ 2Z2.

Suppose there is a z = z1 + z2 with z1 ∈ W(0) and z2 ∈ L′, such
that Q(z) = Q(z1) + Q(z2) ∈ U2. Then Q(L′) ⊂ 2Z2 implies that
so that Q(z1) ∈ U2. If rank W(0) ≤ 1, this is clearly impossible; the
values of Q on W ε

2,0 have the form 1
2
εa2 for some a ∈ Z2, with ε ∈ U2,

and this is never a unit. If rank W(0) = 2, by Lemma 7.3 this can
happen only if W(0) = W ε

2,0 ⊕Wϕ
2,0 where ε + ϕ 6≡ 0 mod 4. But since

the decomposition is in alternate normal form, in particular the piece
of scale 0 is in homogeneous normal form; hence the only possibilities
for (ε, ϕ) with e 6= 0 are (1, 3) and (1, 7) (see Table IV.4); this is a
contradiction. Q.E.D.

Theorem 7.5. Let L be an even inner product Zp-module. (I.e.,
here we explicitly assume that L is a quadratic Z2-module, where the
quadratic form Q takes integral values.) Then O#(L) is generated by
reflections and generalized Eichler isometries.

Proof. We proceed by induction on the rank of L, using Corollar-
ies 4.2, 4.5, 5.6, 6.4, and Theorem 4.3. Note that all of the isometries
constructed there can be factored as products of reflections and gen-
eralized Eichler isometries. Note also that those statements take the
following form: given a decomposition L = L1 ⊕ L2 satisfying certain
hypotheses, for every ρ ∈ O(L) there is a σ ∈ O(L) (which is a product
of reflections and generalized Eichler isometries) such that σρ ∈ O(L2).
By the inductive hypothesis, σρ will also be a product of reflections and
generalized Eichler autometries.

First consider the case p = 2. We may assume that L is in alternate
normal form. Suppose that L has scale k, and write

L = (Uk)
N ⊕ (Vk)

e ⊕W (k)⊕ L′

with scale (L′) ≥ k + 1.
If N > 0, we may apply Corollary 5.6.
If N = 0 and e > 0, note that if k = 0 then Q(W (0)⊕L′)∩U2 = ∅

by Lemma 7.4. Thus we may apply Corollary 6.4.
If N = e = 0, note that k ≥ 1 since we have assumed that L is even.

We may thus apply Corollary 4.5 in the case k = 1, and Corollary 4.2
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in the case k ≥ 3. If k = 2 and rank W (2) = 1, then L = W ε
2,2⊕L′, and

since L′ has scale at least 3, Q(L′) ⊂ 4Z2 and we may apply Corollary
4.2 also. Finally if k = 2 and rank W (2) = 2, we apply Theorem 4.3.

If p > 2, we may write L = W ε
p,k ⊕ L′ and apply Corollary 4.5 if

k = 0 and Corollary 4.2 if k ≥ 1. Q.E.D.

To give an analogous theorem for O(L), we must discuss the effects
of scaling on the orthogonal group. Again it is more convenient to do
this with respect to the bilinear forms than the quadratic forms. Let L
be an inner product Zp-module of scale ≥ k, with bilinear form 〈−,−〉.
Define the bilinear form 〈−,−〉1 on L by

〈x, y〉1 = p−k〈x, y〉 for all x, y ∈ L.

Note that even if 〈−,−〉 is an even bilinear form, if p = 2 it may be
the case that 〈−,−〉1 is not an even bilinear form.

If (L, 〈−,−〉) has scale k, and we decompose L as

(L, 〈−,−〉) ∼=
⊕
m≥k

(UN(m)
m ⊕ V e(m)

m ⊕W (m))

as usual, then we have

(L, 〈−,−〉1) ∼=
⊕
m≥0

(UN(m+k)
m ⊕ V e(m+k)

m ⊕W (m+ k)).

In any case there is a natural isomorphism from O(L, 〈−,−〉) to
O(L, 〈−,−〉1). Moreover this clearly preserves the set of reflections,
since a reflection can be defined purely in terms of the bilinear form
also: τv is defined when 〈v, v〉 6= 0 and 〈v, v〉 | 2〈v, w〉 for all w ∈ L.

To see the effect on the generalized Eichler isometries, we prove the

Proposition 7.6. Let L be an inner product Zp-module.

(7.6.1) Suppose x, y ∈ L such that Q(x) = 〈x, y〉 = 0, Q(y) ∈ pkZp,
and with pk | 〈x, t〉 and pk | 〈y, t〉 for all t ∈ L. Define the
rescaled Eichler isometry kEx

y by

kEx
y (t) = t+ xp−k〈y, t〉+

(
−y − p−kQ(y)x

)
p−k〈x, t〉

Then kEx
y ∈ O(L).

(7.6.2) Suppose that L has scale ≥ k. If σ ∈ O(L, 〈−,−〉1) is a
generalized Eichler isometry then, regarded as an element of
O(L, 〈−,−〉), σ is either a product of reflections or is a rescaled
Eichler isometry.
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Proof. We first discuss (7.6.1). The hypotheses guarantee that
kEx

y maps L to L. To see that kEx
y ∈ O(L), we must check that

Q(kEx
y (t)) = Q(t) for every t ∈ L; this is a slight modification of the

calculation given in the proof of Proposition 3.1.3.
To see (7.6.2), first assume that σ satisfies hypothesis (b) of Propo-

sition 3.1. Then σ is a product of reflections in O(L, 〈−,−〉1); since the
isomorphism between O(L, 〈−,−〉) and O(L, 〈−,−〉1) preserves the set
of reflections, this still holds in O(L, 〈−,−〉).

If σ = Ex
y satisfies hypothesis (a) of Proposition 3.1, then

Ex
y (t) = t+ x〈y, t〉1 +

(
−y − 1

2
〈y, y〉1x

)
〈x, t〉1

so that inO(L, 〈−,−〉), σ = kEx
y is a rescaled Eichler isometry. Q.E.D.

Theorem 7.7. Let L be an inner product Zp-module. Then O(L)
is generated by reflections and rescaled Eichler isometries.

Proof. We gain use induction on the rank of L.
Suppose that (L, 〈−,−〉) has scale k, let 〈−,−〉1 = p−k〈−,−〉,

and consider a decomposition L = L1 ⊕ L2. If we can show that
for every ρ ∈ O(L, 〈−,−〉1) there is a σ ∈ O(L, 〈−,−〉1) such that
σρ ∈ O(L2, 〈−,−〉1|L2) and σ is a product of reflections and gener-
alized Eichler isometries, we shall be finished: regarded as elements
in O(L, 〈−,−〉) and O(L2, 〈−,−〉|L2), σ and σρ will be products of
reflections and rescaled Eichler isometries by Proposition 7.6 and the
inductive hypothesis, respectively.

If p = 2, we may assume that (L, 〈−,−〉) is in alternate normal
form, and write

(L, 〈−,−〉1) = UN
0 ⊕ V e

0 ⊕W (0)⊕ L′

with scale(L′) ≥ 1. Note that since we have rescaled, either N 6= 0,
e 6= 0, or rank W (0) 6= 0.

If N > 0, we may apply Corollary 5.7. If N = 0 and e > 0 then by
Lemma 7.4, Q(W (0) ⊕ L′) ∩ U2 = ∅ so that we may apply Corollary
6.5. Finally, if N = e = 0, then rank W (0) ≤ 2, and we may apply
Theorem 4.8.

If p > 2, we may write (L, 〈−,−〉1) = W ε
p,0⊕L′ and apply Corollary

4.6. Q.E.D.
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8. Scaling and Spinor Norms

We turn now to the computation of the groupos Σ(L) and Σ#(L),
defined as

Σ(L) = Im
(
(det, spin) : O(L) → {±1} ×Q∗

p/(Q∗
p)

2) .
Σ#(L) = Im

(
(det, spin) : O#(L) → {±1} ×Q∗

p/(Q∗
p)

2)
We will also find it convenient to introduce

Σ+(L) = {(d, s) ∈ Σ(L) | d = 1} ,
Σ++(L) =

{
(d, s) ∈ Σ(L) | d = 1, s ∈ Up mod (Q∗

p)
2
}
.

As the proof of Theorem 7.7 shows, we need to know the effect of
scaling in order to compute Σ(L).

Proposition 8.1. Let (L, 〈−,−〉) be an inner product Zp-module
of scale ≥ k, and let 〈−,−〉1 = p−k〈−,−〉.
(8.1.1) If k is even, then Σ(L, 〈−,−〉1) = Σ(L, 〈−,−〉).

(8.1.2) If k is odd, then Σ+(L, 〈−,−〉1) = Σ+(L, 〈−,−〉), while

(−1, s) ∈ Σ(L, 〈−,−〉1) ⇐⇒ (−1, ps) ∈ Σ(L, 〈−,−〉).

Proof. Given ρ ∈ O(L, 〈−,−〉), decompose ρ as a product of re-
flections

ρ = τz1 · · · τzr

in O(L⊗Qp, 〈−,−〉 ⊗Qp). Then det(ρ) = (−1)r while

spin(ρ) = Q(z1) · · ·Q(zr).

The decomposition of ρ still holds if ρ is regarded as an element of
O(L, 〈−,−〉1), so that

det1(ρ) = (−1)r = det(ρ)

while

spin1(ρ) = Q1(z1) . . . Q1(zr) = p−kr spin(ρ)

where we write Q1 for the quadratic form associated to 〈−,−〉1, and
det1 and spin1 for the values computed with respect to the rescaled
forms. Thus

spin1(ρ)

spin(ρ)
≡

{
1 if k is even or det ρ = 1

p if k is odd and det ρ = −1.
mod (Q∗

p)
2

Q.E.D.
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We shall not be overly concerned with the change in spinor norms
for k odd, due to the following lemma.

Lemma 8.2. Let L be an inner product Zp-module. Then:

(8.2.1) There exist reflections in O(L)

(8.2.2) [Σ(L) : Σ+(L)] = 2

(8.2.3) Σ(L)/Σ+(L) is generated by the determinant and spinor norm
of any reflection in O(L).

Proof. (8.2.1): Let L have scale k. Then we can write either
L = W ε

p,k ⊕ L′, L = Uk ⊕ L′ or L = Vk ⊕ L′. In the first case, there is

a z ∈ L with Q(z) ∈ 1
2
pkUp so that τz ∈ O(L) by Lemma 2.1. In the

last two cases, there is a z ∈ L with Q(z) ∈ 2kU2 so that τz ∈ O(L) by
Lemma 2.1.

(8.2.2): We have Σ(L)/Σ+(L) ⊂ {±1}, and is nonempty by (8.2.1).
(8.2.3): This is obvious by the other two statements, since any

reflection τz has determinant −1 and so (det(τz), spin(τz)) 6∈ Σ+(L).
Q.E.D.

In view of this lemma, we shall concentrate on the computation of
Σ#(L) and Σ+(L) in the following sections.

9. Computation of Σ#(L) and Σ+(L) for p 6= 2

In this section, we compute Σ#(L) and Σ+(L) for quadratic Zp-
modules with p odd. (Recall for p odd that there is no essential differ-
ence between a quadratic Zp-module and an inner product Zp-module.)

Lemma 9.1. Let L = W ε
p,0 ⊕Wϕ

p,0 ⊕ L′ be a quadratic Zp-module
with p 6= 2. Then

Σ#(L) ⊃
{
(d, s) ∈ {±1} ×Q∗

p/(Q∗
p)

2 | s 6≡ 0 mod p
}

= Γp,0

Proof. Let α ∈ Up be a non-square, i.e.,
(
α
p

)
= −1.

By Lemma IV.2.1.1, for any ε and ϕ in {±1}, W ε
p,0⊕W

ϕ
p,0
∼= W−ε

p,0 ⊕
W−ϕ
p,0 ; in particular, both W 1

p,0 and W−1
p,0 must occur as factors in some

(perhaps different) decompositions of L. This means that there are
elements x, y ∈ L withQ(x) = 1 andQ(y) = α; but now τx, τy ∈ O#(L)
by Proposition 2.3, while

(det τx, spin τx) = (−1, 1), (det τy, spin τy) = (−1, α).

But {(d, s) | s 6≡ 0 mod p} = {(1, 1), (1, α), (−1, 1), (−1, α)} is gener-
ated by (−1, 1) and (−1, α). Q.E.D.
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Corollary 9.2. Let L = W ε
p,k⊕W

ϕ
p,k⊕L′ be a quadratic Zp-module

with p 6= 2. Then Σ(L) ⊃
{
(d, s) ∈ {±1} ×Q∗

p/(Q∗
p)

2 | d = 1, s 6≡ 0 mod p
}
.

Proof. Let α ∈ Up be a nonsquare, so that {(d, s) | d = 1, s 6≡
0 mod p} = {(1, 1), (1, α)}. Consider the quadratic module L′′ =
W ε
p,0⊕W

ϕ
p,0 which, up to scaling, is a direct summand of L. By Lemma

9.1, there is a σ ∈ O#(L′′) such that (det(σ), spin(σ)) = (1, α). But
then, regarding σ ∈ O(L) (acting as σ on W ε

p,k ⊕W
ϕ
p,k and as the iden-

tity on L′), we still have (det(σ), spin(σ)) = (1, α), (arguing as in the
proof of Proposition 8.1); hence (1, α) ∈ Σ(L). Q.E.D.

Theorem 9.3. Let L be a quadratic Zp-module with p 6= 2.

(9.3.1) If scale(L) ≥ 1 then Σ#(L) = {(1, 1)}.

(9.3.2) If L = W ε
p,0 ⊕ L′ with scale(L′) ≥ 1, then

Σ#(L) = {(1, 1), (−1, 2α)}, where

(
α

p

)
= ε.

(9.3.3) If L = W ε
p,0 ⊕Wϕ

p,0 ⊕ L′, then Σ#(L) = Γp,0.

Proof. We proceed by induction on the rank of L. Let L have
scale k, and write L = W ε

p,k ⊕ L′.

If k ≥ 1, by the inductive hypothesis Σ#(L′) = {(1, 1)}. But by
Corollary 4.2, Σ#(L) = Σ#(L′), so that Σ#(L) = {(1, 1)}, proving
(9.3.1).

If k = 0, by Corollary 4.5, Σ#(L) is generated by Σ#(L′) and
{(−1, Q(z)) | z ∈ L, Q(z) ∈ Up}. Since this last set is contained in
Γp,0, we see that Σ#(L) ⊂ Γp,0. Now case (9.3.3) is finished by Lemma
9.1.

For case (9.3.2), we must show: for every z ∈ L with Q(z) ∈ Up

we have Q(z) ≡ 2α mod (Q∗
p)

2, where α is chosen so that
(
α
p

)
= ε.

Let x be a basis of W ε
p,0 such that Q(x) = α/2 (which is possible

since
(
α
p

)
= ε). Write z = ax + y with y ∈ L′. then Q(z) = a2α/2 +

Q(y) ≡ a2α mod p, so that Q(z) ≡ a2α/2 mod (Q∗
p)

2 and hence Q(z) ≡
2α mod (Q∗

p)
2. Q.E.D.

We turn now to the computation of Σ+(L). We first consider Σ +
(L)/Σ++(L).

Lemma 9.4. Let L = W ε
p,k ⊕Wϕ

p,` ⊕ L′ be a quadratic Zp-module,

p 6= 2, with k 6≡ ` mod 2. Then (1, pα) ∈ Σ+(L), where
(
α
p

)
= εϕ. In

particular, Σ+(L) 6= Σ++(L).
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Proof. Choose β ∈ Up with
(
β
p

)
= ε, and let γ = αβ−1 so that(

γ
p

)
= ϕ. then there are bases x, y for Wp, kε and Wϕ

p,` respectively

such that Q(x) = pkβ/2 and Q(y) = p`γ/2. Since W ε
p,k and Wϕ

p,` are
direct summands, τx, τy ∈ O(L).

But now

spin(τxτy) = spin(τx) spin(τy) = pk+`βγ/4 ≡ pα mod (Q∗
p)

2

since k + ` ≡ 1 mod 2, so that (1, pα) ∈ Σ+(L). Q.E.D.

Theorem 9.5. Let L be a quadratic Zp-module, p 6= 2. Then
Σ+(L) = Σ++(L) if and only if L = W ε1

p,k1
⊕ · · · ⊕ W εr

p,kr
, with ki ≡

kj mod 2 for all i and j.

Proof. Write L = W ε1
p,k1

⊕ · · · ⊕W εr
p,kr

with k1 ≤ k2 ≤ · · · ≤ kr.
We will proceed by induction on r = rank(L). Since the statement is
invariant under scaling by Proposition 8.1, we may assume that k1 = 0.

If there exist i, j with ki 6≡ kj mod 2, then by Lemma 9.4, Σ+(L) 6=
Σ++(L).

Conversely, suppose that ki = kj mod 2 for all i and j. Since we
have assumed that k1 = 0, this is equivalent to having all ki even. Let
L′ = W ε2

p,k2
⊕· · ·⊕W εr

p,kr
. If r = 1 then Σ(L′) = {(1, 1)} by convention; if

r ≥ 2, choose α2 ∈ U2 with
(
α2

p

)
= ε2 so that the inductive hypothesis

says that Σ(L′) is generated by (−1, α2p
k2/2) and Σ+(L′) = Σ++(L′),

i.e., by (−1, α2/2) and Σ++(L′), since k2 is even. By Corollary 4.6, Σ(L)
is generated by Σ(L′) and by {(−1, Q(z)) | z ∈ L,Q(z) ∈ Up}. But
then Σ+(L) is generated by Σ+(L′) = Σ++(L′) and {(1, α2Q(z)/2) |
z ∈ L,Q(z) ∈ Up}; since this latter set is contained in Σ++(L), we get
Σ+(L) = Σ++(L). Q.E.D.

Since [Σ+(L) : Σ++(L)] ≤ 2, Theorem 9.5 reduces the calculation
of Σ+(L) to that of Σ++(L).

Theorem 9.6. Let L be a quadratic Zp-module with p 6= 2. Then

Σ++(L) =
{
(d, s) ∈ {±1} ×Q∗

p/(Q∗
p)

2 | d = 1, s 6≡ 0 mod p
}

unless L = W ε1
p,k1

⊕ · · · ⊕ W εr
p,kr

with k1 < k2 < · · · < kr, and there

exist α+, α− ∈ Up such that εi =
(
α+

p

)
if ki is even and εi =

(
α−
p

)
if ki is odd. In this latter case, Σ++(L) = {(1, 1)}, and Σ(L) ⊂
{(1, 1), (1, α+α−p), (−1, α+), (−1, α−p)}.

Proof. Write L = W ε1
p,k1

⊕ · · · ⊕W εr
p,kr

with k1 ≤ k2 ≤ · · · ≤ kr.
We again proceed by induction on r = rank(L). As in Theorem 9.5,
the statement is invariant under scaling by Proposition 8.1, so that we
may assume that k1 = 0.
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Let α ∈ Up be a non-square, and note that {(d, s) | d = 1, s 6≡
0 mod p} = {(1, 1), (1, α)}. If there exists an i with ki = ki+1, then
(1, α) ∈ Σ++(L) by Corollary 9.2. So we may assume that 0 = k1 <
k2 < · · · < kr.

Similarly, if there exists an i and j with ki ≡ kj mod 2 and εiεj =
−1, choose bases xi, xj for W εi

p,ki
and W

εj

p,kj
respectively. Then τxi

, τxj
∈

O(L), while

(det(τxi
τxj

), spin(τxi
τxj

)) = (1, Q(xi)Q(xj)) = (1, pki+kjα) = (1, α) ∈ Σ++(L).

Thus, Σ++(L) = {(1, 1)} also implies the existence of α+ and α− with
the stated properties.

Suppose now that L has these properties, namely that the ki are
strictly increasing, and that appropriate α+ and α− exist as stated. Let
L′ = W ε2

p,k2
⊕ · · ·⊕W εr

p,kr
. Since L′ also has these properties, Σ++(L′) =

{(1, 1)} and Σ(L′) ⊂ {(1, 1), (1, α+α−p), (−1, α+), (−1, pα−)} by the
inductive hypothesis. By Corollary 4.6, Σ(L) is generated by Σ(L′)
and {(−1, Q(z)) | z ∈ L,Q(z) ∈ Up}. But since 0 = k1 < k2, if
Q(z) ∈ Up then Q(z) ≡ α+ mod p, so that Σ(L) is generated by Σ(L′)
and (−1, α+); hence,

Σ(L) ⊂ {(1, 1), (1, α+α−p), (−1, α+), (−1, α−p)}

and Σ++(L) = {(1, 1)}. Q.E.D.

10. Computation of Σ#(L) for p = 2

In this section we compute Σ#(L) for a quadratic Z2-module L,
or, equivalently, for an even inner product Z2-module L. To make the
computation useful in applications, we express it in terms of the partial
normal form, whose definition we now recall (cf. Definition IV.4.1).

Definition 10.1. Let L be an inner product Z2-module. An ex-
pression for L in terms of the generators {Uk, Vk,W ε

2,k} of I2 is in partial
normal form if the terms with scale k can be written as

(Uk)
N(k) ⊕ (Vk)

e(k) ⊕W (k),

with N(k) ≥ 0, e(k) = 0 or 1, and W (k) = 0, W ε
2,k or W ε

2,k ⊕Wϕ
2,k.

Notice that the integers N(k), e(k), and rank(W (k)) are invariants
of the partial normal form, and that an expression in normal form or
alternate normal form is also in partial normal form.
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We will express Σ#(L) (for most L) in terms of the groups Γ2,k; we
recall the definition for the reader’s convenience:

Γ2,0 = {(1, 1), (1, 3), (1, 5), (1, 7), (−1, 1), (−1, 3), (−1, 5), (−1, 7)}
Γ2,1 = {(1, 1), (1, 3), (1, 5), (1, 7)}
Γ2,2 = {(1, 1), (1, 5)}
Γ2,k = {(1, 1)} for k ≥ 3.

Theorem 10.2. Let L be a quadratic Z2-module in partial normal
form, and write

L = U
N(0)
0 ⊕ V e(0)

0 ⊕UN(1)
1 ⊕ V e(1)

1 ⊕W (1)⊕UN(2)
2 ⊕ V e(2)

2 ⊕W (2)⊕L′

with scale (L′) ≥ 3.

(10.2.1) If N(0) + e(0) > 0, then Σ#(L) = Γ2,0

(10.2.2) If N(0) = e(0) = 0, N(1) + e(1) > 0 and rank(W (1)) > 0,
then Σ#(L) = Γ2,0.

(10.2.3) If N(0) = e(0) = rank(W (1)) = 0 and N(1) + e(1) > 0, then
Σ#(L) = Γ2,1.

(10.2.4) If N(0) = e(0) = N(1) = e(1) = 0 and rank(W (1)) > 0, then
Σ#(L) ⊂ Γ2,0.

(10.2.5) If N(0) = e(0) = N(1) = e(1) = rank(W (1)) = 0 and N(2) +
e(2) > 0, then Σ#(L) = Γ2,2.

(10.2.6) If N(0) = e(0) = N(1) = e(1) = rank(W (1)) = N(2) =
e(2) = 0 and rank(W (2)) = 2, then Σ#(L) = Γ2,2.

(10.2.7) If N(0) = e(0) = N(1) = e(1) = rank(W (1)) = N(2) =
e(2) = 0 and rank(W (2)) ≤ 1, then Σ#(L) = {(1, 1)}.

Remark 10.3. We will refine the computation in case (10.2.4) in
Lemma 10.6 and Theorems 10.7 and 10.8 below.

Proof. We first notice that the statement depends only on the
integers N(k) + e(k) and rank(W (k)); in particular, we may replace
the given expression for L with one in alternate normal form without
affecting the truth of the theorem. Therefore we will assume for the
proof that L is in alternate normal form.

The proof will proceed by induction on the rank. We begin by
discussing (10.2.7). Assume L has scale k, and write L as

L = U
N(k)
k ⊕ V

e(k)
k ⊕W (k)⊕ L′
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where eitherN(k)+e(k) > 0 orW (k) 6= 0 or both. By hypothesis either
k ≥ 3 or k = 2, N(2) = e(2) = 0, and rank(W (2)) = 1. We assume
by induction that Σ#(L′) = {(1, 1)}. If (W (k)) 6= 0 then we may use
Corollary 4.2 to conclude that Σ#(L) = {(1, 1)}. If W (k) = 0 and
N(k) > 0 then k ≥ 3 and Corollary 5.6 implies that Σ#(L) = {(1, 1)}.
Finally if W (k) = 0 and N(k) = 0 then e(k) = 1 and k ≥ 3; in this
case Corollary 6.4 gives that Σ#(L) = {(1, 1)}.

This finishes the proof of (10.2.7); note that we can conclude that
whenever L has scale ≥ 3, Then Σ#(L) = {(1, 1)}.

The hypotheses of (10.2.6) imply that L may be written as

L = W ε
2,2 ⊕Wϕ

2,2 ⊕ L′

with scale(L′) ≥ 3. Hence Σ#(L′) = {(1, 1)} by (10.2.7). We conclude
using Theorem 4.3 that Σ#(L) = Γ2,2 as claimed.

To see (10.2.5), in this case we have that

L = U
N(2)
2 ⊕ V

e(2)
2 ⊕W (2)⊕ L′,

with N(2) + e(2) > 0 and scale(L′) ≥ 3. Using (10.2.6) and (10.2.7)
we have that Σ#(W (2)⊕L′) ⊂ Γ2,2. Now using either Corollary 5.6 or
Corollary 6.4, we see that Σ#(L) = Γ2,2.

Note that (10.2.5-7) now give us that whenever scale(L) ≥ 2, we
have Σ#(L) ⊂ Γ2,2.

The assumptions of (10.2.4) allow us to write L as

L = W (1)⊕ L′

with W (1) 6= 0 and scale(L′) ≥ 2. Hence Σ#(L′) ⊂ Γ2,2. In this
case Corollary 4.5 implies that Σ#(L) is generated by Σ#(L′) and
{(−1, Q(z)) | 2 - Q(z)}. This set is contained in Γ2,0, hence so is
Σ#(L) as claimed.

The proof of (10.2.3) is similar to that of (10.2.5); in this case we
may write L as

L = U
N(1)
1 ⊕ V

e(1)
1 ⊕ L′

with scale(L′) ≥ 2 and N(1) + e(1) > 0. Therefore we have Σ#(L′) ⊂
Γ2,2. Hence using either Corollary 5.6 or Corollary 6.4 we see that
Σ#(L) = Γ2,1.

To see (10.2.2), these hypotheses imply that we may write L as

L = W (1)⊕ L′

where W (1) has rank one or two and L′ satisfies the hypotheses of
(10.2.3). Hence Σ#(L′) = Γ2,1 as shown above. In this case we
use Corollary 4.5 to conclude that Σ#(L) is generated by Γ2,1 and



10. COMPUTATION OF Σ#(L) FOR p = 2 175

{(−1, Q(z)) | 2 - Q(z)}. This set exactly generates Γ2,0, since there are
z’s (e.g., a generator of a W ε

2,1 summand) with 2 - Q(z).
Note that at this point we have shown that if scale(L) ≥ 1, then

Σ#(L) ⊂ Γ2,0.
Finally the assumptions of (10.2.1) imply that we can write L as

L = U
N(0)
0 ⊕ V

e(0)
0 ⊕ L′

where N(0)+e(0) > 0 and scale(L′) ≥ 1. Then we have Σ#(L′) ⊂ Γ2,0.
Moreover the assumption of alternate normal form gives that if e(0) = 1
then W (1) = 0. In this case we invoke either Corollary 5.6 or Corollary
6.4 to conclude that Σ#(L) = Γ2,0; we note that if we need to use
Corollary 6.4 then e(0) = 1 so that W (1) = 0 and we have satisfied the
assumptions necessary to invoke Corollary 6.4.

This completes the proof of the Theorem. Q.E.D.

In order to finish the computation in case (10.2.4) of the Theorem,
we need to study the reflections in O#(L).

Lemma 10.4. Let L be an inner product Z2-module.

(10.4.1) If L = W ε
2,k ⊕Wϕ

2,k ⊕ L′ with ε 6≡ ϕ mod 4, then Σ(L) ⊃ Γ2,1;

if k ≤ 1, then Σ#(L) ⊃ Γ2,1.

(10.4.2) If L = W ε
2,k⊕W

ϕ
2,k⊕L′ with ε ≡ ϕ mod 4, then (1, 5) ∈ Σ(L);

if k ≤ 1, then (1, 5) ∈ Σ#(L).

(10.4.3) If L = W ε
2,k ⊕Wϕ

2,k+2 ⊕ L′, then (1, 5) ∈ Σ(L); if k ≤ 1, then

(1, 5) ∈ Σ#(L).

(10.4.4) If L = W ε
2,k ⊕Wϕ

2,k+1 ⊕ L′, then (1, 1 + 2εϕ) ∈ Σ(L); if k ≤ 1,

then (1, 1 + 2εϕ) ∈ Σ#(L).

Proof. Let L = W ε
2,k⊕W

ϕ
2,k+`⊕L′, and let x and y span W ε

2,k and

Wϕ
2,k+` respectively so that Q(x) = 2k−1ε and Q(y) = 2k+`−1ϕ.
If ` = 0, by Proposition IV.3.1(I), there is some z = ax + by such

that Q(z) = 2k−1 · 5ε. Then τx and τz are in O(L) (respectively O#(L)
if k ≤ 1 by Proposition 2.3) so that (1, Q(x)Q(z)) = (1, 5) ∈ Σ(L)
(respectively Σ#(L) if k ≤ 1). This proves (10.4.2). If in addition
ε 6≡ ϕ mod 4, then τxτy ∈ O(L) (respectively O#(L) if k ≤ 1) so that
(1, Q(x)Q(y)) = (1, εϕ) ∈ Σ(L) (respectively Σ#(L) if k ≤ 1). Since
εϕ 6≡ 5 mod 8, (1, 5) and (1, εϕ) generate Γ2,1, proving (10.4.1).

If ` = 1, then Q(x + y) = 2k−1(ε + 2ϕ) so that τx and τx+y are
in O(L) (respectively O#(L) if k ≤ 1). Thus, (1, Q(x)Q(x + y)) =
(1, 1 + 2εϕ) ∈ Σ(L) (respectively Σ#(L) if k ≤ 1), proving (10.4.4).
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Finally, if ` = 2, then Q(x+ y) = 2k−1(ε+4ϕ) so that again τx and
τx+y are in O(L) (respectively O#(L) if k ≤ 1) and (1, Q(x)Q(x+y)) =
(1, 5) ∈ Σ(L) (respectively Σ#(L) if k ≤ 1). This proves (10.4.3) and
completes the proof of the lemma. Q.E.D.

Lemma 10.5. Let L be an inner product Z2-module, and let α ∈ Up.

(10.5.1) If L = W ε
2,k ⊕Wϕ

2,k ⊕ U
N(k+1)
k+1 ⊕ V

e(k+1)
k+1 ⊕ L′ with scale(L′) ≥

k + 2, if ε ≡ ϕ mod 4, and if x ∈ L such that Q(x) = 2k−1α,
then α ≡ ε or 5ε mod 8.

(10.5.2) If L = W ε
2,k⊕U

N(k+1)
k+1 ⊕V e(k+1)

k+1 ⊕L′ with scale(L′) ≥ k+2 and

if x ∈ L such that Q(x) = 2k−1α, then α ≡ ε or 5ε mod 8.

(10.5.3) If L = W ε
2,k⊕W

ϕ
2,k+1⊕U

N(k+2)
k+2 ⊕V N(k+2)

k+2 ⊕L′ with scale(L′) ≥
k + 3, and if x ∈ L such that Q(x) = 2k−1α, then α ≡ ε or
(1 + 2εϕ)ε mod 8.

(10.5.4) If L = W ε
2,k ⊕ U

N(k+2)
k+2 ⊕ V

N(k+2)
k+2 ⊕ L′ with scale(L′) ≥ k + 3,

and if x ∈ L such that Q(x) = 2k−1α, then α ≡ ε mod 8.

Proof. Write x = y+z, with y ∈ (sum of W ’s), z ∈ (sum of U , V , L′).
In the cases (10.5.1) and (10.5.2), we have Q(z) ∈ 2k+1Z2 so that

21−kQ(x) ≡ 21−kQ(y) mod 4. Our claim then becomes: for every y ∈
(sum of W ’s) with Q(y) ∈ 2k−1U2 we have 21−kQ(y) ≡ ε mod 4.

In cases (10.5.3) and (10.5.4), Q(z) ∈ 2k+2Z2 so that 21−kQ(x) ≡
21−kQ(y) mod 8. Our claim is then: for every y ∈ (sum of W ’s) with
Q(y) ∈ 2k−1U2 we have 21−kQ(y) ≡ ε or (1 + 2εϕ)ε mod 8 in case
(10.5.3), and 21−kQ(y) ≡ ε mod 8 in case (10.5.4).

Now any such y must split off from the sum of the W ’s, and so gives
as relation among the W ’s; all such relations were given in Proposition
IV.3.1. In case (10.5.4) there is no relevant relation which could apply,
and we conclude that 21−kQ(y) ≡ ε mod 8.

In case (10.5.2), again there is only one W , and the only relevant
relation is relation (VII):

W ε
2,k ⊕ Uk ∼= W 5ε

2,k ⊕ Vk.

We may therefore conclude that 21−kQ(y) = ε or 5ε mod 8 as required.
In case (10.5.1), we have this relation above, and in addition the

relation (I):

W ε
2,k ⊕Wϕ

2,k
∼= W 5ε

2,k ⊕W 5ϕ
2,k.

We again conclude that 21−kQ(y) = ε or 5ε mod 8 as required.
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Finally in case (10.5.3), the only relevant relation is (VI):

W ε
2,k ⊕Wϕ

2,k+1
∼= W ε+2ϕ

2,k ⊕Wϕ+2ε
2,k+1

which shows that 21−kQ(y) ≡ ε or ε+2ϕ = (1+2εϕ)ε mod 8. Q.E.D.

We are now ready to finish the computation of Σ#(L) in case
(10.2.4) of Theorem 10.2. Define

Σ#,+(L) =
{
(d, s) ∈ Σ#(L) | d = 1

}
.

We first compute the quotient Σ#(L)/Σ#,+(L).

Lemma 10.6. Let L = W ε
2,1 ⊕ L′ be a quadratic Z2-module. Then

the index
[
Σ#(L) : Σ#,+(L)

]
= 2, and Σ#(L)/Σ#,+(L) is generated by

(−1, ε).

Proof. In any case,
[
Σ#(L) : Σ#,+(L)

]
≤ 2, so we merely must

find something in Σ#(L) − Σ#,+(L). Let x span W ε
2,1 with Q(x) = ε.

Then τx ∈ O#(L), while (det(τx), spin(τx)) = (−1, ε). Q.E.D.

Theorem 10.7. Let L = W ε
2,1 ⊕ L′ be a quadratic Z2-module in

partial normal form with scale (L′) ≥ 2, and write

L′ = U
N(2)
2 ⊕ V

e(2)
2 ⊕W (2)⊕ U

N(3)
3 ⊕ V

e(3)
3 ⊕W (3)⊕ L′′

where scale(L′′) ≥ 4.

(10.7.1) If N(2) + e(2) + rank(W (3)) > 0 and rank(W (2)) > 0, then
Σ#(L′) ⊂ Γ2,2 and Σ#,+(L) = Γ2,1.

(10.7.2) If N(2) + e(2) + rank(W (3)) > 0 and rank(W (2)) = 0, then
Σ#(L′) ⊂ Γ2,2 and Σ#,+(L) = Γ2,2.

(10.7.3) If N(2) = e(2) = rank(W (3)) = 0 and rank(W (2)) = 2, then
Σ#(L′) = Γ2,2 and Σ#,+(L) = Γ2,1.

(10.7.4) If N(2) = e(2) = rank(W (3)) = 0 and W (2) = Wϕ
2,2, then

Σ#(L′) = {(1, 1)} and Σ#,+(L) = {(1, 1), (1, 1 + 2εϕ)}.

(10.7.5) If N(2) = e(2) = rank(W (2)) = rank(W (3)) = 0, then
Σ#(L′) = {(1, 1)} and Σ#,+(L) = {(1, 1)}.

Proof. By Corollary 4.5, Σ#(L) is generated by Σ#(L′) and {(−1, Q(x)) |
x ∈ L,Q(x) ∈ U2}. In each case we can bound or actually compute
Σ#(L′) using Theorem 10.2; we get the results stated above. Note that
in each case Σ#,+(L′) = Σ#(L′), i.e., there are no d = −1 elements in
Σ#(L′).
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Thus the group Σ#,+(L) is generated by Σ#(L′) and {(1, Q(x)Q(y)) |
x, y ∈ L,Q(x), Q(y) ∈ U2}. Hence we simply need to find the possible
set of reflections.

(10.7.1): If N(2) + e(2) > 0 then Σ#,+(L′) = Γ2,2 by (10.2.5). On
the other hand, if rank(W (3)) > 0, then (1, 5) ∈ Σ#,+(L) by (10.4.3).
So (1, 5) ∈ Σ#,+(L) in either case. Also, since rank(W (2)) > 0,
by (10.4.4), either (1, 3) or (1, 7) ∈ Σ#,+(L). But this implies that
Σ#,+(L) = Γ2,1.

(10.7.2): As in (10.7.1), (1, 5) ∈ Σ#,+(L). On the other hand,
Σ#,+(L′) ⊂ Γ2,2 by (10.2.5-7). Now for every x ∈ L with Q(x) ∈ U2,
Q(x) ≡ ε or 5ε mod 8 by (10.5.2). Therefore the extra generators
(1, Q(x)Q(y)) of Σ#,+(L) lie in Γ2,2. Since (1, 5) ∈ Σ#,+(L), we con-
clude that Σ#,+(L) = Γ2,2.

(10.7.3): Note that either (1, 3) or (1, 7) ∈ Σ#,+(L) by (10.4.4). On
the other hand Σ#(L′) = Γ2,2. Hence we conclude that Σ#,+(L) = Γ2,1.

(10.7.4): By (10.4.4), (1, 1 + 2εϕ) ∈ Σ#,+(L). Also, we have
Σ#,+(L′) = {(1, 1)}. Now for every x ∈ L with Q(x) ∈ U2, Q(x) ≡
ε or (1 + 2εϕ)ε mod 8 by (10.5.3). Therefore the extra generators
(1, Q(x)Q(y)) of Σ#,+(L) lie in {(1, 1), (1, 1+2εϕ)}, and so Σ#,+(L) =
{(1, 1), (1, 1 + 2εϕ)}.

(10.7.5): We see that Σ#,+(L′) = {(1, 1)} by (10.2.7), and by
(10.5.4) we see that for every x ∈ L with Q(x) ∈ U2, Q(x) ≡ ε mod 8.
Hence the extra generators are all (1, 1), and so Σ#,+(L) = {(1, 1)}.

Q.E.D.

Theorem 10.8. Let L = W ε
2,1⊕W

ϕ
2,1⊕L′ be a quadratic Zp-module

in partial normal form with scale(L′) ≥ 2, and write

L′ = U
N(2)
2 ⊕ V

e(2)
2 ⊕W (2)⊕ L′′

where scale(L′′) ≥ 3.

(10.8.1) If ε 6≡ ϕ mod 4, then Σ#,+(L) = Γ2,1.

(10.8.2) If ε ≡ ϕ mod 4 and rank(W (2)) > 0, then Σ#,+(L) = Γ2,1.

(10.8.3) If ε ≡ ϕ mod 4 and rank(W (2)) = 0, then Σ#,+(L) = Γ2,2.

Proof. First note that by (10.4.1-2), (1, 5) ∈ Σ#,+(L). We pro-
ceed as in the proof of Theorem 10.7: note that by Corollary 4.5 and
Lemma 10.6, Σ#,+(L) is generated by Σ#,+(Wϕ

2,1⊕L′) and {(1, εQ(x)) |
x ∈ L,Q(x) ∈ U2}; and with our assumptions, we obtain information
about Σ#,+(Wϕ

2,1 ⊕ L′) from Theorem 10.7.

(10.8.1): In this case, Σ#,+(L) = Γ2,1 by (10.4.1).
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(10.8.2): In this case, by (10.4.4), either (1, 3) or (1, 7) ∈ Σ#,+(L);
since we already know (1, 5) ∈ Σ#,+(L), we get Σ#,+(L) = Γ2,1.

(10.8.3): By (10.7.2) and (10.7.5), Σ#,+(Wϕ
2,1 ⊕ L′) ⊂ Γ2,2, and

we already know that Γ2,2 ⊂ Σ#,+(L). So we must show: for every
x ∈ L with Q(x) ∈ U2, εQ(x) ≡ 1 or 5 mod 8. This is the content of
(10.5.1). Q.E.D.

11. Computation of Σ+(L) for p = 2

In this section, we compute Σ+(L) for an inner product Z2-module
L. We begin by considering Σ+(L)/Σ++(L).

For elements s of Q∗
2/(Q∗

2)
2, we will say that s is a unit if s ∈ U2

mod (Q∗
2)

2, and that s is a non-unit ( or is not a unit) if not (i.e.,
s ∈ 2U2 mod (Q∗

2)
2).

Lemma 11.1. Let L be an inner product Z2-module, and suppose
that either L = Uk ⊕ L′, L = Vk ⊕ L′ or L = W ε

2,k+1 ⊕ L′. Then there
exists some (−1, s) ∈ Σ(L) such that if k ≡ 0 mod 2 then s is a unit,
while if k ≡ 1 mod 2 then s is a non-unit.

Proof. In any of these cases, there is some x ∈ Uk (respectively
Vk, W

ε
2,k+1) such that Q(x) ∈ 2kU2 and for every t ∈ L, 〈x, t〉 ∈ 2kZ2.

By Lemma 2.1, τx ∈ O(L). But then det(τx) = −1, and if k ≡ 0 mod 2,
then spin(τx) ≡ 2−kQ(x) ∈ U2 while if k ≡ 1 mod 2 then spin(τx) ≡
2−k+1Q(x) ∈ 2U2. Q.E.D.

Theorem 11.2. Let L be an inner product Z2-module in partial
normal form. Then Σ+(L) = Σ++(L) if and only if there is some
` ∈ Z/2Z such that:

(1) If k ≡ ` mod 2, then W (k) = 0

(2) If k 6≡ ` mod 2, then N(k) = e(k) = 0. If in addition rank(W (k)) =
2, then W (k) = W ε

2,k ⊕Wϕ
2,k with ε+ ϕ ≡ 0 mod 4.

Moreover, if such an ` exists, and if (−1, s) ∈ Σ(L), then s is always
a unit in the case ` = 0, while s is never a unit in the case ` = 1.

Remark 11.3. If Σ++(L) = Γ2,1, then in the case Σ+(L) 6= Σ++(L),
we have that Σ+(L)/Σ++(L) can be generated by (1, 2), for example.
When we compute Σ++(L) in Theorems 11.4 and 11.6 below, we shall
give potential generators for Σ+(L)/Σ++(L) in those cases in which
Σ++(L) 6= Γ2,1.

Proof. Since by Lemma 8.2 there are reflections in O(L), and
hence there are elements of the form (−1, s) ∈ Σ(L), we see that
Σ+(L) = Σ++(L) if and only if either for all (−1, s) ∈ Σ(L) we have



180 VII. LOCAL ORTHOGONAL GROUPS

that s is a unit or for all (−1, s) ∈ Σ(L) we have that s is a non-unit.
Thus, Lemma 11.1 shows that any module L with Σ+(L) = Σ++(L)
must satisfy all statements in the Theorem, including the Moreover, ex-
cept perhaps the last sentence of (2). But if there is a k 6≡ ` mod 2 with
W (k) = W ε

2,k⊕W
ϕ
2,k and ε+ϕ 6≡ 0 mod 4, by Lemma 7.3 there is some

z ∈ L with Q(z) ∈ 2kU2. If x spans W ε
2,k, then (det(τxτz), spin(τxτz)) /∈

Σ++(L), a contradiction since it is obviously in Σ+(L). Hence, any L
with Σ+(L) = Σ++(L) satisfies all the stated conditions.

Conversely, suppose that L satisfies (1) and (2). To show that
Σ+(L) = Σ++(L), we proceed by induction on the rank. By Proposition
8.1, the statement of the theorem is invariant under scaling, so we may
assume that L has scale 0. It is not hard to see that we may also
assume without loss of generality that L is in alternate normal form.

Suppose first that ` = 0. Then L = U
N(0)
0 ⊕ V

e(0)
0 ⊕ L′ with scale

L′ ≥ 1 and N(0)+e(0) > 0. If N(0) > 0, then by Corollary 5.7, Σ(L) =
Γ2,0·Σ(L′). IfN(0) = 0 and e(0) > 0, then since L is in alternate normal
form, Lemma 7.4 guarantees that we may apply Corollary 6.5 to again
get Σ(L) = Γ2,0·Σ(L′). But now for every (−1, s) ∈ Γ2,0, s is a unit; this
also holds for (−1, s) ∈ Σ(L′) by the inductive hypothesis, and so holds
for every (−1, s) ∈ Σ(L). But that implies that Σ+(L) = Σ++(L).

Suppose instead that ` = 1. Then we may write L = W ε
2,0⊕L′⊕L′′

with scale(L′′) ≥ 1, Q(L′′) ⊂ 2Z2 and either L′ = 0 or L′ = Wϕ
2,0 with

ε + ϕ ≡ 0 mod 4. By Theorem 4.8, Σ(L) is generated by Σ(L′ ⊕ L′′)
and by

{(−1, Q(z)) | z ∈ L, 4 - Q(z), and if 2 | Q(z) then 2 | 〈z, t〉 for all t ∈ L}.

By the inductive hypothesis, if (−1, s) ∈ Σ(L′ ⊕ L′′) then s is not a
unit. Also, if Q(z) ∈ 1

2
U2 (respectively 2U2) then Q(z) in a non-unit

(considered as an element of Q∗
2/(Q∗

2)
2). Thus, we only need to show

that for every z ∈ L, Q(z) /∈ U2.
Let x span W ε

2,0 with Q(x) = ε/2. If L′ = 0, then z = ax + t

for some t ∈ L′′ and Q(z) = a2ε/2 + Q(t); since t ∈ L′′, 2 | Q(t)
which implies that Q(z) is not in U2. If L′ = Wϕ

2,0, let y span L′ with
Q(y) = ϕ/2. Then z = ax + by + t for some t ∈ L′′, and Q(z) =
a2ε/2 + b2ϕ/2 +Q(t), and since 2 | Q(t), we see that Q(z) ∈ U2 if and
only if Q(ax + by) = (a2ε + b2ϕ)/2 ∈ U2. But since ε + ϕ ≡ 0 mod 4,
by Lemma 7.3, Q(ax+ by) /∈ U2. Q.E.D.

We now turn to the computation of Σ++(L).

Theorem 11.4. Let L be an inner product Z2-module such that
L = Uk ⊕ L′ or L = Vk ⊕ L′. Then Σ++(L) = Γ2,1.
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Proof. Since Σ++(L) ⊂ Γ2,1, it suffices to show that Σ++(Uk) =
Σ++(Vk) = Γ2,1. Since Σ++ is invariant under scaling by Proposition
8.1, we only need to show Σ++(U0) = Γ2,1 and Σ++(V0) = Γ2,1. The first
follows from Corollary 5.7, and the second from Corollary 6.5. Q.E.D.

Lemma 11.5. Let L be an inner product Z2-module.

(11.5.1) If L = W ε
2,k ⊕Wϕ

2,k+3 ⊕ L′, then (1, 1 + 2εϕ) ∈ Σ(L).

(11.5.2) If L = W ε
2,k ⊕Wϕ

2,k+4 ⊕ L′, then (1, 5) ∈ Σ(L).

(11.5.3) If L = W ε
2,k ⊕Wϕ

2,k ⊕ L′ with ε ≡ ϕ mod 4, then (1, 1 + εϕ) ∈
Σ(L).

(11.5.4) If L = W ε
2,k ⊕Wϕ

2,k ⊕Wψ
2,k+2 ⊕ L′ with ε ≡ ϕ ≡ ψ mod 4, then

Σ++(L) = Γ2,1.

(11.5.5) If L = W ε
2,k ⊕Wϕ

2,k+2 ⊕Wψ
2,k+2 ⊕ L′ with ε ≡ ϕ ≡ ψ mod 4,

then Σ++(L) = Γ2,1.

Proof. (11.5.1): Let x, y span W ε
2,k and Wϕ

2,k+3, respectively, with

Q(x) = 2k−1ε, Q(y) = 2k+2ϕ. Then Q(2x + y) = 2k+1(ε + 2ϕ) and for
every t ∈ L, 〈2x+ y, t〉 ∈ 2k+1Z2. Thus τ2x+y ∈ O(L); since τx ∈ O(L),
we get (1, spin(τxτ2x+y)) ∈ Σ(L). But

spin(τxτ2x+y) = Q(x)Q(2x+ y) = 22kε(ε+ 2ϕ) ≡ 1 + 2εϕ mod (Q∗
2)

2.

(11.5.2): Let x, y span W ε
2,k and Wϕ

2,k+4, respectively, with Q(x) =

2k−1ε, Q(y) = 2k+3ϕ. Then Q(2x + y) = 2k+1(ε + 4ϕ) and for every
t ∈ L, 〈2x + y, t〉 ∈ 2k+1Z2. Thus τ2x+y ∈ O(L); since τx ∈ O(L), we
get (1, spin(τxτ2x+y)) ∈ Σ(L). But

spin(τxτ2x+y) = Q(x)Q(2x+ y) = 22kε(ε+ 4ϕ) ≡ 1 + 4ϕε mod (Q∗
2)

2

and 1 + 4ϕε ≡ 5 mod 8.
(11.5.3): Let x, y span W ε

2,k and Wϕ
2,k, respectively, with Q(x) =

2k−1ε, Q(y) = 2k−1ϕ. Then Q(x + y) = 2k−1(ε + ϕ) ≡ 2k mod 2k+1

since ε ≡ ϕ mod 4 (and hence ε + ϕ ≡ 2 mod 4). Also, for every
t ∈ L, 〈x + y, t〉 ∈ 2kZ2, so that τx+y ∈ O(L); since τx ∈ O(L), we get
(1, spin(τxτx+y)) ∈ Σ(L). But

spin(τxτx+y) = Q(x)Q(x+ y) = 22k−2ε(ε+ ϕ) ≡ 1 + εϕ mod (Q∗
2)

2

so that (1, 1 + εϕ) ∈ Σ(L).

(11.5.4): Let x, y, and z span W ε
2,k, W

ϕ
2,k and Wψ

2,k+2, respectively,

withQ(x) = 2k−1ε, Q(y) = 2k−1ϕ andQ(z) = 2k+1ψ. ThenQ(2x+2y+
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z) = 2k+1(ε+ϕ+ψ) and for every t ∈ L, 〈2x+2y+z, t〉 ∈ 2k+1Z2. Thus
τ2x+2y+z ∈ O(L); since τx ∈ O(L) we get (1, spin(τxτ2x+2y+z)) ∈ Σ(L).
But

spin(τxτ2x+2y+z) = Q(x)Q(2x+2y+z) = 22kε(ε+ϕ+ψ) ≡ ε(ε+ϕ+ψ) mod (Q∗
2)

2

and ε(ε + ϕ + ψ) ≡ 3 mod 4 since ε ≡ ϕ ≡ ψ mod 4. Thus, either
(1, 3) or (1, 7) ∈ Σ(L). But by Lemma 10.4.2, (1, 5) ∈ Σ(L). Thus,
Σ(L) ⊃ Γ2,1 so Σ++(L) = Γ2,1.

(11.5.5): Let x, y, z spanW ε
2,k, W

ϕ
2,k+2 andWψ

2,k+2, respectively, with

Q(x) = 2k−1ε, Q(y) = 2k+1ϕ and Q(z) = 2k+1ψ. Then Q(2x+y+ z) =
2k+1(ε+ϕ+ψ) and for every t ∈ L, 〈2x+y+ z, t〉 ∈ 2k+1Z2. Therefore
as above τx, τ2x+y+z ∈ O(L) so that

spin(τxτ2x+2y+z) ≡ ε(ε+ ϕ+ ψ) ≡ 3 mod 4.

Hence as above, (1, 3) or (1, 7) ∈ Σ(L); again by Lemma 10.4.2, (1, 5) ∈
Σ(L) so that Σ++(L) = Γ2,1. Q.E.D.

In view of Theorem 11.4, we may restrict our attention to diagonal
lattices L = W ε1

2,k1
⊕ · · · ⊕W εr

2,kr
with k1 ≤ · · · ≤ kr and ki < ki+2 for

each i.

Theorem 11.6. Let L = W ε1
2,k1

⊕ · · · ⊕W εr
2,kr

be an inner product

Z2-module with k1 ≤ · · · ≤ kr and ki < ki+2 for each i. Then Σ++(L) =
Γ2,1 unless there is an ` ∈ Z/4Z and ε+, ε− ∈ U2 such that:

(1) For all i,

εi =

{
ε+ or (2`+ 1)ε+ mod 8, if ki is even

ε− or (2`+ 1)ε− mod 8, if ki is odd.

(2) Suppose there exist i 6= j with |ki − kj| ≤ 4. Then ` 6= 0 and
|ki − kj| ≡ ` mod 2. If in addition ` is odd, then

εiεj ≡ ` mod 4.

(3) If there exists an i with ki = ki+1, then ` = 2, |ki− kj| ≥ 4 for
all j 6= i, i+ 1 and 1 + εiεi+1 ≡ 2ε+ε− mod 8.

(4) If ` 6= 0, either there exist i, j with i 6= j and |ki − kj| ≤ 4,
or there exist i and j with ki ≡ kj mod 2 and εi ≡ (2` +
1)εj mod 8.

In this case, Σ++(L) = {(1, 1), (1, 2`+1)}. Moreover, Σ+(L)/Σ++(L)
is either trivial or generated by (1, 2ε+ε−).
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Proof. We first show that if Σ++(L) 6= Γ2,1, then the desired `, ε+,
and ε− exist, and that for such an L, (1, 2`+ 1) ∈ Σ++(L); we will use
induction on the rank at one step.

First note then that if L has rank one, we may take ` = 0, and
Σ+(L) = Σ++(L) = {(1, 1)}; in particular, the theorem holds.

Consider next S = {εi | ki is even}. Then for any ε′, ε′′ ∈ S,
(1, ε′ε′′) ∈ Σ++(L) (using a product of reflections in the appropriate
generators). In particular, if S contains more than two classes mod 8,
then Σ++(L) = Γ2,1, which is a contradiction. Since any one or two
classes may be written as ε+ and (2`+ 1)ε+ for some ` mod 4, we may
assume that there is an ` and an ε+ with εi ≡ ε+ or (2`+ 1)ε+ mod 8
whenever ki is even. Note that we have in this case that (1, 2` + 1) ∈
Σ++(L).

Similarly, by considering the set S ′ = {εi | ki is odd }, we see that
if Σ++(L) 6= Γ2,1, there is an `′ and an ε− with εi ≡ ε− or (2`′ +
1)ε− mod 8 whenever ki is odd. In this case we also have that (1, 2`′ +
1) ∈ Σ++(L).

If `′ 6= `, and if neither one is 0, then Σ++(L) = Γ2,1; thus, either
` = `′ or one of `, `′ is 0. If one is 0 and the other is not, we may
replace the 0 value by the other value and assume that ` = `′ without
loss of generality. (The ` = 0 case is subsumed in any ` 6= 0 case for
(1).) Hence we have shown at this point that if Σ++(L) 6= Γ2,1, then
an ` and ε+, ε− exist satisfying (1) and with (1, 2`+ 1) ∈ Σ++(L).

Note that if ` 6= 0 then there is still some freedom left in the choices
of ε+ and ε−; they can be multiplied by 2`+ 1, independently, and we
still have (1). Moreover if S (respectively S ′) is empty, then we need
not choose ε+ (respectively ε−) just yet.

Next, suppose there exist i, j with i 6= j and 0 ≤ m = |ki − kj| ≤
4. If m = 0 (respectively 2, 4), then (1, 5) ∈ Σ++(L) by Lemma
10.4.2 (respectively Lemma 10.4.3, Lemma 11.5.2). Thus, if ` 6= 0 or
2, Σ++(L) = Γ2,1, since in this case (1, 5) and (1, 2` + 1) will generate
Γ2,1. Therefore if m is even we conclude ` is 0 or 2.

If m = 1 (resp. 3) then by Lemma 10.4.4 (respectively Lemma
11.5.1), we see that (1, 1 + 2εiεj) ∈ Σ++(L). If εiεj 6≡ ` mod 4, and
` 6= 0, then we would again have Σ++(L) = Γ2,1. Therefore if m is odd
we conclude that either ` = 0 or ` = ε+ε− mod 4.

We claim that it cannot happen that both m even and m odd occur
(with different i, j pairs). If m even occurs, then we have seen above
that (1, 5) ∈ Σ++(L); if m odd occurs, then we have seen that (1, 1 +
2ε+ε−) ∈ Σ++(L). Since ε+ and ε− are both odd, 1+2ε+ε− ≡ 3 mod 4;
hence we would have Σ++(L) = Γ2,1, violating our assumption.



184 VII. LOCAL ORTHOGONAL GROUPS

Now if m even is the case that occurs, we have that ` = 0 or 2; if
` = 0, we may change to ` = 2 without spoiling the previous results.

If m odd is the case that occurs, then ` = 0 or ` = εiεj; again we
may change if necessary and assume ` = εiεj.

At this point we have `, ε+, and ε− satisfying (1) and (2), and in
addition (1, 2`+ 1) ∈ Σ++(L).

Next note that the only reason so far to have needed an ` 6= 0 is in
case either the set S or the set S ′ has two classes, (so that there is a
pair i 6= j with ki = kj mod 2 and εi = (2`+ 1)εj) or if there is a pair
i 6= j with |ki − kj| ≤ 4. Therefore in addition to (1) and (2) we see
that (4) is also satisfied.

Finally, suppose there is some i with ki = ki+1 and assume Σ++(L) 6=
Γ2,1. As we saw above, (1, 5) ∈ Σ++(L) (this is an m even case) so that
we must have ` = 2, and Σ++(L) = {(1, 1), (1, 5)} = Γ2,2.

If there is some j 6= i, i+1 such that |ki−kj| < 4, then |ki−kj| = 2
since ` = 2 and no 3 of the k’s are equal. Since ` = 2, (1) implies
then that εi ≡ εi+1 ≡ εj mod 4; but in this case, by Lemma 11.5.4
and 11.5.5, Σ++(L) = Γ2,1, a contradiction. Thus, |ki − kj| ≥ 4 for all
j 6= i, i+ 1.

Let L′ =
⊕

j 6=iW
εj

2,kj
.

Suppose that Σ+(L′) = Σ++(L′′); this can only happen if all kj’s
(for j 6= i) have the same parity (else the product of two reflections
in generators of summands with opposite k parity will give an element
in Σ+(L) − Σ++(L)). Since ki = ki+1, we see that all kj (including
ki) have the same parity. If all the k’s are even, then ε− has not
yet been determined; if all the k’s are odd, then ε+ has not yet been
determined. In either case we may choose the undetermined one so
that 1 + εiεi+1 ≡ 2ε+ε− mod 8.

Suppose that Σ+(L′) 6= Σ++(L′). Since Σ++(L′) 6= Γ2,1 (it is not for
the larger lattice L), we see that (1, 2ε+ε−) ∈ Σ+(L′) by the inductive
hypothesis, and hence (1, 2ε+ε−) ∈ Σ+(L) − Σ++(L) also. Now by
Lemma 11.5.3, (1, 1 + εiεi+1) ∈ Σ+(L)−Σ++(L). Thus, (1, 1

2
ε+ε−(1 +

εiεi+1)) ∈ Σ++(L). But since Σ++(L) = {(1, 1), (1, 5)}, this implies
1
2
ε+ε−(1 + εiεi+1) ≡ 1 mod 4, or 1 + εiεi+1 ≡ 2ε+ε− mod 8.

This finishes the first part of the proof.
Conversely, suppose that L satisfies (1)–(4). We will proceed by

induction on the rank of L, and write L = W ε1
2,k1

⊕ L′. Since the
statement of the theorem is invariant under scaling by Proposition 8.1,
we may assume that scale(L) = 0, i.e., that k1 = 0.

By Theorem 4.8, Σ(L) is generated by Σ(L′) and by

{(−1, Q(z)) | z ∈ L, 4 - Q(z) and if 2 | Q(z) then 2 | 〈z, t〉 for all t ∈ L}.
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Thus, since the reflection with respect to the generator of the first sum-
mand gives the class (−1, ε1/2) in Σ(L) − Σ+(L), Σ+(L) is generated
by Σ+(L′) and by

{(1, ε1Q(z)/2) | z ∈ L, 4 - Q(z and if 2 | Q(z) then 2 | 〈z, t〉 for all t ∈ L}.
Since we know that (1, 2`+1) ∈ Σ++(L), and that Σ++(L′) = {(1, 1), (1, 2`+
1)} by the inductive hypothesis, and in addition that Σ+(L′) is either
equal to Σ++(L) or can be generated over Σ++(L′) by (1, 2ε+ε−), we
must only show that these extra generators do not give any more el-
ements, i.e., that whenever z satisfies the conditions above, we have
that ε1Q(z)/2 ≡ 1 or 2` + 1 or 2ε+ε− or (2` + 1)2ε+ε− in Q∗

2/(Q∗
2)

2.
This is equivalent to the following:

(i) if Q(z) ∈ 1
2
U2, then 2Q(z) ≡ ε+ or (2`+ 1)ε+ mod 8,

(ii) if Q(z) ∈ U2, then Q(z) ≡ ε− or (2`+ 1)ε− mod 8, and

(iii) if Q(z) ∈ 2U2 and 〈z, t〉 ∈ 2Z2 for all t ∈ L, then

1

2
Q(z) ≡ ε+ or (2`+ 1)ε+ mod 8.

(All these statements come from noting that since k1 = 0 is even,
ε1 ≡ ε+ or (2`+1)ε+ mod 8; statements (i) and (iii) follow since in these
cases we must have ε1Q(z)/2 ≡ 1 or 2`+ 1, and statement (ii) follows
since in this case we must have ε1Q(z)/2 ≡ 2ε+ε− or (2`+ 1)2ε+ε−.)

First suppose that scale(L′) ≥ 5, and let x span W ε1
2,0 with Q(x) =

ε1/2. Write z = ax + t with t ∈ L′. then Q(z) = a2ε1/2 + Q(t) ≡
a2ε1/2 mod 16. If Q(z) ∈ 1

2
U2, then 2Q(z) ≡ a2ε1 ≡ ε+ or (2` +

1)ε+ mod 8. If Q(z) ∈ Z2 then a = 2a0 and 2 | Q(z). If Q(z) ∈
2U2, then 1

2
Q(z) ≡ a2

0ε1 mod 8 ≡ ε1 mod 8 ≡ ε+ or (2` + 1)ε+ mod 8,
proving the theorem in this case.

Now suppose that scale(L′) ≤ 4, and write L′ = W ε2
2,k2

⊕ L′′, with
scale(L′′) = s + 1 ≥ k2. Let x, y span W ε1

2,0, W
ε2
2,k2

, respectively, with

Q(x) = ε1/2 and Q(y) = 2k2−1ε2. Write z = ax + by + t with t ∈ L′′,
so that Q(z) ≡ a2ε1/2 + 2k2−1b2ε2 mod 2s. We consider several cases.

Case 1: k2 = 0. Then by (3), ` = 2 and we have s ≥ 3. Hence
we have Q(z) ≡ a2ε1/2 + b2ε2/2 mod 8. In this case, statement (i) is
Lemma 10.5.1. For (ii), in order that Q(z) ∈ U2, we must have a and
b both odd; then Q(z) ≡ a2ε1/2 + b2ε2/2 mod 8 ≡ (ε1 + ε2)/2 mod 4
so that Q(z) ≡ ε− mod 4 using (3) since ε1 ≡ ε2 ≡ ε+ mod 4. But this
means Q(z) ≡ ε− or 5ε− mod 8 as required since ` = 2.

For (iii), since Q(z) ∈ 2U2 we must have a = 2a0, b = 2b0 so that
1
2
Q(z) ≡ a2

0ε1 + b20ε2 mod 4. Since 1
2
Q(z) ∈ U2, exactly one of a0, b0
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is odd; thus 1
2
Q(z) ≡ ε1 or ε2 mod 4. Since these are both equal to

ε+ mod 4, we have that 1
2
Q(z) ≡ ε+ or 5ε+ mod 8 as required since

` = 2.

Case 2: k2 = 1. Then by (2), ` is odd and we have s ≥ 5. Hence we
have Q(z) ≡ a2ε1/2+ b2ε2 mod 32. Here, (i) is Lemma 10.5.3. For (ii),
a = 2a0 and b is odd, so that Q(z) ≡ 2a2

0ε1 +b2ε2 mod 32; thus, Q(z) ≡
ε2 or ε2 + 2ε1 mod 8. Since ε2(ε2 + 2ε1) ≡ 1 + 2ε1ε2 ≡ 2` + 1 mod 8,
and since ε2 ≡ ε− or (2`+1)ε− mod 8, Q(z) ≡ ε− or (2`+1)ε− mod 8.

For (iii), we must have a = 2a0 with a0 odd and b = 2b0. Then
1
2
Q(z) ≡ a2

0ε1 + 2b20ε2 mod 16 so that 1
2
Q(z) ≡ ε1 or ε1 + 2ε2 mod 8.

Again, ε1(ε1+2ε2) ≡ 1+2ε1ε2 ≡ 2`+1 mod 8 by (3) so that 1
2
Q(z) ≡ ε+

or (2`+ 1)ε+ mod 8.

Case 3: k2 = 2. Then by (2), ` = 2 and we have s ≥ 3. Hence
we have Q(z) ≡ a2ε1/2 + 2b2ε2 mod 8. Then (i) is Lemma 10.5.2, and
(ii) does not occur. For (iii), we must have a = 2a0. Then 1

2
Q(z) ≡

a2
0ε1 + b2ε2 mod 4. Exactly one of a0 and b is even, so that 1

2
Q(z) ≡ ε1

or ε2 mod 4, which implies that 1
2
Q(z) ≡ ε+ or 5ε+ mod 8.

Case 4: k2 = 3. Then by (2), ` is odd and we have s ≥ 5. Hence we
have Q(z) ≡ a2ε1/2 + 4b2ε2 mod 32. Statement (i) is Lemma 10.5.4,
and again (ii) does not occur. For (iii), we must have a = 2a0 with
a0 odd. Then 1

2
Q(z) ≡ a2

0ε1 + 2b2ε2 mod 16 so that 1
2
Q(z) ≡ ε1 or

ε1 +2ε2 mod 8. Since ε1(ε1 +2ε1) ≡ 2`+1 mod 8, we see that 1
2
Q(z) ≡

ε+ or (2`+ 1)ε+ mod 8.

Case 5: k2 = 4. Then by (2), ` = 2 and we have s ≥ 3. Hence we
have Q(z) ≡ a2ε1/2 mod 8. Then again (i) is Lemma 10.5.4, and (ii)
does not occur. For (iii), we must have a = 2a0 with a0 odd. Then
1
2
Q(z) ≡ a2

0ε1 ≡ ε1 mod 4 so that 1
2
Q(z) ≡ ε+ or 5ε+ mod 8.

This completes the proof of the theorem. Q.E.D.

12. Σ(L), Σ#(L) and Σ#
0 (L) in Terms of the

Discriminant-Form

In this section, we will express our computations of Σ(L) and Σ#(L)
for quadratic Zp-modules (i.e., for even inner product Zp-modules) in
terms of the rank, discriminant and discriminant-form group alone.
(We will also compute a subgroup Σ#

0 (L) of Σ#(L), defined below.)
We assume as given an integer rk(L), a “discriminant” disc(L) ∈ Zp −
{0}/U2

p and a finite p-primary torsion quadratic form (G, q) ∈ Tp.
Let us first recall the conditions for the existence of a quadratic

Zp-module with this rank, discriminant, and discriminant-form. To
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fix notation, we may write the element disc(L) as disc(L) = pku for
some u ∈ Up mod U2

p. The length of the discriminant-form (G, q),
which is the minimum number of generators of G, is denoted by `(q).
If p is odd, and if G has order pk and first invariant pe1 , then the

discriminant disc(q) takes values in p−k(Z/pe1)×/((Z/pe1)×)
2
; it may be

written as p−kv, where v comes from the above group of order two, and
χ(v) = ±1. If p = 2 and if G has order 2k and first invariant 2e1 , then

the discriminant disc(q) takes values in 2−k(Z/pe1+1)
×
/((Z/pe1+1)

×
)
2
;

it may be written as 2−kv, where v is odd and is well-defined modulo
4; it is well-defined modulo 8 if e1 ≥ 2. Finally, if p = 2 and q has no
summand of the form wε2,1 (i.e., q is good and special), then the mod 8
discriminant disc8(q) is well-defined.

Now we assume that the three quantities rank(L), disc(L), and
(G, q) satisfy the following conditions

(1) rk(L) ≥ `(q), and if p = 2 then rk(L) ≡ `(q) mod 2;

(2) if disc(L) = pku mod U2
p with u ∈ Up, then |G| = pk;

(3) if p > 2 and r = `(q) then χ(disc(L)) = χ(disc(q)).

(4) if p = 2 and r = `(q)+2n then χ(disc(L)) ≡ (−1)nχ(disc(q)) mod
4.

(5) if p = 2 and r = `(q) and if G has no summand of the form
wε2,1 (i.e., G is good and special), then χ(disc(L)) = disc8(q).

These conditions guarantee the existence of a unique quadratic Zp-
module L with rank rk(L), discriminant disc(L) and discriminant-form
(G, q), by Propositions IV.2.12 and IV.5.7. In this section it is Σ#(L)
and Σ(L) which we will compute; however, our conditions will not
involve L itself in any way, simply these three invariants.

For each odd p, we fix once and for all a non-square up ∈ Up. Then
the groups we are computing are subgroups of {±1}×Q×

p /(Q×
p )2, which

we denote by Γp. We will also have occasion to consider

Γ+
p = {(d, s) ∈ Γp | d = 1}

Γ++
p = {(d, s) ∈ Γp | d = 1, s ∈ Up mod (Q∗

p)
2}

and the Γp,k’s which we defined in Section 4. For p odd, Γ++
p is gen-

erated by (1, up), Γ+
p by (1, up) and (1, p) and Γp by (1, up), (1, p) and

(−1, 1). Similar statements hold for p = 2 if we allow up to range
over (Z/8Z)×. Note that Γ++

2 = Γ2,1. Also note that for any p,
Γp,0 = {±1} × Up/U2

p.
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We will compute the groups Σ#(L) and Σ(L), which are both a pri-
ori subgroups of Γp. (In fact, Σ#(L) ⊂ Γp,0 always.) For this purpose,
it is convenient to consider the auxiliary groups

Σ+(L) = Σ(L) ∩ Γ+
p

and Σ++(L) = Σ(L) ∩ Γ++
p

which were defined in Section 8. We will also compute a new group
Σ#

0 (L), defined as follows. Let

Γ0 = {(1, 1), (1,−1), (−1, 1), (−1,−1)} ∈ {±1} ×Q×/(Q×)
2
.

The natural map Q×/(Q×)
2 → Q×

p /(Q×
p )

2
induces a map

ϕp : Γ0 → Γp,0

which to be completely explicit has the following values:

p ϕp(1, 1) ϕp(1,−1) ϕp(−1, 1) ϕp(−1,−1)

2 (1, 1) (1, 7) (−1, 1) (−1, 7)
1 mod 4 (1, 1) (1, 1) (−1, 1) (−1, 1)
3 mod 4 (1, 1) (1, up) (−1, 1) (−1, up)

We define

Σ#
0 (L) = ϕ−1

p (Σ#(L)) =
{
(d, s) ∈ Γ0 | ϕp(d, s) ∈ Σ#(L)

}
The usefulness of knowing Σ#

0 (L) will become apparent in the next
chapter; for now, we simply remark that it is completely a function of
Σ#(L) (and p), and we are merely recording its values below for later
reference.

In the statements which follow, we assume that q is in partial normal
form (whenever p = 2). We begin with the computations of Σ#(L) and

Σ#
0 (L).

Theorem 12.1. Let p 6= 2.

(12.1.1) If rk(L) = `(q) then Σ#(L) = {(1, 1)} and

Σ#
0 (L) =

{
{(1, 1)} if p ≡ 3 mod 4

{(1, 1), (1,−1)} if p ≡ 1 mod 4

(12.1.2) If rk(L) = `(q) + 1, let δ = disc(L) disc(q) ∈ Up/U2
p. Then

Σ#(L) = {(1, 1), (−1, 2δ)}
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and

Σ#
0 (L) =



Γ0 if p ≡ 1 mod 8 and χ(δ) = 1

or p ≡ 5 mod 8 and χ(δ) = −1

{(1, 1), (−1,−1)} if p ≡ 3 mod 8 and χ(δ) = 1

or p ≡ 7 mod 8 and χ(δ) = −1

{(1, 1), (1,−1)} if p ≡ 5 mod 8 and χ(δ) = 1

or p ≡ 1 mod 8 and χ(δ) = −1

{(1, 1), (−1, 1)} if p ≡ 7 mod 8 and χ(δ) = 1

or p ≡ 3 mod 8 and χ(δ) = −1

(12.1.3) If rk(L) ≥ `(q) + 2 then Σ#(L) = Γp,0 and Σ#
0 (L) = Γ0.

Proof. Statement (12.1.1) is Theorem 9.3.1, which applies since
if rk(L) = `(q) then scale(L) ≥ 1. The other two statements (12.1.2,3)
follow exactly from Theorem 9.3.2,3.

The reader is advised that the well-known facts χ(−1) =
(−1
p

)
=

(−1)
p−1
2 and χ(2) =

(
2
p

)
= (−1)

p2−1
8 when p is odd (cf. Serre (1970),

Chap. I, §3) are invaluable in verifying the results above. Q.E.D.

Theorem 12.2. Let p = 2, and write q in partial normal form as

q = u
N(1)
1 ⊕ v

e(1)
1 ⊕ w(1)⊕ u

N(2)
2 ⊕ v

e(2)
2 ⊕ w(2)⊕ q′

with scale(q′) ≥ 3. Then Σ#(L) and Σ#
0 (L) are given by the following

table, and by Theorems 12.3 and 12.4 below.

rk(L)− `(q) N(1) + e(1) `(w(1)) N(2) + e(2) `(w(2)) Σ#(L) Σ#
0 (L)

> 0 Γ2,0 Γ0

0 > 0 > 0 Γ2,0 Γ0

0 > 0 0 Γ2,1 {(1,±1)}
0 0 2 see Thm. 12.3
0 0 1 see Thm. 12.4
0 0 0 > 0 Γ2,2 {(1, 1)}
0 0 0 0 2 Γ2,2 {(1, 1)}
0 0 0 0 ≤ 1 {(1, 1)} {(1, 1)}

Proof. This is the content of Theorem 10.2. Q.E.D.

Theorem 12.3. Suppose that p = 2, rk(L) = `(q) and

q = wε2,1 ⊕ wϕ2,1 ⊕ u
N(2)
2 ⊕ v

e(2)
2 ⊕ w(2) ⊕ q′
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with scale(q′) ≥ 3. Then Σ#(L) and Σ#
0 (L) are given by the following

table:

εϕ mod 4 `(w(2)) Σ#(L) ε mod 4 Σ#
0 (L)

3 Γ2,0 Γ0

1 > 0 Γ2,0 Γ0

1 0

{
(1, 1), (1, 5)
(−1, ε), (−1, 5ε)

} 1

3

{(1, 1), (−1, 1)}
{(1, 1), (−1,−1)}

Proof. Theorem 10.8 computes Σ#,+(L) in these cases; then we
use Lemma 10.6 to compute Σ#(L). Q.E.D.

Theorem 12.4. Suppose that p = 2, rk(L) = `(q) and q = wε2,1⊕ q′
with

q′ = u
N(2)
2 ⊕ v

e(2)
2 ⊕ w(2)⊕ u

N(3)
3 ⊕ v

e(3)
3 ⊕ w(3)⊕ q′′

with scale(q′′) ≥ 4. Let δ = χ(disc(L))/ disc8(q
′), which is well-defined

(given this partial normal form) since q′ ∈ G2. Then Σ#(L) and Σ#
0 (L)

are given by the following table:

N(2)+e(2) w(2) Σ#(L) δ mod 8 Σ#
0 (L)

+`(w(3))

> 0 6= 0 Γ2,0 Γ0

> 0 0

{
(1, 1), (1, 5)
(−1, δ), (−1, 5δ)

} 1, 5

3, 7

{(1, 1), (−1, 1)}
{(1, 1), (−1,−1)}

0 rank 2 Γ2,0 Γ0

0
wϕ2,2,
εϕ ≡ 3 mod 4

{
(1, 1), (1, 7)
(−1, δ), (−1, 7δ)

} 1, 7

3, 5

Γ0

{(1, 1), (1,−1)}

0
wϕ2,2
εϕ ≡ 1 mod 4

{
(1, 1), (1, 3)
(−1, δ), (−1, 3δ)

} 1, 3

5, 7

{(1, 1), (−1, 1)}
{(1, 1), (−1,−1)}

1 {(1, 1), (−1, 1)}
0 0 {(1, 1), (−1, δ)} 7 {(1, 1), (−1,−1)}

3, 5 {(1, 1)}

Proof. Let us remark that the definition of δ implies that L may
be written as L = W δ

2,1 ⊕ L′, with qL′ = q′. Then Theorem 10.7
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computes Σ#,+(L) in these cases, and we use Lemma 10.6 to compute
Σ#(L).

Note that since the partial normal form is not unique, the form
q′ and hence also the value of δ are not determined solely by q and
disc(L), but by the partial normal form. However it is an exercise to
check that the answers in the table above do not depend on the specific
partial normal form decomposition. Q.E.D.

We next turn to the computation of Σ(L). We will compute this
in three stages: first, we compute Σ++(L) and a group whose order
is twice that of Σ++(L) which contains Σ+(L) (so that Σ+(L) is that
group if and only if Σ+(L) 6= Σ++(L)). Second, we give conditions
which decide whether Σ+(L) = Σ++(L) or Σ+(L) 6= Σ++(L). Third,
we describe a generator for the group Σ(L)/Σ+(L) of order 2.

Theorem 12.5. Let p 6= 2. We have, of course, Σ++(L) ⊆ Γ++
p

and Σ + (L) ⊆ Γ+
p .

Then Σ++(L) 6= Γ++
p if and only if there exist ε+, ε− ∈ {±1} such

that if we write q = wε1p,k1 ⊕ · · · ⊕ wεr
p,kr

then

(1) k1 < k2 < · · · < kr and rk(L)− `(q) ≤ 1,

(2) εi = ε+ if ki is even and εi = ε− if ki is odd; moreover if
rk(L) = `(q) + 1 and we let δ = χ(disc(L))/χ(disc(q)) then(
δ
p

)
= ε+.

In this latter case, Σ++(L) = {(1, 1)} and Σ+(L) ⊂ {(1, 1), (1, pα)}
where α satisfies

(
α
p

)
= ε+ε−.

Proof. The condition that rk(L) ≤ `(q) + 1 implies that L may
be written as

L = W (0)⊕W ε1
p,k1

⊕ · · · ⊕W εr
p,kr

where W (0) has rank at most one; if it has rank one the W (0) = W δ
p,0.

In this form we see that the hypotheses of Theorem 9.6 hold and this
theorem gives the results stated above. Q.E.D.

Theorem 12.6. Let p = 2. Again, Σ++(L) ⊆ Γ++
2 and Σ+(L) ⊆

Γ+
2 . Then Σ++(L) 6= Γ++

2 if and only if rk(L) = `(q), q has the form

q = wε12,k1
⊕ · · · ⊕ wεr

2,kr

with k1 ≤ · · · ≤ kr and ki < ki+2 for each i, and there exist n ∈ Z/4Z
and ε+, ε− ∈ (Z/8Z)× with the following properties:
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(1) εi ≡ ε+ or (2n + 1)ε+ mod 8 if ki is even, εi ≡ ε− or (2n +
1)ε− mod 8 if ki ≥ 3 is odd, and if 1 = k1 < k2 then

δ1 =
χ(disc(L))∏

j>1

εj
≡ ε− or (2n+ 1)ε− mod 8.

(2) Suppose there exist i 6= j such that |ki − kj| ≤ 4. Then n 6= 0
and |ki − kj| ≡ n mod 2. If in addition n is odd, then εiεj ≡
n mod 4.

(3) If there exists an i with ki = ki+1 ≥ 2, then n = 2, |ki−kj| ≥ 4
for all j 6= i, i+1 and 1+εiεi+1 ≡ 2ε+ε− mod 8. If k1 = k2 = 1,
then n = 2, |kj − k1| ≥ 4 for all j ≥ 3, ε1 ≡ ε2 mod 4 and

1 +
χ(disc(L))∏

j>2

εj
≡ 2ε+ε− mod 8.

(4) If n 6= 0, either there exist i, j with i 6= j and |ki − kj| ≤ 4,
or there exist i and j with ki, kj ≥ 2, ki ≡ kj mod 2 and
εi ≡ (2n + 1)εj mod 8, or 1 = k1 < k2 and there exists i > 1
with ki ≡ 1 mod 2 and

χ(disc(L))∏
j>1

εj
≡ (2n+ 1) mod 8.

In this latter case, Σ++(L) = {(1, 1), (1, 2n+ 1)} (which has order 1 if
n = 0) and Σ+(L) ⊂ {(1, 1), (1, 2n+1), (1, 2ε+ε−), (1, 2ε+ε−(2n+1))}.

Proof. This is a re-statement of Theorems 11.4 and 11.6. The
only variation in the statements occurs in case L has scale 1; then
L = W δ1

2,1 ⊕ L′ and q = wε12,1 ⊕ q′ and since ε1 is only defined modulo
4 we must resort to describing δ1 in terms of the discriminant as in
(1) and (4). In (3), we use the discriminant to write the product δ1δ2
where in this case L = W δ1

2,1 ⊕W δ2
2,1 ⊕ L′′.

In verifying the hypotheses the relation (I) of Proposition IV.3.1 is
needed at a couple of stages. Q.E.D.

At this point we have computed Σ++(L) in all cases. We now turn to
computing Σ+(L). As noted above, we have in every case given a group
which contains Σ+(L) and has order at most twice that of Σ++(L).
Therefore Σ+(L) is determined if we know whether Σ+(L) = Σ++(L)
or not, and it is this to which we now turn.
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Theorem 12.7. Let p 6= 2. Then Σ+(L) = Σ++(L) if and only if,
writing

q = wε1p,k1 ⊕ · · · ⊕ wεr
p,kr

,

(1) ki ≡ kj mod 2 for each i, j

(2) if rk(L) 6= `(q) then ki ≡ 0 mod 2 for all i.

Proof. This is Theorem 9.5. Q.E.D.

Theorem 12.8. Let p = 2. Then Σ+(L) = Σ++(L) if and only if
there exists an n ∈ Z/2Z such that, writing q in partial normal form

q = · · · ⊕ u
N(k)
k ⊕ v

e(k)
k ⊕ w(k)⊕ · · ·

we have

(1) k ≡ n mod 2 ⇒ w(k) = 0

(2) k 6≡ n mod 2 ⇒ N(k) = e(k) = 0. If in addition `(w(k)) = 2,
then w(k) = wε2,k ⊕ wϕ2,k with ε+ ϕ ≡ 0 mod 4.

(3) if rk(L) 6= `(q) then n ≡ 0 mod 2.

Proof. This follows from Theorem 11.4. Q.E.D.

At this point we have determined both Σ+(L) and Σ++(L) from
the rank, discriminant, and discriminant-form data. To finish the de-
scription of Σ(L), we note that [Σ(L) : Σ+(L)] = 2 by Lemma 8.2;
hence if we give an element in Σ(L)− Σ+(L), this element will gener-
ate Σ(L)/Σ+(L), and we will be done.

Theorem 12.9. Let p 6= 2.

(12.9.1) If `(q) = 0 then Σ(L)/Σ+(L) is generated by (−1, 2 disc(L)).

(12.9.2) If `(q) 6= 0 and q = wεp,2k ⊕ q′ then Σ(L)/Σ+(L) is generated

by (−1, 2α), where
(
α
p

)
= ε.

(12.9.3) If `(q) 6= 0 and q = wεp,2k+1⊕ q′ then Σ(L)/Σ+(L) is generated

by (−1, 2αp), where
(
α
p

)
= ε.

Proof. To see (12.9.1), we note that in this case L is unimodular,
of the form

L =
⊕
i

W εi
p,0.

In this case by Theorem 9.6 Σ++(L) = Γ++
p unless rk(L) = 1, in

which case Σ++(L) = {(1, 1)}. Moreover by Theorem 12.7 we have
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Σ+(L) = Σ++(L). Therefore Σ(L) is generated over Σ+(L) by the
determinant and spinor norm of any reflection, and in this case there are
such giving a class of the form (−1, u) for some unit u. If Σ+(L) = Γ++

p ,

then any unit u will generate the same group, namely {±1} × Up/U2
p;

we might as well take u = 2 disc(L). If rk(L) = 1, then L = W ε
p,0, and

letting x be a generator of L with Q(x) = α/2, where χ(α) = ε, so that
τx = −identity is defined, we see that (det(τx), spin(τx)) = (−1, α/2) ≡
(−1, 2α); Since in this case disc(L) = α, the result follows.

The last two statement follow in the same way, by considering the
reflection τx through a generator of the corresponding summand of
L. Q.E.D.

Theorem 12.10. Let p = 2.

(12.10.1) If rk(L) 6= `(q), or q = u2k ⊕ q′ or v2k ⊕ q′ then Σ(L)/Σ+(L)
is generated by (−1, 1).

(12.10.2) If q = u2k+1 ⊕ q′ or v2k+1 ⊕ q′ then Σ(L)/Σ+(L) is generated
by (−1, 2).

(12.10.3) If q = wε2,2k ⊕ q′, then Σ(L)/Σ+(L) is generated by (−1, 2ε).

(12.10.4) If q = wε2,2k+1 ⊕ q′ with 2k + 1 > 1, then Σ(L)/Σ+(L) is
generated by (−1, ε).

(12.10.5) If rk(L) = `(q) and q = wε2,1 ⊕ wϕ2,1 ⊕ q′, then Σ(L)/Σ+(L) is

generated by (−1, δ) where δ is either of the elements of U2/U2
2

such that δ ≡ ε mod 4.

(12.10.6) If rk(L) = `(q) and q = wε2,1⊕q′, with q′ ∈ G2, then Σ(L)/Σ+(L)
is generated by (−1, δ), where δ = χ(disc(L))/ disc8(q

′).

Proof. Again this is just a matter of identifying spinor norms
of appropriate reflections; we simply need to identify Q(x) for an
appropriate reflecting element x, and then (−1, Q(x)) will generate
Σ(L)/Σ+(L).

For (12.10.1), we have either a summand U2k or V2k of L. In ei-
ther case there is a reflecting element x such that Q(x) = 22k. Then
(−1, 22k) ≡ (−1, 1) in the group Σ(L).

For (12.10.2), we have either a summand U2k+1 or V2k+1 of L, and
again there is a reflecting element x such that Q(x) = 22k+1. Then
(−1, 22k+1) ≡ (−1, 2) in the group Σ(L).
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For (12.10.3), we have a summand W ε
2,2k of L, and again there is

a reflecting element x such that Q(x) = 22k−1ε. Then (−1, 22k−1ε) ≡
(−1, 2ε) in the group Σ(L).

Similarly, for (12.10.4), we have that ε is defined modulo 8 (since
2k+1 ≥ 3) so there is a summand W ε

2,2k+1 of L, and there is a reflecting

element x such that Q(x) = 22kε. Then (−1, 22kε) ≡ (−1, ε) in the
group Σ(L).

To see (12.10.5), note that W δ
2,1 is a summand of L, for some δ ≡

ε mod 4. Letting x be a generator of this summand with Q(x) = δ, we
see that (−1, δ) ∈ Σ(L). However by Theorem 12.6, we also have that
the element (1, 5) ∈ Σ++(L). Therefore (−1, 5δ) is also in Σ(L), which
gives the result.

Finally the definition of δ given in (12.10.6) ensures that W δ
2,1 is a

summand of L; considering the reflection through a generator x with
Q(x) = δ now finishes the proof. Q.E.D.

Corollary 12.11. Let L be an quadratic Zp-module.

(12.11.1) If rk(L) ≥ `(qL) + 2, then Σ#(L) = Γp,0.

(12.11.2) If rk(L) ≥ 2 and L is unimodular, then Σ#(L) = Σ(L) = Γp,0.

Proof. Statement (12.11.1) follows from Theorem 12.1.3 if p 6= 2,
and the first line of the table in Theorem 12.2 if p = 2.

The statement in (12.11.2) about Σ#(L) follows from (12.11.1).
Since rk(L) ≥ 2 and `(q) = 0, we get Σ++(L) = Γ++

p by Theorem 12.5
if p 6= 2 and by Theorem 12.6 if p = 2. Moreover, Σ+(L) = Σ++(L)
by Theorem 12.7 if p 6= 2 and Theorem 12.8 if p = 2. Since Γ++

p has
index 2 in Γp,0, we only need to show that the generator of Σ(L)/Σ+(L)
lies in Γp,0, i.e., is of the form (−1, u) for some unit u. If p 6= 2, by
Theorem 12.9.1 this generator is (−1, 2 disc(L)) which is in Γp,0 since
2 disc(L) is a unit. If p = 2, by Theorem 12.10.1, this generator is
(−1, 1) ∈ Γ2,0. Q.E.D.

Bibliographical note for Chapter VII

The spinor norm and the Eichler isometries were first introduced
in Eichler (1952). The analogue of the Cartan-Dieudonné Theorem for
O(L) (our 7.7) is fairly standard when p is odd (cf. O’Meara (1963)
92:4, for example) and is due to O’Meara and Pollak (1965) when p = 2.
The corresponding theorem for O#(L) (7.5) is new. The calculations
is Sections 4, 5, and 6 were directly inspired by O’Meara and Pollak’s
proof.



196 VII. LOCAL ORTHOGONAL GROUPS

The computation of Σ(L) is due to Kneser (1956) when p is odd,
and Earnest and Hsia (1975) when p = 2 (in slightly different form).

The computations of Σ#(L) and Σ#
0 (L) are new.



CHAPTER VIII

Uniqueness of Integral Quadratic Forms

1. Discriminant Forms and Rational Quadratic Forms

If L is an integral quadratic form, we let GL denote the discriminant
quadratic form of L and sign(L) = (s+, s−) denote the signature of
L⊗ R.

Theorem 1.1. Let L and Λ be integral quadratic forms. Suppose
that GL ' GΛ and sign(L) = sign(Λ). Then there is an isometry
σ : L⊗Q → Λ⊗Q of quadratic form spaces over Q.

Proof. First note that since sign(L) = sign(Λ), by Corollary I.7.13
there is an isometry σ∞ : L⊗Q∞ → Λ⊗Q∞, where Q∞ denotes R.

Now recall that for an integral quadratic form L, disc(L) = (−1)s−|GL|.
Thus, disc(L⊗ Zp) = disc(Λ⊗ Zp) for all p <∞. Moreover, GL⊗Zp '
GΛ⊗Zp since each is the p-part of the corresponding group. By Theorem
III.5.8, there exist isometries σp : L⊗ Zp × Λ⊗ Zp for each p <∞.

But now we have isometries σp : L⊗Qp → Λ⊗Qp for each p ≤ ∞.
By the weak Hasse principle (Theorem V.4.2), there is then an isometry
σ : L⊗Q → Λ⊗Q. Q.E.D.

Corollary 1.2. Let L be an integral quadratic form with signature
(s+, s−). Then any integral quadratic form whose signature is (s+, s−)
and whose discriminant form is isomorphic to GL is isometric to an
integral quadratic form Λ such that

(1) Λ ⊂ L⊗Q
(2) for each p <∞, there exists σp ∈ O(L⊗Qp) such that σp(L⊗

Qp) = Λ⊗ Zp.

Proof. (1) is immediate. For (2), note that we constructed isome-
tries σp : L⊗Zp → Λ⊗Zp in the proof of Theorem 1.1. Then σp induces
an isometry σp : L⊗Qp → Λ⊗Qp; since Λ⊗Qp = L⊗Qp, and σp may
be regarded as an element of O(L⊗Qp). Q.E.D.

The following is immediate from Theorem VI.4.1.

Theorem 1.3. Let L be an integral quadratic form.

197
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(1) Suppose Λ ⊂ L ⊗ Q is a Z-lattice such that there exist σp ∈
O(L⊗Qp) with σp(L⊗Zp) = Λ⊗Zp for all p. Then for almost
all p, σp ∈ O(L⊗ Zp).

(2) Suppose one is given σp ∈ O(L⊗Qp) for all p such that σp ∈
O(L⊗Zp) for almost all p. Then there is a Z-lattice Λ ⊂ L⊗Q
such that σp(L⊗ Zp) = Λ⊗ Zp for all p.

Let us define

O(LA) = {{σp}| σp ∈ O(L⊗Qp) for all p,
σp ∈ O(L⊗ Zp) for almost all p}.

For {σp} ∈ O(LA) we denote the Z-lattice whose existence is guaran-
teed by Theorem 1.3(2) by {σp}(L).

If {σp} ∈ O(LA) and Λ = {σp}(L), there are induced maps

σp : Λ# ⊗ Zp → L# ⊗ Zp

which combine to define a map GΛ → GL, which we denote by

G{σp} : G{σp}(L) → GL.

Since each σp : L⊗Zp → Λ⊗Zp is an isometry, G{σp} is an isomorphism.
Summarizing, we get:

Corollary 1.4. Let L be an integral quadratic form.

(1) Every integral quadratic form with the same signature and
discriminant-form as L is isometric to a lattice of the form
{σp}(L) for some {σp} ∈ O(LA).

(2) For every {σp} ∈ O(LA), the lattice {σp}(L) has the same
signature and discriminant form as L.

2. A consequence of the strong approximation theorem

Let L be an integral quadratic form. Recall that the homomorphism
(det, spin) on O(L⊗Qp) takes values in the group

Γp = {±1} ×Q∗
p/(Q∗

p)
2.

We also recall that we defined

Γp,0 = {(1, 1), (1, up), (−1, 1), (−1, up)} for p odd, and some non-square up ∈ Up

and

Γ2,0 = {(1, 1), (1, 3), (1, 5), (1, 7), (−1, 1), (−1, 3), (−1, 5), (−1, 7)}
as subgroups of Γp.

Define

ΓA = {((dp, sp)) ∈
∏
p

Γp | (dp, sp) ∈ Γp,0 for almost all p}
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and

ΓA,0 =
∏
p

Γp,0.

Lemma 2.1. Let L be an integral quadratic form of rank at least 2.
The homomorphisms

(det, spin) : O(L⊗Qp) → Γp

combine to give a homomorphism

(det, spin) : O(LA) → ΓA

and this homomorphism is surjective if rank(L) ≥ 3.

Proof. If {σp} ∈ O(LA), then σp ∈ O(L ⊗ Zp) for almost all
p. Also, L ⊗ Z is unimodular for almost all p. But by Corollary
VII.12.11(2), if L ⊗ Zp is unimodular of rank at least two, then the
image Σ(L) of (det, spin) equals Γp,0. Thus, (detσp, spinσp) ∈ Γp,0 for
almost all p, so that

(det, spin)(O(LA)) ⊂ ΓA.

For the surjectivity, it is enough to show that if rank(L) ≥ 3, then
for each p, (det, spin) : O(L ⊗ Qp) → Γp is surjective. But this is the
content of Proposition V.6.1(1). Q.E.D.

Recall that for a quadratic form L over an integral domain R with
quotient field K, the kernel of (det, spin) : O(L) → {±1}×K×/(K×)2

is denoted by Θ(L).
We let Θ(LA) denote the kernel of

(det, spin) : O(LA) → ΓA

so that

Θ(LA) = {{σp} | σp ∈ Θ(L⊗Qp) for all p,

σp ∈ Θ(L⊗ Zp) for almost all p}.

The strong approximation theorem for the spin group (Theorem
V.7.2) tells us that elements of Θ(LA) are closely related to elements
of Θ(L ⊗ Q), if L is indefinite and rank(L) ≥ 3. To make this more
precise, if L is an integral quadratic form and σ ∈ O(L ⊗ Q), then
σ(L) = Λ is another (isometric) Z-lattice. Mimicking the construction
in Section 1, we consider the induced map

σ : Λ# → L#

which induces an isomorphism on discriminant-forms Gσ : GΛ → GL.
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Theorem 2.2. Let L be an indefinite integral quadratic form with
rank(L) ≥ 3. For any {σp} ∈ Θ(LA) there is a σ ∈ Θ(L⊗Q) such that
σ(L) = {σp}(L) and Gσ = G{σp}.

Proof. Let Λ = {σp}(L), and for each p define

Vp = {ρp ∈ Θ(L⊗Qp) | ρp(L⊗ Zp) = Λ⊗ Zp,

and for all x ∈ (Λ⊗ Zp)
#, ρp(x)− σp(x) ∈ L⊗ Zp}

so that for all ρp ∈ Vp, Gρp and Gσp coincide as maps GΛ⊗Zp → GL⊗Zp .
Vp is clearly a non-empty open subset of Θ(L ⊗ Qp). Moreover,

for almost all p, L ⊗ Zp = Λ ⊗ Zp (by Theorem 1.3(1)), and L ⊗ Zp

is unimodular. But in this case, the condition on Vp merely says that
Vp = Θ(L⊗ Zp).

Thus, by the strong approximation theorem for the spin group (The-
orem V.7.2), there is a σ ∈ Θ(L⊗Q) such that σ ∈ Vp for each p. But
this means that σ(L) = Λ, and that Gσ and G{σp} coincide as maps
GΛ → GL. Q.E.D.

We wish to recast this theorem in terms of the groups we introduced
in Chapter VII. For an integral quadratic form L, let

Σ#(L) =
∏
p

Σ#(L⊗ Zp) ⊂ ΓA,0,

where we recall that

Σ#(L⊗ Zp) = Im((det, spin) : O#(L⊗ Zp) → Γp,0)

and

O#(L⊗ Zp) = Ker(O(L⊗ Zp) → O(GL⊗Zp)).

We also let

ΓQ = {±1} ×Q×/(Q×)
2
,

and regard ΓQ ⊂ ΓA in a natural way.

Theorem 2.3. Let L be an indefinite integral quadratic form with
rank(L) ≥ 3, and let {σp} ∈ O(LA). Then the following are equivalent:

(1) there is a σ ∈ O(L⊗Q) such that σ(L) = {σp}(L) and Gσ =
G{σp}

(2)
∏

p(detσp, spinσp) ∈ ΓQ · Σ#(L) ⊂ ΓA.

Proof. First suppose that σ exists. Then since Gσ = G{σp}, we
see that

(σ ⊗Qp)
−1 ◦ σp ∈ O#(L⊗ Zp)
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for each p. Thus,

(detσp, spinσp) ∈ (detσ, spinσ)Σ#(L⊗ Zp)

for each p, so that∏
p

(detσp, spinσp) ∈ (detσ, spinσ)
∏
p

Σ#(L⊗ Zp)

⊆ ΓQΣ#(L).

Conversely, suppose that (2) holds. Then there exists a (d, s) ∈ ΓQ
and for each p a ρp ∈ O#(L⊗ Zp) such that

(detσp, spinσp) = (d, s) · (det ρp, spin ρp)

for each p. Moreover, by Proposition V.6.1(2), there is a ψ ∈ O(L⊗Q)
such that (detψ, spinψ) = (d, s).

Let φp = ψ−1 ◦ σp ◦ ρ−1
p , so that (detφp, spinφp) = (1, 1), i.e., that

{φp} ∈ Θ(LA). By Theorem 2.2, there is a φ ∈ Θ(L ⊗ Q) such that
φ(L) = {φp}(L) and Gφ = G{φp}.

Let σ = ψ ◦ φ. Then for each p,

σ(L⊗ Zp) = ψ ◦ φp(L⊗ Zp) = σp ◦ ρ−1
p (L⊗ Zp) = σp(L⊗ Zp)

since ρp ∈ O(L⊗ Zp), while

Gσ⊗Zp = G(ψ⊗Zp)◦ψp = Gσp◦ρ−1
p

= G−1
ρp
◦Gσp = Gσp

since Gρp is the identity (because ρp ∈ O#(L⊗ Zp)). Q.E.D.

3. Uniqueness of even Z-lattices

Let L be an integral quadratic form with rankL ≥ 2, and let

Σ(L) =
∏
p

Σ(L⊗ Zp)

where Σ(L⊗ Zp) = Im((det, spin) : O(L⊗ Zp) → Γp). Since L⊗ Zp is
unimodular for almost all p, and Σ(L⊗ Zp) ⊂ Γp,0 whenever L⊗ Zp is
unimodular (Corollary VII.12.11(2)), we see that Σ(L) ⊂ ΓA.

Theorem 3.1. Let L be an indefinite integral quadratic form with
rank(L) ≥ 3. Let Λ1,Λ2 ⊂ L ⊗ Q be Z-lattices with Λ1 = {σp}(L)
and Λ2 = {ρp}(L) for appropriate {σp}, {ρp} ∈ O(LA). Then Λ1 is
isometric to Λ2 if and only if∏

p

(detσp, spinσp) ≡
∏
p

(det ρp, spin ρp) mod ΓQ · Σ(L).
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Proof. If ψ : Λ1 → Λ2 is an isometry, then ψ ∈ O(L⊗Q) and

φp = σ−1
p ◦ (ψ ⊗ Zp)

−1 ◦ ρp ∈ O(L⊗ Zp)

for every p. Thus,∏
p

(detσp, spinσp)
−1(det ρp, spin ρp) = (detψ, spinψ)

∏
p

(detφp, spinφp)

∈ ΓQ · Σ(L).

Conversely, if∏
p

(detσp, spinσp)
−1(det ρp, spin ρp) ∈ ΓQ · Σ(L)

then there exist (d, s) ∈ ΓQ and φp ∈ O(L⊗ Zp) for all p such that

(detσp, spinσp)
−1(det ρp, spin ρp) = (d, s)(detφp, spinφp)

for all p. Let

ψp = ρp ◦ φ−1
p ◦ σ−1

p .

Then ψp(Λ1 ⊗ Zp) = Λ2 ⊗ Zp, and∏
p

(detψp, spinψp) = (d, s) ∈ ΓQ ⊂ ΓQ · Σ#(Λ1).

By Theorem 2.3, there is a ψ ∈ O(Λ1 ⊗ Q) = O(L ⊗ Q) such that
ψ(Λ1) = Λ2. Q.E.D.

For an integral quadratic form L, let

g(L) = { isometry classes of integral quadratic forms Λ such that

GL
∼= GΛ and sign(L) = sign(Λ)}.

Corollary 3.2. Let L be an indefinite integral quadratic form with
rank(L) ≥ 3. Then the set g(L) is in one-to-one correspondence with
ΓA/ΓQ · Σ(L).

Proof. This follows from Corollary 1.4, the surjectivity of the ho-
momorphism (det, spin) : O(LA) → ΓA (Lemma 2.1), and Theorem
3.1. Q.E.D.

Corollary 3.3. Let L be an indefinite integral quadratic form
with rank(L) ≥ 3. Then L is uniquely determined up to isometry by
its signature and discriminant-form if and only if

ΓQ · Σ(L) = ΓA.
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4. Milnor’s theorem and stable classes

We will derive some corollaries of the uniqueness criterion stated in
Corollary 3.3.

Lemma 4.1. ΓA = ΓQ · ΓA,0.

Proof. Let
∏

p(dp, sp) ∈ ΓA, so that (dp, sp) ∈ Γp for every p and

(dp, sp) ∈ Γp,0 for almost all p. Let S be the set of primes p such that
(dp, sp) 6∈ Γp,0; this is the set of primes such that sp is not a represented
by a unit, i.e., the set of primes such that sp is divisible by p. Let
s =

∏
p∈S p.

Then (dp, ssp) ∈ Γp,0 for all p, so that∏
p

(dp, sp) = (1, 1/s)
∏
p

(dp, ssp) ∈ ΓQ · ΓA,0.

Q.E.D.

Corollary 4.2. Let L be an indefinite integral quadratic form with
rank(L) ≥ 3 and rank(L) ≥ `(qL) + 2. Then L is uniquely determined
up to isometry by its signature and discriminant form.

Proof. By Corollary VII.12.11(1), Σ#(L) = ΓA,0. Thus,

ΓA ⊃ ΓQ · Σ(L) ⊃ ΓQ · Σ#(L) = ΓQ · ΓA,0 = ΓA

which forces ΓA = ΓQ ·Σ(L); now the statement follows from Corollary
3.3. Q.E.D.

Theorem 4.3. Let L be an indefinite unimodular integral quadratic
form. Then there exist a, b such that

L ∼= Ua ⊕ Eb
8 or L ∼= Ua ⊕ E8(−1)b

where U is the lattice whose form has matrix

(
0 1
1 0

)
, E8 is the lattice

whose form has matrix

2 0 0 −1
0 2 −1 0
0 −1 2 −1

−1 0 −1 2 −1
−1 2 −1

−1 2 −1
−1 2 −1

−1 2


and E8(−1) is the lattice whose form has the matrix above with all signs
changed.
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Remark 4.4. The proof we give here is much too deep; a more
elementary proof can be found in [Serre 73, Chapter V, Section 2.2,
Theorem 5].

Proof. We leave the case rank(L) = 2 to the reader, and assume
rank(L) ≥ 3. Let sign(L) = (s+, s−); since L is unimodular, qL = 0
and we have s+ − s− ≡ 0 mod 8 by Milgram’s Theorem III.5.1. If
s+ ≥ s−, let a = s−, and b = 1

8
(s+ − s−). Since sign(U) = (1, 1) and

sign(E8) = (8, 0), we see that

Ua ⊕ Eb
8

has signature (s+, s−). But now rank(L) ≥ `(qL) + 2 = 2, so that by
Corollary 4.2 there is at most one unimodular integral quadratic form
with signature (s+, s−). Hence, L ∼= Ua ⊕ Eb

8.
The case s+ < s− is similar. Q.E.D.

Let us say that two integral quadratic forms L1 and L2 are stably equivalent
if there exist unimodular integral quadratic forms Λ1 and Λ2 with

L1 ⊕ Λ1
∼= L2 ⊕ Λ2.

Theorem 4.5. Two integral quadratic forms L1 and L2 are stably
equivalent if and only if qL1

∼= qL2.

Remark 4.6. Once again our proof is too deep; a more elementary
proof is in [Wall 72].

Proof. If L1 and L2 are stably equivalent, then

qL1 = qL1 ⊕ qΛ1
∼= qL2 ⊕ qΛ2 = qL2 .

Conversely, if qL1
∼= qL2 , let sign(L1) = (s+, s−) and sign(L2) = (t+, t−);

we may suppose that s+ ≥ t+. By Milgram’s Theorem III.5.1 we have
s+ − s− ≡ t+ − t− mod 8. Consider the lattices

L1 ⊕ U and L2 ⊕ U s+−t++1 ⊕ E8(−1)
1
8
(s−−t−−s++t+)

if s− ≥ t− + s+ − t+;

L1 ⊕ U ⊕ E8(−1)
1
8
(s+−t+−s−+t−) and L2 ⊕ U s+−t++1

if s− < t− + s+ − t+.
In the first case, both have signature (s+ + 1, s− + 1); they have

isomorphic discriminant-forms and

rank(L1 ⊕ U) = rank(L1) + 2 ≥ `(qL1) + 2

so that by Corollary 4.2, they must be isometric. In particular, L1 and
L2 are stably equivalent.

The second case is similar. Q.E.D.
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5. Surjectivity of the map between orthogonal groups

We turn now to the study of the natural map O(L) → O(GL) for
an integral quadratic form L.

Theorem 5.1. Let L be an indefinite integral quadratic form with
rank(L) ≥ 3. Then there is an exact sequence

O(L) → O(GL) → Σ(L)/(ΓQ ∩ Σ(L)) · Σ#(L) → 0.

Proof. By Corollaries IV.2.14 and IV.5.9, for each p the map

O(L⊗ Zp) → O(GL⊗Zp)

is surjective. Thus, there is a commutative diagram with exact rows
and columns

1 → O#(L⊗ Zp) → O(L⊗ Zp) → O(GL⊗Zp) → 1
↓ ↓

0 → Σ#(L⊗ Zp) → Σ(L⊗ Zp)
↓ ↓
0 0

which induces a surjective map µp : O(GL⊗Zp) → Σ(L⊗Zp)/Σ
#(L⊗Zp)

for each p. These combine to give a surjective map

µ : O(GL) → Σ(L)/Σ#(L).

Given an element γ ∈ O(GL), for each p there exists σp ∈ O(L⊗Zp)
such that σp and γ induce the same transformation in O(GL⊗Zp), by the
surjectivity of O(L⊗Zp) → O(GL⊗Zp). We consider the collection {σp}
to be in O(LA); then by construction G{σp} = γ ∈ O(GL). Moreover,
for any such {σp}, we have µ(γ) =

∏
p(detσp, spinσp) mod Σ#(L).

By Theorem 2.3, G{σp} is in the image of O(L) → O(GL) if and
only if

∏
p(detσp, spinσp) ∈ ΓQ · Σ#(L); this is equivalent to having

µ(γ) ∈ (ΓQ · Σ#(L)) ∩ Σ(L) mod Σ#(L).

Since

(ΓQ · Σ#(L)) ∩ Σ(L) = (ΓQ ∩ Σ(L)) · Σ#(L),

we see that the image of O(L) → O(GL) coincides with the kernel of
the composite map

O(GL)
µ→ Σ(L)/Σ#(L) → Σ(L)/(ΓQ ∩ Σ(L)) · Σ#(L).

Q.E.D.



206 VIII. UNIQUENESS OF INTEGRAL QUADRATIC FORMS

Corollary 5.2. Let L be an indefinite integral quadratic form with
rank(L) ≥ 3. Then the natural map O(L) → O(GL) is surjective if and
only if

(ΓQ ∩ Σ(L)) · Σ#(L) = Σ(L).

6. Computations in terms of the discriminant-form

We wish to indicate how the results of Chapter VII enable one to
compute the finite groups introduced in Corollary 3.2 and Theorem 5.1
in terms of the discriminant-form. The computation requires consulting
the tables in Section 12 of Chapter VII, and then computing a finite
number of Legendre symbols.

Let S be the (finite) set of square-free integers dividing 2 disc(L),
and let

ΓS = {(d, s) ∈ ΓQ | s ∈ S}.
Let T be the (infinite) set of square-free integers relatively prime

to 2 disc(L), and let

ΓT = {(d, s) ∈ ΓQ | s ∈ T}.
Clearly, ΓQ = ΓS · ΓT and ΓS ∩ ΓT = {±1,±1}.

Proposition 6.1. Let L be an indefinite integral quadratic form
with rank(L) ≥ 3.

(1) The genus group of L is isomorphic to the cokernel of

ΓS →

 ∏
p|2 disc(L)

Γp/ · Σ(L⊗ Zp)

 /{(±1,±1)}S.

where {(±1,±1)}S is the projection of {(±1,±1)} ⊂ ΓQ to∏
p|2 disc(L) Γp.

(2) The cokernel of O(L) → O(GL) is isomorphic to the cokernel
of

ΓS ∩ Σ(L) → Σ(L)/Σ#(L).

Note that in both cases, the map generally fails to be injective, so
that one must compute the image (or the kernel) as well as the two
finite groups involved.

Proof. The genus group coincides with ΓA/ΓQ ·Σ(L) by Corollary
3.2. We have the exact sequence

0 → ΓQ · Σ(L)/ΓT · Σ(L) → ΓA/ΓT · Σ(L) → ΓA/ΓQ · Σ(L) → 0,

and since ΓQ = ΓS · ΓT we have

ΓQ · Σ(L)/ΓT · Σ(L) = ΓS · ΓT · Σ(L)/ΓT · Σ(L) ∼= ΓS/ΓS ∩ ΓT · Σ(L).
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Therefore the genus group g(L) is isomorphic to the cokernel of the
natural map

ΓS → ΓA/ΓT · Σ(L)

and to prove (1) we must identify the quotient ΓA/ΓT · Σ(L)
Fix an element γ = ((dp, sp)) ∈ ΓA, so that (dp, sp) ∈ Γp for every p

and is in Γp,0 for almost all p. Let X denote the (finite) set of primes
which do not divide 2 disc(L) such that (dp, sp) 6∈ Γp,0. This means
that for each p ∈ X, the spin value sp has a p factor. Let n be the
product of the primes of X. Then (1, n) ∈ ΓT and (1, n) · (dp, sp) ∈ Γp,0
for every p.

For the primes p which do not divide 2 disc(L), L⊗Zp is unimodular,
and so by Corollary VII.12.11(2), Σ(L ⊗ Zp) = Γp,0. Therefore the
element

γ′ =
∏

p6 | 2 disc(L)

(dp, nsp) ∈ Σ(L).

Consider the element

γ′′ =
∏

p|2 disc(L)

(dp, sp/n) ∈
∏

p|2 disc(L)

Γp.

Then γ = (1, n) · γ′ · γ′′, and shows that

γ ∈ [
∏

p|2 disc(L)

Γp] · ΓT · Σ(L).

Since γ was arbitrary in ΓA this proves that

ΓA = [
∏

p|2 disc(L)

Γp] · ΓT · Σ(L)

and therefore the inclusion ∏
p|2 disc(L)

Γp ⊂ ΓA

induces an onto homomorphism

φ :
∏

p|2 disc(L)

Γp → ΓA/ΓT · Σ(L).

The kernel of φ is [
∏

p|2 disc(L) Γp] ∩ [ΓT · Σ(L)]; suppose that∏
p|2 disc(L)

(dp, sp) = (d, n) ·
∏
p

(d′p, s
′
p)

is in this kernel, with (d, n) ∈ ΓT and (d′p, s
′
p) ∈ Σ(L ⊗ Zp) for each

p. If n is divisible by a prime q which does not divide 2 disc(L), then
(since Σ(L⊗ Zq) = Γq,0 in this case) we have a contradiction: in the q
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part of the above equation, the left side is 1 and the right side is not.
Therefore since n ∈ T we must have n = ±1, so that the kernel of φ is

[
∏

p|2 disc(L)

Γp] ∩ [ΓT · Σ(L)] = [
∏

p|2 disc(L)

Γp] ∩ [{(±1,±1)} · Σ(L)].

Recall that {(±1,±1)}S denotes the projection of the subgroup {(±1,±1)}
into

∏
p|2 disc(L) Γp. We claim that the above intersection is equal to

[
∏

p|2 disc(L)

Γp] ∩ [{(±1,±1)} · Σ(L)] = {(±1,±1)}S ·
∏

p|2 disc(L)

Σ(L⊗ Zp).

(6.2)

Clearly the right-hand side is contained in
∏

p|2 disc(L) Γp; to show it

is contained in {(±1,±1)} ·Σ(L), fix an element (d′, s′) ∈ {(±1,±1)}S
and elements (dp, sp) ∈ Σ(L ⊗ Zp) for each p dividing 2 disc(L). Lift
(d′, s′) to (d, s) ∈ {(±1,±1)}, and for each p not dividing 2 disc(L), set
dp = d and sp = s. Then these are not divisible by p, so that for these
p, we have (dp, sp) ∈ Σ(L⊗Zp) since Σ(L⊗Zp) = Γp,0 in this case. Now
the product (d, s)

∏
p(dp, sp) ∈ {(±1,±1)} · Σ(L), and is equal to the

original product (d′, s′)
∏

p|2 disc(L)(dp, sp) since for the other primes the

(d, s) factor cancels the (dp, sp) term. This proves that the right-hand
side of (6.2) is contained in the left-hand side.

That the left-hand side is contained in the right is clear. This
identifies the kernel of the map φ and proves that

ΓA/ΓT · Σ(L) ∼=

 ∏
p|2 disc(L)

Γp/ · Σ(L⊗ Zp)

 /{(±1,±1)}S

which finishes the proof of (1).
To see (2), since Σ(L ⊗ Zp) = Γp,0 when p 6 | 2 disc(L) we have

ΓQ ∩ Σ(L) ⊂ ΓS so that

ΓQ ∩ Σ(L) = ΓS ∩ Σ(L).

Now there is a natural exact sequence

0 → ΓQ∩Σ(L)/ΓQ∩Σ#(L) → Σ(L)/Σ#(L) → Σ(L)/(ΓQ∩Σ(L))·Σ#(L) → 0

which gives rise to an exact sequence

ΓS ∩ Σ(L) → Σ(L)/Σ#(L) → Σ(L)/(ΓQ ∩ Σ(L)) · Σ#(L) → 0.

Since the cokernel of O(L) → O(GL) is Σ(L)/(ΓQ ∩ Σ(L)) · Σ#(L) by
Theorem 5.1, the proposition is proved. Q.E.D.
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Now Section 12 of Chapter VII enables us to compute Σ(L ⊗ Qp)
and Σ(L⊗ Zp)/Σ

#(L⊗ Zp) immediately given the discriminant-form;
the Proposition above enables us to find both the genus group and the
cokernel of O(L) → O(GL) with a finite amount of computation.

7. A criterion for uniqueness and surjectivity

In this section, we find a group which is an extension of the cokernel
of O(L) → O(GL) by the genus group. This group has the advantage
of being more readily computable than either of its constituents; it
can be essentially read off of the tables in Section 12 of Chapter V.
Moreover, in many applications, one only needs to know the product
of the orders of the cokernel of O(L) → O(GL) and the genus group;
this is easily found by computing the group below.

By Lemma 4.1, the natural map ΓA,0 → ΓA/ΓQ is surjective; we let
Γ0 denote the kernel of this map, which coincides with ΓA,0 ∩ ΓQ. It is
easy to see that

Γ0 = {(1, 1), (1,−1), (−1, 1), (−1,−1)} ⊂ ΓQ,

so that this agrees with the notation of Chapter VII Section 12. In
that section, we defined

Σ#
0 (L⊗ Zp) = φ−1

p (Σ#(L⊗ Zp))

where φp : Γ0 → Γp,0 is the natural map; we now define, for an integral
quadratic form L,

Σ#
0 (L) = Σ#(L) ∩ Γ0 = ∩pΣ#

0 (L⊗ Zp).

Lemma 7.1. Let L be an integral quadratic form. Then there is an
exact sequence

0 → Σ(L)/(ΓQ∩Σ(L))·Σ#(L) → (ΓA,0/Σ
#(L))/(Γ0/Σ

#
0 (L)) → ΓA/ΓQ·Σ(L) → 0

Proof. The exact sequence

0 → Γ0 → ΓA,0 → ΓA/ΓQ → 0

induces an exact sequence

0 → Γ0/Σ
#
0 (L) → ΓA,0/Σ

#(L) → ΓA/ΓQ · Σ#(L) → 0

by the definition of Σ#
0 (L) = Σ#(L) ∩ Γ0. Thus, the middle term of

the exact sequence in the statement is isomorphic to

ΓA/ΓQ · Σ#(L).

But now, since Σ(L) ∩ (ΓQ · Σ#(L)) = (ΓQ ∩ Σ(L)) · Σ#(L), there is a
canonical exact sequence

0 → Σ(L)/(ΓQ∩Σ(L)) ·Σ#(L) → ΓA/ΓQ ·Σ#(L) → ΓA/ΓQ ·Σ(L) → 0.
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Q.E.D.

Theorem 7.2. Let L be an indefinite integral quadratic form with
rank(L) ≥ 3. Then there is an exact sequence

0 → coker (O(L) → O(GL)) → (ΓA,0/Σ
#(L))/(Γ0/Σ

#
0 (L)) → g(L) → 0

where g(L) is the genus group of L.

The proof is immediate from Corollary 3.2, Theorem 5.1 and Lemma
7.1. From Corollaries 3.3 and 5.2, using Lemma 7.1 we also get:

Corollary 7.3. Let L be an indefinite integral quadratic form with
rank(L) ≥ 3. Then the following are equivalent:

(1) L is uniquely determined by its signature and discriminant-
form
and O(L) → O(GL) is surjective.

(2) Γ0/Σ
#
0 (L) ∼= ΓA,0/Σ

#(L).

Computing the group

(ΓA,0/Σ
#(L))/(Γ0/Σ

#
0 (L))

is even easier than computing its constituents, the cokernel of O(L) →
O(GL) and the genus group g(L). For

ΓA,0/Σ
#(L) =

∏
p| disc(L)

Γp,0/Σ
#(L⊗ Zp)

and
Γ0/Σ

#
0 (L) = Γ0/ ∩p| disc(L) Σ#

0 (L⊗ Zp)

(since Σ#(L⊗Zp) = Γp,0 and hence Σ#
0 (L⊗Zp) = Γ0 whenever L⊗Zp is

unimodular, by Corollary VII.12.11(2)). Since one can read the groups

Σ#(L⊗ Zp) and Σ#
0 (L⊗ Zp) from the tables in Section 12 of Chapter

VII, the computation is immediate.
Due to its importance in applications, we want to make this com-

putation explicit in one particular case; namely, we wish to translate
Corollary 7.3 into information about the discriminant form, and so
get a criterion for uniqueness and surjectivity solely in terms of the
discriminant-form.

Definition 7.4. Let L be an integral quadratic form.

(1) L is p-regular if Σ#(L⊗ Zp) = Γp,0.
(2) L is p-semiregular of type (a, b) where (a, b) ∈ {(1,−1), (−1, 1), (−1,−1)}

if [Γp,0 : Σ#(L⊗ Zp)] = 2 and Σ#
0 (L⊗ Zp) = {(1, 1), (a, b)}.

(3) L is p-pseudoregular if [Γp,0 : Σ#(L ⊗ Zp)] = 4 and Σ#
0 (L ⊗

Zp) = {(1, 1)}.
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(4) We say that L is p-nonregular if it is neither p-regular, p-
semiregular, nor p-pseudoregular.

Theorem 7.5. Let L be an indefinite integral quadratic form with
rank(L) ≥ 3. Then L is uniquely determined by its signature and
discriminant-form and O(L) → O(GL) is surjective if and only if one
of the following holds:

(1) L is p-regular for all p.
(2) There is one prime p such that L is p-semiregular; for all

primes q 6= p, L is q-regular.
(3) There are two primes p1, p2 such that L is p1-semiregular of

type (a1, b1) and L is p2-semiregular of type (a2, b2) with (a1, b1) 6=
(a2, b2); for all primes q 6= p1, p2, L is q-regular.

(4) There is one prime p such that L is p-pseudoregular; for all
primes q 6= p, L is q-regular.

Proof. By Corollary 7.3, we must find the conditions under which

(*) Γ0/Σ
#
0 (L) ∼=

∏
p| disc(L) Γp,0/Σ

#(L⊗ Zp).

Note that the left-hand side maps injectively to the right-hand side,
and since Γ0 is a group of order 4, the left-hand side has order at most
4.

First we note that it is easy to see that any one of the conditions
(1)-(4) are sufficient. If (1) holds, then Σ#(L ⊗ Zp) = Γp,0 for all p,
so that the right-hand side of (*) has order one, forcing an equality. If
(2) holds, then both sides of (*) have order two, and if either (3) or (4)
hold then both sides of (*) have order four.

To see that one of the conditions is necessary, we assume that (*)
holds, and suppose first that the right-hand side of (*) has order 1.

Then Σ#
0 (L) = Γ0 for all p, so that L is p-regular for all p, and we have

(1).
If the right hand side of (*) has order 2, then there is exactly one

prime p such that [Γp,0 : Σ#(L⊗ Zp)] = 2. Since for all q 6= p we have

Σ#
0 (L ⊗ Zq) = Γ0, we see that Σ#

0 (L) = Σ#
0 (L ⊗ Zp). Thus, equality

holding in (*) implies that |Σ#
0 (L⊗Zp)| = 2, that is, L is p-semiregular

and we have case (2).
If the right hand side of (*) has order 4 and (*) holds, we must have

Σ#
0 (L) = {(1, 1)}. Either there are primes p1, p2 with [Γpi,0 : Σ#(L ⊗

Zpi
)] = 2 for each i, or there is a prime p with [Γp,0 : Σ#(L⊗ Zp)] = 4;

all other primes q are such that Σ#(L⊗Zq) = Γq,0, and hence for these

q we have Σ#
0 (L⊗Zq) = Γ0. Note that by Theorems VII.12.1-VII.12.4,

we have that Σ#
0 (L⊗ Zpi

) has order at least 2 for each i.
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Hence in the first case with the two primes, in order that Σ#
0 (L) =

{(1, 1)} we must have that these groups Σ#
0 (L⊗Zpi

) have order exactly
2 with the two groups being distinct; this is (3). In the second case,

Σ#
0 (L) = Σ#

0 (L ⊗ Zp) so we must have Σ#
0 (L ⊗ Zp) = {(1, 1)}, i.e., L

is p-pseudoregular and we have case (4). Q.E.D.

In order to make Theorem 7.5 effective, we need explicit descrip-
tions of the p-regular, p-semiregular and p-pseudoregular forms. We
give these descriptions below; as they follow directly from Theorems
VII.12.1-VII.12.4 we omit the proofs.

Lemma 7.6. Let L be an integral quadratic form, let p be an odd
prime, and let δ = disc(L)/ disc(qL⊗Zp).

(1) L is p-regular if and only if rk(L) ≥ `(qL⊗Zp) + 2.
(2) L is p-semiregular if and only if rk(L) ≥ `(qL⊗Zp) + 1 and

either
(a) p ≡ 3 mod 4, or

(b) p ≡ 1 mod 4 and χ(δ) 6= (−1)
p2−1

8 where χ(v) = (v
p
) =

±1 is the Legendre symbol mod p.

In case (a), the type is (−1, (−1)
p2−1

8 χ(δ)), while in case (b),
the type is (1,−1).

(3) L is p-pseudoregular if and only if rk(L) = `(qL⊗Zp) and p ≡ 3
mod 4.

(4) L is p-nonregular if and only if p ≡ 1 mod 4 and either
(a) rk(L) = `(qL⊗Zp); or

(b) rk(L) = `(qL⊗Zp) + 1 and χ(δ) = (−1)
p2−1

8 .

Lemma 7.7. Let L be an integral quadratic form, and write qL⊗Z2

in partial normal form as

qL⊗Z2 = q1 ⊕ q2 ⊕ q3 ⊕ q4 ⊕ q′′

where

qi = u
N(i)
i ⊕ v

e(i)
i ⊕ w(i)

for each i = 1, 2, 3 and scale (q′′) ≥ 4. Then:

(1) If rank(L) > `(qL⊗Z2) then L is 2-regular.
(2) If rank(L) = `(qL⊗Z2) and N(1) + e(1) > 0 then

(a) if `(w(1)) > 0 then L is 2-regular;
(b) if `(w(1)) = 0 then L is 2-semiregular of type (1,−1).

(3) If rank(L) = `(qL⊗Z2), N(1) + e(1) = 0, and `(w(1)) = 2 then

if we write q1 = wε2,1 ⊕ wφ2,1, we have:
(a) if εφ = 3 mod 4 then L is 2-regular;
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(b) if εφ = 1 mod 4 and `(w(2)) > 0 then L is 2-regular;
(c) if εφ = 1 mod 4 and `(w(2)) = 0 then L is 2-semiregular,

of type (−1, 1) if ε = φ = 1 mod 4 and of type (−1,−1)
if ε = φ = 3 mod 4.

(4) If rank(L) = `(qL⊗Z2), N(1) + e(1) = 0, and `(w(1)) = 1 then
if we write q1 = wε2,1 and define δ = χ(disc(L))/ disc8(q2⊕q3⊕
q′′), then the 2-regularity of L is determined by the following
table:

N(2) + e(2) w(2) δ mod 8 2-regularity
+`(w(3))

> 0 6= 0 regular
> 0 0 1,5 semi-, type (−1, 1)
> 0 0 3,7 semi-, type (−1,−1)
0 length 2 regular

0 wφ2,2, εφ = 3 mod 4 1,7 non-

0 wφ2,2, εφ = 3 mod 4 3,5 semi-, type (1,−1)

0 wφ2,2, εφ = 1 mod 4 1,3 semi-, type (−1, 1)

0 wφ2,2, εφ = 1 mod 4 5,7 semi-, type (−1,−1)
0 0 1,7 non-
0 0 3,5 pseudo-

(5) rank(L) = `(qL⊗Z2), q1 = 0, and N(2) + e(2) > 0 then L is
2-pseudoregular;

(6) rank(L) = `(qL⊗Z2), q1 = 0, N(2) + e(2) = 0, and `(w(2)) = 2
then L is 2-pseudoregular;

(7) rank(L) = `(qL⊗Z2), q1 = 0, N(2) + e(2) = 0, and `(w(2)) ≤ 1
then L is 2-nonregular.

Corollary 7.8. Let L be an indefinite integral quadratic form such
that r = rank(L) ≥ 3. Write

GL = Z/d1Z⊕ · · · ⊕ Z/drZ

with di ≥ 1 and di|di+1. Suppose that one of the following holds:

(1) For some prime p ≡ 3 mod 4, d2 = pk (with k ≥ 0).
(2) For some prime p ≡ 3 mod 4, d1 = 2, d2 = 2pk (with k ≥ 0),

and d3 ≡ 2 mod 4.
(3) d1 = d2 = 2.
(4) d1 = 2, d2 = 4, and d3 ≡ 4 mod 8.
(5) d1 = d2 = 4.

Then L is uniquely determined by its signature and discriminant-
form, and the map O(L) → O(GL) is surjective.
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Proof. We check that the hypotheses of Theorem 7.5 holds in each
case. Write qL⊗Z2 in partial normal form, as in Lemma 7.7.

In case (1), for all primes ` 6= p, we have rk(L) − rk(qL⊗Z`
) ≥ 2

so that L is `-regular by Lemma 7.6(1). If k = 0, then L is also p-
regular, and we have hypothesis (1) of Theorem 7.5. Since d1÷d2, also
d1 = pm for some m ≤ k. If m = 0 and k ≥ 1, then since p ≡ 3 mod 4
and rk(L) = rk(qL⊗Zp) + 1, we have that L is p-semiregular by Lemma
7.6(2)(a); therefore hypothesis (2) of Theorem 7.5 holds. If m ≥ 1 then
rk(L) = rk(qL⊗Zp) so that L is p-pseudoregular by Lemma 7.6(3), and
we have hypothesis (4) of Theorem 7.5.

In case (2), L is `-regular for all ` 6= 2, p. In addition, rk(L) −
`(qL⊗Zp) ≥ 1 and p ≡ 3 mod 4 so that L is either p-regular (if k = 0),
or p-semiregular of type (−1,±1), by Lemma 7.6(2). Also note that
since d1 = 2, rk(L) = `(qL⊗Z2). Finally, since d3 = equiv2 mod 4, we

have `(u
N(1)
1 ⊕ ve(1)1 ⊕w(1)) ≥ 3; this forces N(1) + e(1) > 0, so that L

is either 2-regular, or 2-semiregular of type (1,−1) by Lemma 7.7(2).
Thus, hypothesis (1), (2) or (3) of Theorem 7.5 applies.

In cases (3), (4) and (5), L is `-regular for all ` 6= 2. Moreover
rk(L) = `(qL⊗Z2) in these cases. We may assume in case (3) that 4|d3

(otherwise case (2) applies). It is then easy to see that the following
are the only possibilities for the invariants of qL⊗Z2 :

Case N(1) + e(1) `(w(1)) `(w(2)) N(2) + e(2)
(3) 1

0 2
(4) 0 1 2

≤ 1 > 0
(5) 0 0 2

≤ 1 > 0

We see that in case (3), Lemma 7.7(2)-(3) applies and we may conclude
that L is 2-regular or 2-semiregular. In case (4), Lemma 7.7(4) applies,
in particular we have the hypotheses of one of the first four rows of the
table there; again we see that L is either 2-regular or 2-semiregular.
Finally in case (5) we use Lemma 7.7(5)-(6) to conclude that L is 2-
pseudoregular.

Therefore in any of the cases (3), (4), or (5) we conclude that L
is `-regular for all ` 6= 2, and is either 2-regular, 2-semiregular, or
2-pseudoregular, so that part (1), (2) or (4) of Theorem 7.5 applies.

Q.E.D.
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8. Bibliographical Note for Chapter VIII

The use of the strong approximation theorem to compute the genus
group goes back to [Eichler 52] and [Kneser 56]. Theorem 3.1 and
Corollary 3.2 are essentially due to them, although they did not have
sufficient techniques to compute ΓA/ΓQ · Σ(L) in all cases; these were
provided by Earnest and Hsia [E-H 75].

The use of the same techniques to study the map O(L) → O(GL)
was begun in [Nikulin 80a] and refined in [Nikulin 80b]. Theorem
5.1 is essentially contained in these papers, although again, the group
Σ(L)/(ΓQ ∩ Σ(L)) · Σ#(L) could not be computed in all cases at that
time. Nikulin in [Nikulin 80b] gave sufficient conditions for the si-
multaneous uniqueness of L and surjectivity of O(L) → O(GL) which,
although more restrictive than those in Theorem 7.5, do imply Corol-
lary 7.8. The discussion of computational techniques in Section 6 is
modelled on [Cassels 78, Section 3 of Chapter 11].

Milnor’s Theorem (4.3) was first proved in [Milnor 58]. The char-
acterization of stable equivalence classes (Theorem 4.5) was first proved
by Durfee [Durfee 71] along the lines of the proof given here. A more
elementary proof was given in [Wall 72], and a simplification of Wall’s
proof, due to Kneser, is presented in [Durfee 77].





List of Notation

Notation Section Description
(L, 〈−,−〉) I.1 F -valued symmetric bilinear form over R
Ad I.1 the adjoint map from L to HomR(L, F )
Ker〈 , 〉 I.1 the kernel of Ad
L̄ I.1 L/Ker〈 , 〉
(L,Q) I.2 F -valued quadratic form over R
AdQ I.2 the adjoint map to the associated bilinear form
Ker(Q) I.2 the kernel of the associated bilinear form
Radq(L,Q) I.2 the q-radical of Q, = {x ∈ Ker(L,Q)|Q(x) = 0}
¯̄L I.2 L/Radq(L)
Z I.2 the integers
Zp I.2 the p-adic integers
R× I.3 the group of units of a ring R
disc(Q) I.3 the discriminant of a quadratic R-module
D(R) I.3 R×/(R×)2

Q) I.3 the rationals
R) I.3 the reals
C) I.3 the complexes
Qp I.3 the p-adic rationals
Z/n I.3 the ring of integers modulo n
Up I.3 the units Z×

p of Zp

χ I.3 isomorphisms from D(R) to standard groups(
u
p

)
I.3 the Legendre symbol

G# I.4 the dual of a torsion R-module G: HomR(G,K/R)
P.I.D. I.4 principal ideal domain
Q(p) I.4 rationals with denominator a power of p
L1 ⊕ L2 I.5 direct sum of quadratic forms
X⊥ I.5 perpendicular module
∼= I.6 isomorphism
∼S I.6 stable isomorphism
〈a〉R I.7 quadratic R-module of rank 1
1R I.7 R with squaring as the quadratic form
〈a〉 I.7 〈a〉Z
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W ε
p,k I.7 rank one form over Zp

UR I.7 the hyperbolic plane over R
AN I.7 integral rank N form defined by path graph
DN , N ≥ 4 I.7 integral rank N form defined by DN Dynkin diagram
EN , N ≥ 6 I.7 integral rank N form defined by EN Dynkin diagram
Tpqr I.7 integral form defined by graph with single cubic vertex

ÃN I.7 rank N + 1 form defined by cycle graph

D̃N , N ≥ 4 I.7 rank N + 1 form defined by extended DN Dynkin Diagram

ẼN , N = 6, 7, 8 I.7 rank N + 1 form defined by extended EN Dynkin diagram
Uk I.7 indecomposable rank 2 form over Z2

Vk I.7 indecomposable rank 2 form over Z2

z̄a` I.7 bilinear form on Z/`
w̄εp,k I.7 bilinear form on Z/pk
za` I.7 quadratic form on Z/`
wεp,k I.7 quadratic form on Z/pk
uk I.7 quadratic form on Z/2k × Z/2k
vk I.7 quadratic form on Z/2k × Z/2k
ūk I.7 bilinear form on Z/2k × Z/2k
v̄k I.7 bilinear form on Z/2k × Z/2k
−L I.7 negative of quadratic form L
(s+, s−) I.7 signature of a real quadratic vector space
A(r) I.7 expansion of the form A by the element r
(LS, QS) I.8 change of rings to S
Lp I.8 change of rings to Zp

O(L,Q) I.9 the orthogonal group of (L,Q)
det I.9 the determinant of an isometry
{+,−} I.9 2-element value group for determinants of isometries
O+(L) I.9 the kernel of det
τx I.9 reflection
spin I.10 the spinor norm
O++(V ) I.10 the kernel of (det, spin)
O+−(V ) I.10 the kernel of det
O−+(V ) I.10 the kernel of spin
O−−(V ) I.10 the kernel of det · spin)
Oαβ(L) I.10 O(L) ∩ Oαβ(L⊗Z R)
GR+ I.11 {r+-dimensional oriented subspace W ⊂ V |Q|W is positive definite}
GR− I.11 {r+-dimensional oriented subspace W ⊂ V |Q|W is positive definite}
`(G) II.1 length of a f.g. module over a P.I.D.
∆ II.1 the order of G, the product of the invariants
Gp II.1 {x ∈ G | pkx = 0 for some k ≥ 0}
G∗ II.1 the dual module HomR(G,K/R)
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Gp,k II.2 {x ∈ G | pkx = 0}
ρp,k(G) II.2 Gp,k/(Gp,k−1 + pGp,k+1)
〈−,−〉k II.2 bilinear form on ρk(G)
disc(G, 〈−,−〉) II.3 the discriminant of a torsion bilinear form
disc(G, q) II.4 the discriminant of a torsion quadratic form
G′ II.5 G/G2,1

τ(G, 〈−,−〉) II.5 torsion quadratic form on G′ for special G
disc8(G, 〈−,−〉) II.6 the mod 8 discriminant of better extraspecial G
disc8(G

′, q′) II.6 the mod 8 discriminant of good special quadratic form
L# II.7 dual lattice to L
L∗ II.7 R-dual HomR(L,R) to a lattice L
GL II.7 the discriminant-form module L#/L
qL II.7 torsion quadratic form on GL

〈−,−〉GL
II.7 bilinear form on GL

O#(L) II.8 the kernel of O(L) → O(GL)
HA II.8 {C ∈MN×N(R) |C + C> + C>AC = 0}
γG III.1 the Gauss sum invariant from HomZ(Q/Z,Q/Z) to C
ϕN III.1 multiplication by N on Q/Z
γG(N) III.1 γG(ϕN)
S(a, `) III.2 the Gauss sum
γL III.4 Gauss invariant of integral form on L (= γGL

)
ρ(`) IV.1

∑
j≤` j · rj +

∑
j>` ` · rj

σ`(G) IV.1 the `th signature invariant of G
Q√ IV.1 isom. classes of nondeg. quadratic Zp-modules

T√ IV.1 isom. classes of nondegenerate torsion quadratic forms over Zp

G√ IV.1 isom. classes of good special nondegenerate torsion quadratic forms over Zp

Ip IV.1 isom. classes of inner product Zp-modules
d : Qp → Tp IV.2 discriminant-form map
G(k) IV.4 homogenous part of scale 2k in a partial normal form
w(k) IV.4 wε2,k part of G(k)
x(k) IV.4 vk and w(k) part of G(k)
d2 : Q2 → G2 IV.5 expanded discriminant-form map
(a, b)p V.2 Hilbert Norm Residue Symbol
cp(V,Q) V.2 Hasse invariant
Θ(L) V.7 the kernel of (det, spin)
Q VI.1 isom. classes of integral quadratic forms
T VI.1 isom. classes of torsion quadratic forms over Z
Oref(L) VII.2 subgroup of O(L) generated by reflections
O#,ref(L) VII.2 subgroup of O#(L) generated by reflections
scale(L) VII.2 scale of an inner product Zp-module
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Ex
y VII.3 generalized Eichler isometry

Σ(L) VII.4 image of (det, spin) on O(L)
Σ#(L) VII.4 image of (det, spin) on O#(L)

Γp,k VII.4 subgroups of {±1} ×Q×
p /(Q×

p )
2

kEx
y VII.7 rescaled Eichler isometry

Σ+(L) VII.8 {(d, s) ∈ Σ(L) | d = 1}
Σ++(L) VII.8 {(d, s) ∈ Σ(L) | d = 1, s ∈ Up}
Σ#,+(L) VII.10 {(d, s) ∈ Σ#(L) | d = 1}
Γp VII.12 {±1} ×Q×

p /(Q×
p )

2

Γ+
p VII.12 {(d, s) ∈ Γp | d = 1}

Γ++
p VII.12 {(d, s) ∈ Γ+

p | s ∈ Up}
Γ0 VII.12 {±1} × {±1}
ϕp VII.12 natural map from Γ0 to Γp,0
Σ#

0 (L) VII.12 ϕ−1
p (Σ#(L))

O(LA) VIII.1 adelic construction for orthogonal groups
{σp}(L) VIII.1 integral quadratic form defined by {σp} ∈ O(LA)
G{σp} VIII.1 isomorphism G{σp}(L) → GL

ΓA VIII.2 adelic construction for Γp groups
ΓA,0 VIII.2 subgroup of ΓA
Θ(LA) VIII.2 kernel of (det, spin) : O(LA) → ΓA
Σ#(L) VIII.2

∏
p Σ#(L⊗ Zp)

ΓQ VIII.2 {±1} ×Q×/(Q×)
2

Σ(L) VIII.3
∏

p Σ(L⊗ Zp)
g(L) VIII.3 genus group of the integral quadratic form L
ΓS VIII.6 {(d, s) ∈ ΓQ | s divides 2 disc(L)}
ΓT VIII.6 {(d, s) ∈ ΓQ | (s, 2 disc(L)) = 1}
Σ#

0 (L) VIII.7 Σ#(L) ∩ Γ0
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