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Gromov–Hausdorff limits

I (Pointed) Gromov–Hausdorff limits exist under very
general circumstaces, such as lower bounds on Ricci
curvature.

I The idea is to take isometric embeddings of two spaces
and measure the distance between specified points.

I Minimizing over all choices of embeddings gives the
distance.

I The set of all pointed metric spaces is quite well
behaved under such limits.

I The corresponding theory in physics is M-theory
compactified on our manifold, and we will sometimes
invoke a physical duality (which always has a geometric
counterpart) to explain what is going on.
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K3 metrics

I To each volume one, Ricci-flat metric on the K3
manifold X , we can associate the self-dual 3-plane in
H2(X ,R), which is a space of signature (3, 19). This
give a point in the locally symmetric space
M1 := Γ\O(3, 19)/O(3)× O(19), where Γ is the
component group of Diff(X ).

I It is known that the point in M1 determines the volume
one metric up to diffeomorphism, and that the image is
an open subset of M1 (the complement of a set of
codimension 3).

I Moreover, the “missing” points correspond to singular
K3 spaces, with orbifold-type singularities.

I Gromov–Hausdorff theory suggests a space X1 →M1

labeling pointed metrics of volume 1, and this space
exists.

I We can extend the moduli space to include all metrics,
and extend the universal fibration to X →M.
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Compactifying the moduli space

I As a first attempt at compactifying the moduli space,
we will use the Borel–Serre compactification of M1. It
does not give the right answer, but it points in the right
direction.

I The Borel–Serre compactification has boundary
components of codimension one associated to parabolic
subgroups.

I More concretely, the codimension one boundary
components are associated with primitive, totally
isotropic sublattices Λ ⊂ Z3,19. Given the totally
isotropic sublattice, there is a splitting Λ⊥ = Λ⊕ H
where H is an even unimodular lattice of rank
(k, 16 + k), where 3− k is the rank of Λ.

I There are two possibilities when k = 0 (the E8 ⊕ E8 and
Spin(32) cases), and only one possibility for each other
value of k. These are illustrated below.
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The figure
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Cheeger–Gromov & Cheeger–Tian

I In Gromov–Hausdorff theory, given a sequence of
Ricci-flat metrics ds2j (together with points Pj) which
diverges with respect to the metric on M, there is a
subsequence which converges in the Gromov–Hausdorff
distance. Far enough out on the subsequence, there is a
fibration structure π : X → B away from finitely many
points, where the fibers of π are nilmanifolds with
specified volume growth.

I There are four cases of this, corresponding to the four
cases of Borel–Serre boundaries. Before we get to that,
we need to discuss the behavior of the volume.
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The behavior of the volume
We can do three natural things, given a degenerating
sequence:

I We can normalize the subsequence ds2jk so that

vol(ds2jk )→ V with V ∈ (0,∞). If the primary rate of
growth dictates a fibration structure π : X → B with
dimB = d , let vk := vol(ds2jk |π−1(π(Pjk

))) with vk → 0.
Then the image B has volume approximately
V /vk →∞.

I Alternatively, we can send the overall volume to zero
while retaining the structure of B in the limit. This is
achieved by rescaling the metric in the previous case by

vk , i.e., d̃s2jk = vk ds
2
jk

. Then B will approach
something of volume V in the limit.

I On the other hand, we can send the overall volume to
infinity while holding the general fibers of π at finite

size. If we let d̂s2jk = ds2jk/vk then we see that the

volume of the fiber π−1(π(Pjk )) approaches V .
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Another figure
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Case 2: elliptic fibrations (Gross–Wilson)

I The first case to consider is the case of elliptic
fibrations, i.e., the case in which the fiber of π is a
two-torus. If we normalize so that r → 0, then we get
Gross and Wilson’s semi-flat metric in the limit. The
base B is a two-sphere, and there are up to 24 points
pj . The metric has a special form (originally derived in
Greene–Shapere–Vafa–Yau). The size of the two-torus
fiber is also going to zero. The singular fibers are ALG
spaces, maybe also ALH spaces.

I The physical dual is based on the fact that M-theory
compactified on T 2, when the volume of T 2 is small, is
dual to type IIB string theory compactified on S1 with
S1 large. In the small T 2 limit, the space
decompactifies along S1. (This is the F-theory dual.)
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Case 2: elliptic fibrations, con.

I In the finite volume limit, the T 2 fiber has volume
vk → 0 while the twp-dimensional base has volume
V /vk →∞. There are three kinds of elements of T 2:
there is a single two-cycle with both legs in the fiber, in
which case the volume is vk → 0; there are four
two-cycles with one leg in the base and one leg in the
fiber, which have volume approximately√
vk

√
V /vk ≡

√
V ; and there is a single two-cycle with

both legs in the base, which has volume V /vk →∞.
When combined with the invariant two-cycles in the
anti-self-dual directions, this is case k = 2 in the
Cheeger–Gromov type classification.

I The singular fibers were classified by Kodaira: type In,
I ∗n , II , III , IV , IV ∗, III ∗, II ∗. Each has a specified metric
behavior. Moreover, the class of the elliptic curve is
algebraic for a compatible complex structure.
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Case 1: fibrations by nilmanifolds (HSVZ)

I The metrics here were first constructed by
Hein–Song–Viaclovsky–R. Zhang (preprint not yet
ready). I heard about it in lectures by Viaclovsky and
Zhang at the Simons Collaboration meeting a few
weeks ago, and hopefully we will hear more when
Viaclovsky visits in two weeks.

I There are a variety of examples, fibered over a
dimension one base (which we can take to be [0, 1] in
the case of r = 0). The fibers are nilmanifolds; there
are points pj , j = 1, . . . , n, at which the nilmanifold
type changes; there is a function H : [0, 1]→ R with
H(0) < 0, H(1) > 0, H(pi − ε) + 1 = H(pi + ε), subject
to the constraint that n ≤ 18. What’s happening is that
there is a certain amount of twist on the nilmanifold
which is changing as you move from point to point.
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Case 1: fibrations by nilmanifolds, con.

I I should have mentioned in the Gross–Wilson case that
there are certain types of four-manifolds (gravitational
instantons) in the neighborhoods of the special points.
Similarly here, there are certain types of four-manifolds
(gravitational instantons). At the endpoints of B, they
are Tian–Yau manifolds, constructed by taking a
(generalized) del Pezzo surface dPk – a blowup of P2 in
k ≤ 9 points (or P1 × P1 if k = 1) – a putting a
complete Ricci-flat metric on the complement of a
chosen anti-canonical curve C ∈ | − KdPk

|. (The two
ends are related by orientation reversal.)

I At the pi ’s, one uses the Taub–NUT space to
interpolate between the two different kinds of
nilmanifold. At the transition, the nilmanifold is
becoming long in the T 2 direction and short in the S1

direction, whereas it is more uniform out in the middle.
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Case 1: fibrations by nilmanifolds, p. 3

I HSVZ recently constructed degenerations of this type.
They had the Taub–NUT spaces and the Tian–Yau
manifolds, and they carefully showed that you can glue
these together and then smooth out the resulting space
to get a Ricci-flat K3 metric. There is a parameter
involved in the smoothing which specifies the sizes of
the circles, and those sizes tell you that the construction
is OK as long as the circles are relatively small
compared with the size of B. Thus, the construction
works in a neighborhood of the boundary locus.

I To compute the effect on H2(X ), we scale so that the
two torus is of finite size while the circle shrinks to zero
(letting the overall volume stay finite). So S1 has
volume vk → 0, T 2 has volume V , and B has volume
V /vk →∞.
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Case 1: fibrations by nilmanifolds, p. 4

I Here are the two-cycles: we have two of volume
vk
√
V → 0, having one leg in S1 and one leg in T 2; we

have two of volume V , one having both legs in T 2

while the other has a leg in S1 and a leg in B1, and two
of volume

√
V /vk →∞, having a leg in T 2 and a leg

in B1. This is why we get k = 1 for these cases.

I The physical duality in this case is to type I ′ (a variant
to IIA). The shrinking S1 allows us to move from
M-theory to the type IIA string, and the dual
description (T -dualizing along both S1’s) is in terms of
the type I ′ string compactified on an inteval [1, 0].
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Gravitational instantons

I Gravitational instantons come in several varieties: ALE,
ALF, ALG, ALH (and some things which do not quite
satisfy the growth conditions).

I ALE spaces take the form C4/Γ for subgroups
Γ ⊂ SL(2,C).

I ALF, ALG, ALH are similar, except that some of the
directions at infinity are toroidal. One torus direction
means an ALF space, and so on.
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Case 0O : fibrations by circles (Foscolo)

I This case corresponds to gravitational instantons of
type ALF, which were classified by Minerbe and
G. Chen–X. Chen. There are A and D types, but no E
type. (And a few extra D types...)

I π : X → B collapses S1.

I In H2(X ), three cycles grow and three cycles shrink;
nothing is left invariant. So k = 0. But which k = 0
case is it?

I The fact that there are no ALF spaces of type E
stongly suggests that you can only realize the
Spin(32)/Z2 lattice here, not the E8 × E8 lattice.
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Case 0E : fibrations by three-tori
(G. Chen–X. Chen)

I This case corresponds to gravitational instantons of
type ALH, classified by Chen–Chen based on earlier
work of Hein.

I pi : X → B has general fiber T 3 and base of dimension
one.

I In H2(X ), three cycles grow, three cycles shrink, and
nothing is left invariant.

I Over B, there is an ALH space on each end, and those
ALH spaces can include E type singularities. So it’s
natural to identify this case with 0E .

I Two cases which are very different geometrically
correspond to the two k = 0 components of the
boundary.
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Conclusions
I What I haven’t had a chance to talk about today is the

physical dualities for the cases k 6= 2. In the other
cases, there are natural duals involving type I ′, the
Horara–Witten dual of the heterotic string, and various
other constructions. Maybe I’ll come back to that in a
future lecture.

I The duality which I haven’t discussed in any of the
cases is the duality to the heterotic string: taking the
small volume limit of the K3 compactification of
M-theory and turning it into the large volume limit of
the heterotic string compactified on T 3.

I The latter can be analyzed perturbatively. The
identification with the E8 string relies in part on the
fact that the Foscolo construction involves ALF
instantons which cannot realize the E8 gauge symmetry,
but there is more to it than that. As T 3’s shrink to zero
size from the K3 side, there is an emergent E8 gauge
field which makes the duality even more explicit.


