A Landscape of Field Theories

Travis Maxfield

Enrico Fermi Institute, University of Chicago

October 30, 2015

Based on arXiv: 1511.xxxx w/ D. Robbins and S. Sethi

Despite the recent proliferation of supersymmetric field theories on or associated to curved manifolds, we argue that a vast, uncharted territory remains.

String theory fluxes are responsible for this generalization.

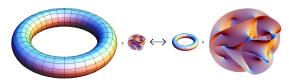
Excursions have yielded many insights...

Topological field theory, four manifold invariants

[Witten, ...]

- "Geometric engineering" of interesting and practical field theories as limits of string theory in various backgrounds
 [Bershadsky et. al., ...]
- Indices, partition functions, dualities from compactification on spheres, etc.

[Pestun, ...]

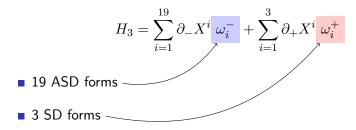


An example: 6D, (2,0) maximal supersymmetry

- Low-energy limit of single M5-brane
- Chiral two form: $dB_2 = H_3 = *H_3$
- Five scalars ϕ^I , SO(5) global symmetry
- Four chiral fermions, Θ

On $K3 \leftrightarrow$ heterotic on T^3

Reduce H_3 on harmonic 2-forms of K3



• X^i describe the moduli space

$$\frac{O(3,19)}{O(3) \times O(19) \times O(3,19;\mathbb{Z})}$$

• Same as heterotic string on T^3 , a free theory

How to preserve supersymmetry on a curved manifold?

Three degrees of generalization,

- Killing spinor
- Topological twist
- Off-shell background supergravity

Let's examine the pertinent details...

Minimally coupling a field theory to gravity requires

$$\nabla_{\mu}\epsilon := \partial_{\mu}\epsilon + \omega_{\mu}\epsilon = 0.$$

Quite restrictive

- Minkowski and tori are prime examples
- Generally Calabi-Yau and other spaces of special holonomy

Include background global symmetries, if they exist

$$\partial_{\mu}\epsilon + (\omega_{\mu} - A_{\mu})\epsilon = 0.$$

• Choosing $A_{\mu} = \omega_{\mu}$, Killing spinors are constant:

$$\partial_{\mu}\epsilon = 0.$$

- Topological twisting of [Witten]
- In string theory, branes wrapping cycles of SUSY backgrounds.

[Bershadsky, Sadov, Vafa].

Make more concrete:

In flat, *D*-dimensional space, p-brane breaks the Lorentz group:

$$SO(D-1,1) \longrightarrow SO(p,1) \times SO(D-p-1)$$
.
Worldvolume Lorentz
Global R-symmetry

D-dimensional background metric couples to both symmetry currents.

Supersymmetric worldvolumes have these cancel on the brane

Is an on-shell approach. Backgrounds solve *D*-dimensional SUGRA EOM.

Off-shell approach systematized by [Festuccia-Seiberg, ...]

- \blacksquare Couple theory to background, off-shell, (p+1)-dimensional SUGRA
- SUGRA auxiliary fields introduce background manifold
- Supersymmetry requires

$$\nabla_{\mu}\epsilon - A_{\mu}\epsilon = V_{\mu}\epsilon + V^{\nu}\sigma_{\mu\nu}\epsilon$$

Solutions include novel manifolds for field theories
 [Dumitrescu-Seiberg, ...]

$$S^n$$
, $\mathbb{R}^k \times S^n$, $S^1 \times S^n$, ...

For example: 4 supercharges $\Rightarrow \mathbb{R} \times \mathcal{M}_3$

■ To preserve 4 supercharges,

$$\nabla_{\mu}V_{\nu} = 0, \quad R_{\mu\nu} = -2\left(V_{\mu}V_{\nu} - g_{\mu\nu}V_{\rho}V^{\rho}\right)$$

• Constant curvature with parallel vector \Rightarrow locally $\mathbb{R} \times \mathcal{M}_3$

$$\mathcal{M}_3 = S^3, \quad \mathbb{R}^3, \quad H^3$$

• For
$$S^3$$
, choose $V_\mu = rac{i}{r}$

• r is radius of S^3 .

Summary:

- Preserve supersymmetry by coupling to background fields
- Can be on-shell \leftarrow string backgrounds and brane physics
- Or off-shell ← SUGRA auxiliary fields

Generalize the on-shell method by including the "landscape" of supersymmetric flux vacua

Hints of a relationship to off-shell method

What is this "landscape"? A specific case:

- M-theory on $\mathbb{R}^{1,2} imes \mathcal{M}_8$ with G_4 flux
- Supersymmetry requires

$$\delta\psi_M = \nabla_M \epsilon + \frac{1}{12} \left(\Gamma_M \mathcal{G}_4 - 3(\mathcal{G}_4)_M \right) \epsilon = 0.$$

This condition leads to study of "G-structures".

One class of solutions has $\mathcal{M}_8 = CY_4$

[Becker-Becker]

Metric

$$ds^{2} = \Delta(y)^{-1} \eta_{\mu\nu} dx^{\mu} dx^{\nu} + \Delta(y)^{\frac{1}{2}} ds^{2}_{\mathcal{M}_{8}}(y).$$

Flux EOM requires

$$G_4 \in H^{(4,0)} \oplus H^{(2,2)} \oplus H^{(0,4)}$$

These don't generically preserve SUSY

In low-energy SUGRA, flux-induced superpotential

[Gukov-Vafa-Witten]

$$W = \int_{\mathcal{M}_8} \Omega_4 \wedge G_4$$

On a general CY_4 (holonomy = SU(4)), fluxes can preserve either

• 3D N = 2 supersymmetry, i.e. 4 real supercharges.

[Gukov-Vafa-Witten]

$$G_4 \in H^{(2,2)}_{\text{primitive}}\left(CY_4\right)$$

• 3D N = 1 supersymmetry:

[Prins-Tsimpis]

$$G_4 = c\left(J \wedge J + \frac{3}{2} \mathrm{Re}\Omega\right) + H^{(2,2)}_{\mathrm{primitive}}$$

If $CY_4 = K3 \times K3$, N = 4, 2, 1 possible. [Dasgupta-Rajesh-Sethi, Prins-Tsimpis]

Metric matters! Flux gives mass to some metric moduli

[GVW]

What happens to our $(2,0) \leftrightarrow$ heterotic string story?

- Take \mathcal{M}_8 to be conformally $K3 \times K3$
- Wrap M5 on one K3
- In background flux, H₃ gets shifted

$$\mathcal{H}_3 = H_3 - C_3, \quad dC_3 = G_4$$

- Analogous to $\mathcal{F} = F B$ in DBI action
- Upon reduction on K3:

$$\mathcal{H}_{3} = \sum_{i=1}^{19} \left(\partial_{-} X^{i} - A^{i}_{-} \right) \omega_{i}^{-} + \sum_{i=1}^{3} \left(\partial_{+} X^{i} - A^{i}_{+} \right) \omega_{i}^{+}$$

Theory is now interacting and can have reduced supersymmetry

Should flow to heterotic dual of M-theory background

• Torsional, T^3 -fibered non-Kähler spaces

[McOrist-Morrison-Sethi]

■ If M5 wrapped more general Σ₄, generalize MSW string [Maldacena-Strominger-Witten]

Lessons:

- The choice of flux changes the theory on the string
- The string landscape implies a landscape of 2D theories

How to incorporate flux more generally?

Generally turns on operators charged under all of

$$SO(p,1) \times SO(D-p-1)_R$$

- Could enumerate and supersymmetrize—painful?
- Brane effective actions already include flux and supersymmetry

Brane physics \rightarrow field theories

- In regime of validity, brane effective actions are Green-Schwarz-like
- Specify embedding into target superspace
- For M5-brane:

$$Z: \ \Sigma_{6|0} \to \mathcal{M}_{11|32}, \quad Z^A(\sigma) = \left(X^M(\sigma), \Theta^a(\sigma)\right)$$

- Worldvolume degrees of freedom are Z^A and two-form B_2
- Gauge symmetries make not all of Z^A physical

$$\phi^{I} \in \Gamma\left[\mathcal{N}\right], \quad \Theta \in \Gamma\left[\mathcal{S}^{-}\left(T\Sigma\right) \otimes \mathcal{S}\left(\mathcal{N}\right)\right]$$

Supersymmetries:

Bulk superisometries generated by (fluxed-)Killing spinor:

$$\delta_{\epsilon}\phi^{I} = \overline{\epsilon}\Gamma^{I}\Theta, \quad \delta_{\epsilon}\Theta = \epsilon$$

Local, kappa symmetry

$$\delta_{\kappa}\phi^{I} = -\left(\delta_{\kappa}\overline{\Theta}\right)\Gamma^{I}\Theta, \quad \delta_{\kappa}\Theta = (1+\Gamma_{\kappa})\kappa,$$

• κ is arbitrary spinor field on Σ , $\Gamma_{\kappa} = \Gamma_{\kappa}(Z, \mathcal{H})$ satisfies

$$\mathrm{tr}\Gamma_{\kappa}=0,\quad \Gamma_{\kappa}^2=1$$

 Worldvolume has global supersymmetry
 e only if [Becker-Becker-Strominger]

$$\delta_{\kappa}\Theta + \delta_{\epsilon}\Theta = 0 \quad \Longrightarrow \quad (1 - \Gamma_{\kappa})\epsilon = 0$$

M5-brane wrapping supersymmetric cycles w/o flux: [Gauntlett]

Calibration	World-Volume	Supersymmetry
SLAG	$\mathbb{R}^{1,3} imes (\Sigma_2\subset CY_2)$	8, $\mathcal{N}=2$ d=4
	$\mathbb{R}^{1,2} imes (\Sigma_3\subset CY_3)$	4, $N=2 d=3$
	$\mathbb{R}^{1,1} imes (\Sigma_4\subset CY_4)$	2, $(1,1) d=2$
	$\mathbb{R} imes (\Sigma_5\subset CY_5)$	1
	$\mathbb{R}^{1,1} \times (\Sigma_2 \subset CY_2) \times (\Sigma'_2 \subset CY'_2)$	4, $(2,2) d=2$
	$\mathbb{R} imes (\Sigma_2 \subset CY_2) imes (\Sigma_3 \subset CY_3)$	2
Kähler	$\mathbb{R}^{1,3} imes (\Sigma_2\subset CY_3)$	4, $\mathcal{N}=1$ d=4
	$\mathbb{R}^{1,1} imes (\Sigma_4\subset CY_3)$	4, $(4,0) d=2$
	$\mathbb{R}^{1,1} imes (\Sigma_4 \subset CY_4)$	2, $(2,0) d=2$
C-Lag	$\mathbb{R}^{1,1} imes (\Sigma_4\subset HK_2)$	3, (2,1) d=2
Associative	$\mathbb{R}^{1,2} imes (\Sigma_3\subset G_2)$	2, $N = 1 d = 3$
Co-associative	$\mathbb{R}^{1,1} imes (\Sigma_4\subset G_2)$	2, $(2,0) d=2$
Cayley	$\mathbb{R}^{1,1} imes (\Sigma_4\subset Spin(7))$	1, $(1,0) d=2$
TABLE 4 The different ways in which fivebranes can wrap cali-		

TABLE 4. The different ways in which fivebranes can wrap calibrated cycles and the amount of supersymmetry preserved. What are the generalized calibrations?

Make two simple assumptions,

$$\mathcal{H}_3\Big|_{\Sigma} = 0, \quad G_4\Big|_{\Sigma} = 0.$$

Then, calibrated cycles are generalized calibrated cycles!

Calibration condition gives BPS bound [Becker-Becker-Strominger]

$$\int_{\Sigma} \overline{\epsilon} \left(1 - \Gamma_{\kappa}\right)^{\dagger} \left(1 - \Gamma_{\kappa}\right) \epsilon \ge 0.$$

Without flux, supersymmetric cycles are minimal submanifolds.

Only flux supported on $\boldsymbol{\Sigma}$ can modify this

What is the lesson?

Generalized calibrations are as ubiquitous as flux backgrounds

- Flux backgrounds are ubiquitous and *qualitatively* change the physics (e.g. amount of SUSY)
- There should be a landscape of field theories to reflect this
- Combining calibration condition and 11-dimensional SUSY:

$$\nabla_{\mu}\epsilon + \frac{1}{12} \Big(\big\{ \Gamma_{\kappa}, \Gamma_{\mu} \mathcal{G}_4 \big\} - 3 \big\{ \Gamma_{\kappa}, (\mathcal{G}_4)_{\mu} \big\} \Big) \epsilon = 0$$

G-structures for field theories

Back to the M5:

To leading order in a momentum expansion

$$\begin{split} \delta B_{\mu\nu} &= -i\overline{\epsilon}\gamma_{\mu\nu}\Theta\\ \delta\phi^{I} &= -i\overline{\epsilon}\Gamma^{I}\Theta,\\ \delta\Theta &= -\frac{1}{2}D_{\mu}\phi^{I}\gamma^{\mu}\Gamma_{I}\epsilon - \frac{1}{24}G_{\mu KLM}\epsilon^{KLMI}{}_{J}\phi^{J}\gamma^{\mu}\Gamma_{I}\epsilon - \frac{1}{24}H^{+}_{\mu\nu\rho}\gamma^{\mu\nu\rho}\epsilon. \end{split}$$

Back to the M5:

To leading order in a momentum expansion

$$\begin{split} \delta B_{\mu\nu} &= -i\overline{\epsilon}\gamma_{\mu\nu}\Theta\\ \delta\phi^{I} &= -i\overline{\epsilon}\Gamma^{I}\Theta,\\ \delta\Theta &= -\frac{1}{2}D_{\mu}\phi^{I}\gamma^{\mu}\Gamma_{I}\epsilon - \frac{1}{24}G_{\mu KLM}\epsilon^{KLMI}{}_{J}\phi^{J}\gamma^{\mu}\Gamma_{I}\epsilon - \frac{1}{24}H^{+}_{\mu\nu\rho}\gamma^{\mu\nu\rho}\epsilon. \end{split}$$

• D_{μ} is connection on normal bundle:

$$D_{\mu}\phi^{I} = \partial_{\mu}\phi^{I} - A^{I}_{\mu J}\phi^{J}$$

Flux-modified connection

$$D^{(G)}_{\mu}\phi^{I} = D_{\mu}\phi^{I} + \frac{1}{12}G_{\mu KLM}\epsilon^{KLMI}{}_{J}\phi^{J}$$

Imply the equations of motion:

$$0 = H^{-}_{\mu\nu\rho} - \phi^{I}G^{-}_{I\mu\nu\rho},$$

$$0 = \gamma^{\mu}D^{(G)}_{\mu}\Theta - \frac{1}{24}G^{-}_{\mu\nu\rho I}\gamma^{\mu\nu\rho}\Gamma^{I}\Theta,$$

$$\gamma^{\mu}D^{(G)}_{\mu}\Theta := \left(\gamma^{\mu}\nabla_{\mu} - \frac{1}{4}A^{IJ}_{\mu}\Gamma_{IJ} + \frac{1}{48}G_{\mu IJK}\epsilon^{IJKLM}\Gamma_{LM}\right)\Theta.$$

• The ϕ^I equation is (for now) undetermined.

- Same algebra appeared in [Bergshoeff-Sezgin-van Proeyen, Cordova-Jafferis]
- Coupled (2,0) tensor multiplet to off-shell conformal supergravity
- Auxiliary fields ↔ fluxes [Triendl]

Questions:

- What is the relation to the off-shell approach?
- If they are the same, where is the landscape? If they aren't what is different?
- Can we relax the on-shell constraints?
- What can we learn about torsional heterotic solutions? Can we localize and calculate elliptic genera?
- \blacksquare Supersymmetric deformations of generalized calibrations \rightarrow generalized geometry?
- Relation to higher-form symmetries?