K3 surfaces from Seiberg-Witten curves

GTP Seminar, UCSB
October $4^{\text {th }}, 2013$

Andreas Malmendier, Colby College (joint work with Chuck Doran)

F-theoretic interpretation of Kummer pencil (Sen '95)

- Kummer pencil on T^{4} / \mathbb{Z}_{2} is 2dim subspace of moduli space:

1) Base is T^{2} / \mathbb{Z}_{2} with complex structure $\tau_{b}=\tau_{1}$.
2) Elliptic fiber has constant modulus $\tau_{f}=\tau_{2}$.
3) Over $z=0,1, \lambda_{1}, \infty$ there are I_{0}^{*}-fibers $\left(\operatorname{ord}_{D}(\Delta)=6\right)$.
4) Monodromy acts by $\left(\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right)$ on periods, but trivially on τ_{f}.

- Theory is equivalent to orientifold in type IIB string

1) Base is T^{2} / \mathbb{Z}_{2}.
2) Axion-dilaton modulus is constant.
3) 4 sets of 6 coincident D7-branes located at $z=0,1, \lambda_{1}, \infty$
4) Monodromy is identified with transformation (-1$)^{F_{L}} \cdot \Omega$

Embedding of SW-curve into F-theory

- Physics near orientifold plane $=$ Seiberg-Witten solution for $\mathcal{N}=2$, $d=4$ SYM for $S U(2)$ with four quark flavors.
- Sen provided embedding of SW-curve into F-theory:

$$
\mathcal{N}=2 \text { SYM } \quad \leftrightarrow \quad \text { F-theory }
$$

total space: elliptic fiber: base:	rational elliptic surface gauge coupling vev u of adjoint scalar		elliptic K3 surface axion-dilaton modulus base pt z of IIB compactification
limit:	all quarks massless	\leftrightarrow	orbifold limit T^{4} / \mathbb{Z}_{2}
fibration:	21_{0}^{*} (isotrivial)	\leftrightarrow	$4 I_{0}^{*}$ (isotrivial)
parameter:	$j\left(\tau_{0}\right)$	$=$	$j\left(\tau_{f}\right)$
WEq:	$\begin{aligned} & g_{2}(u) \doteq E_{4}\left(\tau_{0}\right)(u-1)^{2} \\ & g_{3}(u) \doteq E_{6}\left(\tau_{0}\right)(u-1)^{3} \end{aligned}$	\leftrightarrow	$\begin{aligned} & G_{2}(z)=g_{2}(z) z^{2}\left(z-\lambda_{1}\right)^{2} \\ & G_{3}(z)=g_{3}(z) z^{3}\left(z-\lambda_{1}\right)^{3} \end{aligned}$
deformation	masses $m_{i}>0$	$=$	location of seven branes c_{i}
gen. fibration:	$6 I_{1}+I_{0}^{*}$	\leftrightarrow	$6 I_{1}+I_{0}^{*}+2 I_{0}^{*}$
WEq:	$\begin{aligned} & g_{2}(u)=f_{2}\left(u, m_{i}\right) \\ & g_{3}(u)=h_{3}\left(u, m_{i}\right) \end{aligned}$	\leftrightarrow	$G_{2}(z)=f_{2}\left(z, c_{i}\right) z^{2}\left(z-\lambda_{1}\right)^{2}$ $G_{3}(z)=h_{3}\left(z, c_{i}\right) z^{3}\left(z-\lambda_{1}\right)^{3}$

Results (Doran, M.):

- replaced SW-curve ($2 I_{0}^{*}$) with any extremal rational elliptic surfaces \mathbf{S} with section (classified by Miranda, Persson '86),
- obtained 2-parameter families $\mathbf{X}_{1}(\mathbf{S})$ of lattice polarized K3 surfaces of Picard rank $\rho=8+2 \cdot 4+2=18$, and 2-parameter families $\mathbf{X}_{2}(\mathbf{S})$ as their double covers,
- K3 periods satisfy system of linear PDEs of rank 4 (fibrewise periods of rational surface $\xrightarrow{\text { Euler tr. }} \mathrm{K} 3$-periods),
- after restricting to simple one-parameter subfamily: reproduced periods for families of M_{n}-polarized K3 surfaces ($n=1,2,3,4,6$), new family whose periods satisfy the Apery recurrence for $\zeta(2)$,
- determined quadratic period relation and interpretation of periods and twist-parameters as modular forms,
- generalization to 3-parameter family w/ $\rho=17$ selects SW-curve $\left(N_{f}=0\right) \rightarrow$ moduli: genus-2 curve of level 2

Rational surfaces

- Rational elliptic surfaces \mathbf{S} over $\mathbb{C P}{ }^{1}$ with section:

$$
\overline{\mathbf{S}}: y^{2}=4 x^{3}-g_{2} x-g_{3}, \quad \begin{array}{ll}
g_{2} \in H^{0}(\mathcal{O}(4)), \\
g_{3} \in H^{0}(\mathcal{O}(6)),
\end{array} \quad[t: 1] \in \mathbb{C P}^{1}
$$

- Consider extremal rational elliptic srfc: $\operatorname{rk}(\mathrm{MW})=0, \rho=10$.

Examples:

- SW-curve S for pure $\operatorname{SU}(2)$-gauge theory:

Legendre family over the t-line, t Hauptmodul for 「(2), $y^{2}=x(x-1)(x-t)$

- Pencil related by 2-isogeny

$E_{\text {sing }}$	I_{2}	I_{2}	$I_{2}^{*}\left(=D_{6}\right)$
t	0	1	∞
$E_{\text {sing }}$	I_{1}	I_{1}	$I_{4}^{*}\left(=D_{8}\right)$
t	0	1	∞

Extremal rational surfaces and their periods

- Rational elliptic surfaces \mathbf{S} with section

$$
\overline{\mathbf{S}}: y^{2}=4 x^{3}-g_{2} x-g_{3}, \quad \begin{array}{ll}
g_{2} \in H^{0}(\mathcal{O}(4)), \\
g_{3} \in H^{0}(\mathcal{O}(6)),
\end{array} \quad[t: 1] \in \mathbb{C P}^{1} .
$$

- Extremal rational surfaces (up to $*$-transfer):

isotrivial			G
I_{0}	I_{0}^{*}	I_{0}^{*}	\mathbb{Z}_{2}
I_{0}	IV	IV^{*}	\mathbb{Z}_{3}
I_{0}	$I I I$	$I I I^{*}$	\mathbb{Z}_{4}
I_{0}	II	$I I^{*}$	\mathbb{Z}_{6}

modular (3)			
I_{1}	I_{1}	I_{4}^{*}	$\Gamma_{0}(4)$
I_{2}	I_{2}	I_{2}^{*}	$\Gamma(2)$
l_{3}	I_{1}	I^{*}	$\Gamma_{0}(3)$
I_{2}	I_{1}	$I I I^{*}$	$\Gamma_{0}(2)$
I_{1}	I_{1}	$I I^{*}$	Γ

modular (4)				G
I_{4}	I_{2}	I_{2}	I_{4}	$4 E^{0}$
I_{2}	I_{1}	I_{1}	I_{8}	$\Gamma_{0}(8)$
I_{3}	I_{3}	I_{3}	I_{3}	$\Gamma(3)$
I_{9}	I_{1}	I_{1}	I_{1}	$\Gamma_{0}(9)$
I_{5}	I_{1}	I_{1}	I_{5}	$\Gamma_{1}(5)$
I_{6}	I_{1}	I_{2}	I_{3}	$\Gamma_{0}(6)$

$G \subset \mathrm{SL}(2, \mathbb{Z})$ generated monodromy group

Extremal rational surfaces and their periods

- Rational elliptic surfaces \mathbf{S} with section

$$
\overline{\mathbf{S}}: y^{2}=4 x^{3}-g_{2} x-g_{3}, \quad \begin{array}{ll}
g_{2} \in H^{0}(\mathcal{O}(4)), \\
g_{3} \in H^{0}(\mathcal{O}(6)),
\end{array} \quad[t: 1] \in \mathbb{C P}^{1}
$$

- Extremal rational surfaces (up to $*$-transfer):

modular (3)			μ
I_{1}	I_{1}	I_{4}^{*}	$1 / 2$
I_{2}	I_{2}	I_{2}^{*}	$1 / 2$
I_{3}	I_{1}	$I V^{*}$	$1 / 3$
I_{2}	I_{1}	$I I I^{*}$	$1 / 4$
I_{1}	I_{1}	$I I^{*}$	$1 / 6$

modular (4)				a	q
I_{4}	I_{2}	I_{2}	I_{4}	-1	0
I_{2}	I_{1}	I_{1}	I_{8}	-1	0
I_{3}	I_{3}	I_{3}	I_{3}	$\frac{1-i \sqrt{3}}{2}$	$\frac{3-i \sqrt{3}}{2}$
I_{9}	I_{1}	I_{1}	I_{1}	$\frac{1-i \sqrt{3}}{2}$	$\frac{3-i \sqrt{3}}{2}$
I_{5}	I_{1}	I_{1}	I_{5}	\ldots	\cdots
I_{6}	I_{1}	I_{2}	I_{3}	$1 / 9$	$1 / 3$

Solutions to Picard-Fuchs rank-2 first order linear system:

$$
\omega={ }_{2} F_{1}(\mu, 1-\mu ; 1 \mid t) \quad \omega=H I(a, q ; 1,1,1,1 \mid t)
$$

One-parameter families of K3 surfaces

- Construction 1: quadratic twist with polynomial h

$$
\begin{aligned}
& \overline{\mathbf{x}}_{1}=\overline{\mathbf{S}}_{h}: Y^{2}=4 X^{3}-h^{2} g_{2} X-h^{3} g_{3} \\
& \stackrel{\downarrow}{\mathbf{s}}: y^{2} \\
&=4 x^{3}-g_{2} x-g_{3} .
\end{aligned}
$$

- Twist adds 2 fibers of type I_{0}^{*}
- Parameter defines position of additional $I_{0}^{*}, h=t(t-A)$
- 1-parameter families of lattice-polarized K3 surfaces $(\rho=19)$
- Example: $\mathrm{T}_{\mathbf{X}}=\langle 2\rangle^{\oplus 2} \oplus\langle-2\rangle, A \notin\{0,1\}$:

$E_{\text {sing }}$	I_{2}	I_{2}	I_{2}^{*}
t	0	1	∞

$E_{\text {sing }}$	I_{2}^{*}	I_{2}	I_{2}^{*}	I_{0}^{*}
t	0	1	∞	A

One-parameter families of K3 surfaces

- Construction 1: quadratic twist with polynomial h

$$
\begin{aligned}
\overline{\mathbf{X}}_{1}=\overline{\mathbf{S}}_{h}: Y^{2} & =4 X^{3}-h^{2} g_{2} X-h^{3} g_{3} \\
\overline{\mathbf{S}}: y^{2} & =4 x^{3}-g_{2} x-g_{3} .
\end{aligned}
$$

- $2 I_{0}^{*}$'s, $h=t(t-A)$, 2-form: $d t \wedge \frac{d X}{Y}=\frac{1}{\sqrt{h(t)}} d t \wedge \frac{d x}{y}$
- Represent K3-periods as Euler transform of a HGF

$$
\Omega_{i j}=\oiint_{S_{i j}} d t \wedge \frac{d X}{Y}=\int_{t_{i}^{*}}^{t_{j}^{*}} d t \frac{1}{\sqrt{h(t)}} \omega
$$

- They solve a 3 rd oder ODE (=symmetric square of 2 nd order).

Solutions to the rank-3 integrable linear system of K3 periods:

$$
\Omega={ }_{3} F_{2}\left(\left.\begin{array}{c}
\mu, \frac{1}{2}, 1-\mu \\
1,1
\end{array} \right\rvert\, A\right) \quad \Omega=\left[H I\left(a, \frac{q}{4} ; \frac{1}{4}, \frac{3}{4}, 1, \left.\frac{1}{2} \right\rvert\, A\right)\right]^{2}
$$

One-parameter families of K3 surfaces

- Construction 1: quadratic twist with polynomial h

$$
\begin{aligned}
\overline{\mathbf{X}}_{1}=\overline{\mathbf{S}}_{h}: Y^{2} & =4 X^{3}-h^{2} g_{2} X-h^{3} g_{3} \\
& \downarrow \\
\overline{\mathbf{S}}: y^{2} & =4 x^{3}-g_{2} x-g_{3} .
\end{aligned}
$$

- $2 I_{0}^{*}$'s, $h=t(t-A)$, 2-form: $d t \wedge \frac{d X}{Y}=\frac{1}{\sqrt{h(t)}} d t \wedge \frac{d x}{y}$
- Represent K3-periods as Euler transform of a HGF

$$
\Omega_{i j}=\oiint_{S_{i j}} d t \wedge \frac{d X}{Y}=\int_{t_{i}^{*}}^{t_{j}^{*}} d t \frac{1}{\sqrt{h(t)}} \omega
$$

- They solve a 3 rd oder ODE (=symmetric square of 2 nd order).

Solutions to the rank-3 integrable linear system of K3 periods:

$$
\Omega=\left[{ }_{2} F_{1}\left(\frac{\mu}{2}, \frac{1-\mu}{2} ; 1 \mid A\right)\right]^{2} \quad \Omega=\left[H I\left(a, \frac{q}{4} ; \frac{1}{4}, \frac{3}{4}, 1, \left.\frac{1}{2} \right\rvert\, A\right)\right]^{2}
$$

One-parameter families of K3 surfaces

Proposition (M.-Doran)

- There is a fundamental set of solutions $\left\{x_{1}, x_{2}, x_{3}\right\}$ such that

μ	quadric surface	series
1/2	$\begin{gathered} x_{1}^{2}+x_{2}^{2}-x_{3}^{2} \\ 2 x_{1}^{2}+2 x_{2}^{2}-2 x_{3}^{2} \end{gathered}$	${ }_{3} F_{2}\left(\left.\begin{array}{c}\frac{1}{2}, \frac{1}{2}, \frac{1}{2} \\ 1,1\end{array} \right\rvert\, A\right)=\sum_{n=0}^{\infty} \frac{(2 n)!^{3}}{} \frac{A^{n}}{n!]^{6}}{ }^{\text {an }}$
1/3	$4 x_{1}^{2}+3 x_{2}^{2}-3 x_{3}^{2}$	${ }_{3} F_{2}\left(\left.\begin{array}{c}\frac{1}{3}, \frac{1}{2}, \frac{2}{3} \\ 1,1\end{array} \right\rvert\, A\right)=\sum_{n=0}^{\infty} \frac{(2 n)!(3 n)!}{n!!^{5}} \frac{A^{n}}{2^{2 n} 3^{3 n}}$
1/4	$4 x_{1}^{2}+2 x_{2}^{2}-2 x_{3}^{2}$	${ }_{3} F_{2}\left(\left.\begin{array}{c}\frac{1}{4}, \frac{2}{4}, \frac{3}{4} \\ 1,1\end{array} \right\rvert\, A\right)=\sum_{n=0}^{\infty} \frac{(4 n)!}{n^{4} \frac{A^{n}}{44^{n}}}$
1/6	$x_{1}^{2}+4 x_{2}^{2}-x_{3}^{2}$	${ }_{3} F_{2}\left(\left.\begin{array}{c}\frac{1}{6}, \frac{3}{6}, \frac{5}{6} \\ 1,1\end{array} \right\rvert\, A\right)=\sum_{n=0}^{\infty} \frac{(6 n)!}{n!3}(3 n)!\frac{A^{n}}{6^{3} 3^{3 n}}$

- First 4 cases with 4 singularities are obtained as double covers.
- Cases 5 and 6 are related to Apery's recurrence for $\zeta(2)$ and $\zeta(3)$:

$$
\text { e.g., } \Omega=\sum_{n=0}^{\infty}\left(\sum_{k=0}^{n}\binom{n}{k}^{2}\binom{n+k}{k}^{2}\right) \frac{A^{n}}{4^{n}}
$$

One-parameter families of K3 surfaces

- Construction 2: double cover branched at $t=0$ and $t=A$:

$$
\begin{aligned}
\overline{\mathbf{X}}_{2}=\overline{\mathbf{S}}_{[0, A]}: Y^{2} & =4 X^{3}-s^{4} g_{2}(t(s)) X-s^{6} g_{3}(t(s)) \\
\overline{\mathbf{S}}: Y^{2} & \downarrow 4 X^{3}-g_{2}(t) X-g_{3}(t) .
\end{aligned}
$$

- with $t=\frac{(s+A / 4)^{2}}{s}$ we have $d s \wedge \frac{d X}{Y}=\frac{1}{\sqrt{t(t-A)}} d t \wedge \frac{d x}{y}$
- Example of 1-param. family of lattice-polarized K3 surface of Picard rank 19, $\mathrm{T}_{\mathbf{x}}=H \oplus\langle-2\rangle, A \notin\{0,1\}$:

$\underbrace{$| $E_{\text {sing }}$ | I_{1} | I_{1} | $I I^{*}$ |
| :--- | :---: | :---: | :---: |
| t | 0 | 1 | ∞ |}$_{\mathbf{S} \text { is rational }}$

$E_{\text {sing }}$	I_{2}	$2 I_{1}$	$2 I^{*}$
s	$A / 4$	$\frac{A}{4}+\frac{1}{2} \pm \sqrt{A+1}$	$0, \infty$
\mathbf{x}_{2} is K 3			

- X_{2} 's are one-parameter families with $n=1,2,3,4,5,6,8,9$ and $M_{n}=H \oplus E_{8} \oplus E_{8} \oplus\langle-2 n\rangle$ lattice polarization.

One-parameter families of K3 surfaces

Proposition (M.-Doran)

- The two constructions give rise to degree-two rational maps $\mathbf{X}_{2} \rightarrow \mathbf{X}_{1}$ that leave the holomorphic two-form invariant.
- The Picard-Fuchs differential equations of each pair $\mathbf{X}_{2}, \mathbf{X}_{1}$ coincide.

Remarks:

- The periods of the families with M_{n} lattice polarization for $n=1,2,3,4,6$ agree with the results of Lian, Yau ['96], Dolgachev ['96], Verrill, Yui['00], Doran ['00], and Beukers, Stienstra, Peters ['84, '85, '86].
- One can "undo" the Kummer construction and provide interpretation of K3 periods in terms of modular forms:

$$
\begin{aligned}
& { }_{2} F_{1}\left(\frac{\mu}{2}, \frac{1-\mu}{2} ; 1 \mid A\right)={ }_{2} F_{1}(\mu, 1-\mu ; 1 \mid a), A=4 a(1-a), \\
& H I\left(a, \frac{q}{4} ; \frac{1}{4}, \frac{3}{4}, 1, \left.\frac{1}{2} \right\rvert\, A\right) \sim H I(a, q ; 1,1,1,1 \mid a), A=q u a r t i c(a) .
\end{aligned}
$$

Two-parameter families of K3 surfaces

Set $h(t)=(t-A)(t-B)$ in \mathbf{X}_{1} and $t=\frac{16 s^{2}+8(A+B) s+(A-B)^{2}}{16 s}$ in \mathbf{X}_{2} s.t.

$$
d s \wedge \frac{d X}{Y}=\frac{1}{\sqrt{h(t)}} d t \wedge \frac{d x}{y}
$$

Proposition (M.-Doran)

- The two constructions give rise to degree-two rational maps $\mathbf{X}_{2} \rightarrow \mathbf{X}_{1}$ (for all cases with $\kappa=0$) that leave the holomorphic two-form invariant.
- The Picard-Fuchs linear systems for each pair $\mathbf{X}_{2}, \mathbf{X}_{1}$ coincide.
- K3-periods solve an integrable rank-4 linear system in $\partial_{A}, \partial_{B}$.
- In cases with 3 singular fibers, solution is Appell HGF:

$$
\Omega_{\mu}(A, B)=\frac{1}{B^{\mu}} F_{2}\left(\mu ; \frac{1}{2}, \mu ; 1,2 \mu \left\lvert\, 1-\frac{A}{B}\right., \frac{1}{B}\right)
$$

2) Rational elliptic surfaces

Two-parameter families of K3 surfaces

Remarks:

- F_{2} satisfies equations of a linear system of rank 4:

$$
\begin{aligned}
& A(1-A) F_{A A}+A B F_{A B}+(\gamma-(\alpha+\beta+1) A) F_{A}-\beta B F_{B}-\alpha \beta F=0 \\
& B(1-B) F_{B B}+A B F_{A B}+\left(\gamma^{\prime}-\left(\alpha+\beta^{\prime}+1\right) B\right) F_{B}-\beta^{\prime} A F_{A}-\alpha \beta^{\prime} F=0
\end{aligned}
$$

- Example $(\mu=1 / 6): M=H \oplus E_{8} \oplus E_{8}$-polarized case,

- Examples realize elliptic fibrations $\mathfrak{J}_{3}, \mathfrak{J}_{4}, \mathfrak{J}_{6}, \mathfrak{J}_{7}, \mathfrak{J}_{11}$ on $\operatorname{Kum}\left(E_{1} \times E_{2}\right)$ from Oguiso ['88].

Two-parameter families of K3 surfaces

Remarks:

- Ω 's satisfy Quadratic Condition (cf. Sasaski, Yoshida ['88]): fundamental solutions $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ are quadrically related, solution surfaces $S \subset \mathbb{P}^{3}$ reduces to $\mathbb{P}^{1} \times \mathbb{P}^{1}$.
- Clausen-type equation:

$$
\frac{1}{B^{\mu}} F_{2}\left(\mu ; \frac{1}{2}, \mu ; 1,2 \mu \left\lvert\, 1-\frac{A}{B}\right., \frac{1}{B}\right)=\frac{1}{(1-A-B)^{\mu}} \cdot \begin{aligned}
& { }_{2} F_{1}\left(\frac{\mu}{2}, \frac{\mu+1}{2} ; 1 \mid x\right) \\
& { }_{2} F_{1}\left(\frac{\mu}{2}, \frac{\mu+1}{2} ; \left.\mu+\frac{1}{2} \right\rvert\, y\right)
\end{aligned}
$$

where $x(1-y)=\left(\frac{A-B}{1-A-B}\right)^{2}, y(1-x)=\left(\frac{1}{1-A-B}\right)^{2}$.

- F_{2} satisfies linear and quadratic transformations (symmetries) linear:

$$
\Omega_{\mu}(A, B)=\Omega_{\mu}(B, A)
$$

Two-parameter families of K3 surfaces

Remarks:

- F_{2} satisfies linear and quadratic transformations (symmetries)
quadratic: $\Omega_{1 / 2}(A, B)=\left(\frac{2 B}{1-A-B}\right)^{1 / 2} \Omega_{1 / 4}(\tilde{A}, \tilde{B})$

$$
\text { with } \tilde{A}=\left(\frac{A-B+1}{A+B-1}\right)^{2}, \tilde{B}=\left(\frac{A-B-1}{A+B-1}\right)^{2}
$$

- If we specialize $A=(\lambda / 4)^{2}, B=1+A$ then we obtain

$$
\Omega_{1 / 2}(A, B)=\Omega_{1 / 4}\left(0,\left(\frac{4}{\lambda}\right)^{4}\right)={ }_{3} F_{2}\left(\left.\begin{array}{c}
\frac{1}{4}, \frac{2}{4}, \frac{3}{4} \\
1,1
\end{array} \right\rvert\,\left(\frac{4}{\lambda}\right)^{4}\right)
$$

for the period of the sub-family $\mu=\frac{1}{2}$ (agrees with Narumiya, Shiga ['01]) which is birational to

$$
\mathcal{F}=\{x y z(x+y+z+\lambda)+1=0\} \subset \mathbb{P}^{3}
$$

Periods of 3-parameter families of K3 surfaces

- There is only one family where the construction of \mathbf{X}_{1} can be turned into a 3-parameter family of K3 surfaces with lattice polarization of Picard rank 17: SW-curve $\mu=1 / 2$.
- Use $h(t)=(t-A)(t-B)(t-C)$ to obtain linear system of rank 5 in A, B, C for the K 3 -periods on \mathbf{X}_{1}
$=$ specialization of Aomoto-Gel'fand HGF of type $(3,6)$

$$
E(3,6)\left(\left.\alpha_{i}=\frac{1}{2} \right\rvert\, u, v, 0, w\right)
$$

where $u=\left(\frac{C-A}{B-A}\right) \frac{B}{C}, v=\frac{B}{C}, w=B$.

- Linear system specialization of the one in Matsumoto et. al ['93] for a family of K3 surfaces of Picard rank 16 associated with six lines in the complex plane, no three of which are concurrent.

2) Rational elliptic surfaces

Kummer surfaces from SU(2)-Seiberg-Witten curve

Proposition (M.-Doran)

- The family $\mathbf{X}_{1}=\mathbf{S}_{h} \rightarrow \mathbb{C P}^{1}(\mu=1 / 2)$ is a family of Jacobian K3 surfaces of Picard rank 17.
- There is a family $\mathbf{X}_{2} \rightarrow \mathbb{C P}^{1}$ obtained from the covering map $t=\left(C s^{2}-B\right) /\left(s^{2}-1\right)$.
- $\mathbf{X}_{2}=\operatorname{Kum}(\mathbf{A})$ where

ρ	parameter	A	equation	moduli space
17	u, v, w	$\operatorname{Jacc}^{(2)}$	$y^{2}=x(x-1)\left(x-\lambda_{1}\right)\left(x-\lambda_{2}\right)\left(x-\lambda_{3}\right)$	$\Gamma_{2}(2) \backslash \mathbb{H}_{2}$
18	$u, w, v=0$	$E_{1} \times E_{2}$	$y_{i}^{2}=\left(2 x_{i}-1\right)\left[\left(4 x_{i}+1\right)^{2}+9 r_{i}\right]$	$\Gamma \backslash \mathbb{H} \times \mathbb{H}$
19	$u, v=0, w=1$	$E_{1} \times E_{1}$	$\left.y_{1}^{2}=\left(2 x_{1}-1\right)\left[4 x_{1}+1\right)^{2}+9 r_{1}\right]$	$\Gamma_{0}(2) \backslash \mathbb{H}$

Mayr, Stieberger ['95], Kokorelis ['99]: moduli space of genus-two curves with level-two structure $=$ moduli space of $\mathcal{N}=2$ heterotic string theories compactified on $K 3 \times T^{2}$ with one Wilson line.

