MATH 145 Supplementary Problems

May 5, 2008

- 1. Let A be a subset of a topological space X. Prove that A is closed if and only if $\partial A \subset A$, and that A is open if and only if $\partial A \subset X A$.
- 2. Prove that $f: (X, \mathcal{T}) \to (Y, \mathcal{T}_i)$ is always continuous, where \mathcal{T} is any topology on X and \mathcal{T}_i is the indiscrete topology on Y.
- 3. Prove that the unit circle $S^1 = \{(x, y) \in \mathbb{R}^2 | x^2 + y^2 = 1\}$ is homeomorphic to ∂A , where A is the square $\{(x, y) \in \mathbb{R}^2 | |x| \le 1, |y| \le 1\}$.
- 4. Prove that the functions described in class as the euclidean metric, the square metric, and the component sum metric are indeed metrics on $X \times X$ where $X = \mathbb{R}^2$ and $d_i(x, y) = |x - y|$ for i = 1, 2.
- 5. Prove that the euclidean metric, square metric, and component sum metric satisfy the convergence property described in class (and given below) for $X = \mathbb{R}^n$ and $d_i(x, y) = |x y|$ for i = 1, ..., n. A sequence $\{\bar{x}^{(j)}\}_{j=1}^{\infty} = \{(x_k^{(j)})\}_{j=1}^{\infty}$ converges to $\bar{y} = (y_1, ..., y_n)$ in $X = X_1 \times \cdots \times X_n$ if and only if for each k the sequence of component entries $\{x_k^{(j)}\}_{j=1}^{\infty}$ converges to y_k in X_k .