MATH 145 Midterm 1 75 points

May 1, 2008

1. (10 pts.) The "line with two origins" is $X=(\mathbb{R}-\{0\}) \cup\left\{0^{+}, 0^{-}\right\}$with the topology on X defined to consist of open sets in $\mathbb{R}-\{0\}$ and of sets of the form $(U-\{0\}) \cup\left\{0^{+}\right\}=U^{+}$and $(U-\{0\}) \cup\left\{0^{-}\right\}=U^{-}$ for $U \subset \mathbb{R}$ open and containing 0 . Prove or disprove: X is Hausdorff.
2. (20 pts.) Let A be a subset of a topological space X.
(a) Prove that $\partial A=\emptyset$ if and only if A both is open and closed.
(b) Prove that $\bar{A}=A \cup \partial A$.
3. (10 pts.)Let Y be a subspace of a topological space X and let A be a subset of Y. Denote the interior of A in X by \AA_{X} and the interior of A in Y by \AA_{Y}. Prove that $\AA_{X} \subset \AA_{Y}$.
4. (20 pts.)Let $A \subset X$ and $B \subset Y$. Show that in the space $X \times Y, \overline{A \times B}=\bar{A} \times \bar{B}$.
5. (15 pts.)Prove the following statements about continuous functions and discrete and indiscrete topological spaces.
(a) If X is discrete, then every function f from X to a topological space Y is continuous.
(b) If X is not discrete, then there is a topological space Y and a function $f: X \rightarrow Y$ that is not continuous.
(c) If Y is not indiscrete, then there is a topological space X and a function $f: X \rightarrow Y$ that is not continuous.
