MATH 145 Midterm 1 75 points

May 1, 2008

- 1. (10 pts.) The "line with two origins" is $X = (\mathbb{R} \{0\}) \cup \{0^+, 0^-\}$ with the topology on X defined to consist of open sets in $\mathbb{R} \{0\}$ and of sets of the form $(U \{0\}) \cup \{0^+\} = U^+$ and $(U \{0\}) \cup \{0^-\} = U^-$ for $U \subset \mathbb{R}$ open and containing 0. Prove or disprove: X is Hausdorff.
- 2. (20 pts.)Let A be a subset of a topological space X.
 - (a) Prove that $\partial A = \emptyset$ if and only if A both is open and closed.
 - (b) Prove that $\overline{A} = A \cup \partial A$.
- 3. (10 pts.)Let Y be a subspace of a topological space X and let A be a subset of Y. Denote the interior of A in X by \mathring{A}_X and the interior of A in Y by \mathring{A}_Y . Prove that $\mathring{A}_X \subset \mathring{A}_Y$.
- 4. (20 pts.)Let $A \subset X$ and $B \subset Y$. Show that in the space $X \times Y$, $\overline{A \times B} = \overline{A} \times \overline{B}$.
- 5. (15 pts.)Prove the following statements about continuous functions and discrete and indiscrete topological spaces.
 - (a) If X is discrete, then every function f from X to a topological space Y is continuous.
 - (b) If X is not discrete, then there is a topological space Y and a function $f: X \to Y$ that is not continuous.
 - (c) If Y is not indiscrete, then there is a topological space X and a function $f: X \to Y$ that is not continuous.