HOMEWORK 3

SOLUTIONS

- 1. (a) T (b) T (c) F (d) T (e) F (f) F (g) T (h) F (i) T 2.
- B = (-2,2)C = [0,2) $D = \{0\}$ $E = \{1\}$

Hence C, D, E are ALL subsets of B; D, E are both subsets of C.

- (a) D and E have the property that neither is contained in the other ("is contained in" means "is a subset of" here).
- (b) X could be B, C or E. X could NOT possibly be D.
- 3. (a) Not valid.
 - (b) P: I eat chocolate. Q: I am depressed. $P \Rightarrow Q$ true implies that $\bar{Q} \Rightarrow \bar{P}$ is true.
 - (c) P: A movie is worth seeing. Q: A movie is made in England. R: Smallbrain reviews a movie.

 $\overline{P} \Rightarrow \overline{Q}$ and $P \Rightarrow R$ are both true. Thus, $\overline{R} \Rightarrow \overline{Q}$ is true, since $\overline{R} \Rightarrow \overline{P}$ (contrapositive to $P \Rightarrow R$) and $\overline{P} \Rightarrow \overline{Q}$ are both true.

- 5. (a) T
 - (b) F
 - (c) F
 - (d) F
 - (e) T
- 6. (a) *Proof.* We prove the result by contradiction. Assume $\sqrt{6} \sqrt{2} \leq 1$. Then squaring both sides yields $8 2\sqrt{12} \leq 1$, and hence $-2\sqrt{12} \leq -7$. Now multiplying both sides by -1 reverses the inequality to give $2\sqrt{12} \geq 7$. Now, squaring both sides gives $48 \geq 49$. This is a contradiction! Hence, the assumption $\sqrt{6} \sqrt{2} \leq 1$ must have been false, therefore $\sqrt{6} \sqrt{2} > 1$ must be true.

- (b) *Proof.* We prove the result by contraposition. Assume that n is an odd integer. Then n = 2k + 1 for some $k \in \mathbb{Z}$. Thus, $n^2 = (2k + 1)^2 = 4k^2 + 4k + 1 = 2(2k^2 + 2k) + 1$. We know that $2k^2 + 2k$ is an integer because k is an integer. Thus, $2(2k^2 + 2k)$ is even which implies that $n^2 = 2(2k^2 + 2k) + 1$ is odd. \Box
- (c) *Proof.* Assume that $n = m^3 m$ for some $m \in \mathbb{Z}$. Then factoring yields n = m(m-1)(m+1). Notice that m-1, m, and m+1 are 3 consecutive integers. We claim that contained in three consecutive integers is a multiple of 2 and a multiple of 3. Note that if this claim is true, then the product of these three integers will be a multiple of 6.

Consider the integer m. The integer m is either a multiple of 3 or it's not. First suppose that m is a multiple of 3, i.e. m = 3k for some integer k. If m is even, then k must be even $(k \text{ could not be odd because this would imply that <math>m$ was odd). So k = 2s for some integer s, and hence m = 3(2s) = 6s. Thus, m is a multiple of 6, and hence the product m(m-1)(m+1) is a multiple of 6. If m is odd, then m + 1 is even, and hence the product m(m-1)(m+1) = 3k(m-1)(2r) = 6kr(m-1) is a multiple of 6. Now, suppose that m is NOT a multiple of 3. Then m = 3k + 1 or m = 3k + 2 for some integer k. But notice in either of these cases one of the other factors m + 1 and m - 1 is a multiple of 3, and the argument above can be repeated (For example, if m = 3k + 1, then m - 1 = 3k. Now repeat the argument above for m - 1 as it is a multiple of 3. If m = 3k + 2, then m + 1 = 3(k + 1). Now repeat the argument above for m + 1 as it is a multiple of 3.

- 7. (a) Counterexample: n = 2 and n = 4. Check that these choices make the conclusion false!
 - (b) Counterexample: the positive integer 7 cannot be written as the sum of three squares (check this).

8. (a) $P: \forall n \in \mathbb{Z}$ such that n is a prime number, n is odd. $\overline{P}: \exists n \in \mathbb{Z}$ such that n is prime and n is even. \overline{P} is true.

Proof. n = 2 is an integer that is prime and even.

(c) $P : \exists x \in \mathbb{Z}$ such that $\forall n \in \mathbb{Z}, x \neq n^2 + 2$. $\overline{P} : \forall x \in \mathbb{Z}, \exists n \in \mathbb{Z}$ such that $x = n^2 + 2$. P is true.

Proof. Let x = 0. Then $x - 2 = -2 \neq n^2$ for all $n \in \mathbb{Z}$.

(d) $P: \exists x \in \mathbb{Z} \text{ such that } \forall n \in \mathbb{Z}, x \neq 2.$ $\bar{P}: \forall x \in \mathbb{Z}, \exists n \in \mathbb{Z} \text{ such that } x = n + 2.$ $\bar{P} \text{ is true.}$

Proof. Let $x \in \mathbb{Z}$. Then n = x - 2 is an integer with the property that x = n + 2.

(f) $P: \forall y \in \{x \mid x \in \mathbb{Z}, x^2 < 0\}, 5y^2 + 5y + 1$ is a prime number. $\overline{P}: \exists y \in \{x \mid x \in \mathbb{Z}, x^2 < 0\}$ such that $5y^2 + 5y + 1$ is not a prime number. P is vacuously true because the set mentioned is empty.