HOMEWORK 3

SOLUTIONS

1. (a) T
(b) T
(c) F
(d) T
(e) F
(f) F
(g) T
(h) F
(i) T
2.

$$
\begin{aligned}
& B=(-2,2) \\
& C=[0,2) \\
& D=\{0\} \\
& E=\{1\}
\end{aligned}
$$

Hence C, D, E are ALL subsets of $B ; D, E$ are both subsets of C.
(a) D and E have the property that neither is contained in the other ("is contained in" means "is a subset of" here).
(b) X could be B, C or $E . X$ could NOT possibly be D.
3. (a) Not valid.
(b) P: I eat chocolate. Q: I am depressed.
$P \Rightarrow Q$ true implies that $\bar{Q} \Rightarrow \bar{P}$ is true.
(c) P: A movie is worth seeing. Q: A movie is made in England. R: Smallbrain reviews a movie.
$\bar{P} \Rightarrow \bar{Q}$ and $P \Rightarrow R$ are both true. Thus, $\bar{R} \Rightarrow \bar{Q}$ is true, since $\bar{R} \Rightarrow \bar{P}$ (contrapositive to $P \Rightarrow R$) and $\bar{P} \Rightarrow \bar{Q}$ are both true.
5. (a) T
(b) F
(c) F
(d) F
(e) T
6. (a) Proof. We prove the result by contradiction. Assume $\sqrt{6}-\sqrt{2} \leq 1$. Then squaring both sides yields $8-2 \sqrt{12} \leq 1$, and hence $-2 \sqrt{12} \leq-7$. Now multiplying both sides by -1 reverses the inequality to give $2 \sqrt{12} \geq 7$. Now, squaring both sides gives $48 \geq 49$. This is a contradiction! Hence, the assumption $\sqrt{6}-\sqrt{2} \leq 1$ must have been false, therefore $\sqrt{6}-\sqrt{2}>1$ must be true.
(b) Proof. We prove the result by contraposition. Assume that n is an odd integer. Then $n=2 k+1$ for some $k \in \mathbb{Z}$. Thus, $n^{2}=(2 k+1)^{2}=4 k^{2}+4 k+1=$ $2\left(2 k^{2}+2 k\right)+1$. We know that $2 k^{2}+2 k$ is an integer because k is an integer. Thus, $2\left(2 k^{2}+2 k\right)$ is even which implies that $n^{2}=2\left(2 k^{2}+2 k\right)+1$ is odd.
(c) Proof. Assume that $n=m^{3}-m$ for some $m \in \mathbb{Z}$. Then factoring yields $n=$ $m(m-1)(m+1)$. Notice that $m-1, m$, and $m+1$ are 3 consecutive integers. We claim that contained in three consecutive integers is a multiple of 2 and a multiple of 3 . Note that if this claim is true, then the product of these three integers will be a multiple of 6 .
Consider the integer m. The integer m is either a multiple of 3 or it's not. First suppose that m is a multiple of 3 , i.e. $m=3 k$ for some integer k. If m is even, then k must be even (k could not be odd because this would imply that m was odd). So $k=2 s$ for some integer s, and hence $m=3(2 s)=6 s$. Thus, m is a multiple of 6 , and hence the product $m(m-1)(m+1)$ is a multiple of 6. If m is odd, then $m+1$ is even, and hence the product $m(m-1)(m+1)=$ $3 k(m-1)(2 r)=6 k r(m-1)$ is a multiple of 6 . Now, suppose that m is NOT a multiple of 3 . Then $m=3 k+1$ or $m=3 k+2$ for some integer k. But notice in either of these cases one of the other factors $m+1$ and $m-1$ is a multiple of 3 , and the argument above can be repeated (For example, if $m=3 k+1$, then $m-1=3 k$. Now repeat the argument above for $m-1$ as it is a multiple of 3 . If $m=3 k+2$, then $m+1=3(k+1)$. Now repeat the argument above for $m+1$ as it is a multiple of 3).
7. (a) Counterexample: $n=2$ and $n=4$. Check that these choices make the conclusion false!
(b) Counterexample: the positive integer 7 cannot be written as the sum of three squares (check this).
8. (a) $P: \forall n \in \mathbb{Z}$ such that n is a prime number, n is odd.
$\bar{P}: \exists n \in \mathbb{Z}$ such that n is prime and n is even.
\bar{P} is true.
Proof. $n=2$ is an integer that is prime and even.
(c) $P: \exists x \in \mathbb{Z}$ such that $\forall n \in \mathbb{Z}, x \neq n^{2}+2$.
$\bar{P}: \forall x \in \mathbb{Z}, \exists n \in \mathbb{Z}$ such that $x=n^{2}+2$.
P is true.
Proof. Let $x=0$. Then $x-2=-2 \neq n^{2}$ for all $n \in \mathbb{Z}$.
(d) $P: \exists x \in \mathbb{Z}$ such that $\forall n \in \mathbb{Z}, x \neq 2$.
$\bar{P}: \forall x \in \mathbb{Z}, \exists n \in \mathbb{Z}$ such that $x=n+2$.
\bar{P} is true.
Proof. Let $x \in \mathbb{Z}$. Then $n=x-2$ is an integer with the property that $x=$ $n+2$.
(f) $P: \forall y \in\left\{x \mid x \in \mathbb{Z}, x^{2}<0\right\}, 5 y^{2}+5 y+1$ is a prime number.
$\bar{P}: \exists y \in\left\{x \mid x \in \mathbb{Z}, x^{2}<0\right\}$ such that $5 y^{2}+5 y+1$ is not a prime number.
P is vacuously true because the set mentioned is empty.

