Homework 2

Due: Friday, October 10

October 9, 2008

- 1. The function $\xi : S^1 \{i\} \to \mathbb{R}$ given by $\xi(z) = \frac{Re(z)}{1 Im(z)}$ is referred to as *steographic projection*. Consider the four points $z_k = e^{\frac{\pi k}{4}i}$, k = 1, 3, 5, 7 of S^1 that form the corners of a square in \mathbb{C} . Calculate their images under ξ .
- 2. Prove that the steographic projection function $\xi: S^1 \{i\} \to \mathbb{R}$ is onto.
- 3. Steographic projection can be generalized to the n-dimensional sphere

$$S^{n} = \{(x_{1}, x_{2}, \dots, x_{n+1}) \mid x_{1}^{2} + x_{2}^{2} + \dots + x_{n+1}^{2} = 1\}$$

in \mathbb{R}^{n+1} . It is given by the function $\pi: S^n - N \to \mathbb{R}^n$ which is defined by the equation

$$\pi(x_1, x_2, \dots, x_{n+1}) = \frac{1}{1 - x_{n+1}}(x_1, x_2, \dots, x_n)$$

where N = (0, 0, ..., 0, 1) is the "north pole" of the sphere. Consider the 2-sphere, S^2 . Show that steographic projection sends the equator of S^2 to the unit circle S^1 in \mathbb{R}^2 .

- 4. Exercise 1.8: Prove that \mathbb{H} is open in \mathbb{C} . For each point z of \mathbb{H} , calculate the maximum ϵ so that $B_{\epsilon}(z)$ is contained in \mathbb{H} .
- 5. Prove that $f : \mathbb{C} \to \mathbb{C}$ is continuous if and only if $f^{-1}(V)$ is open in \mathbb{C} for every open set V in \mathbb{C} . Note: This is a very useful characterization of continuity and is true for any continuous function for which the domain and range are metric spaces.
- 6. Exercise 1.18: Let p and q be two distinct points of $\overline{\mathbb{R}}$. Prove that p and q determine a unique hyperbolic line whose endpoints at infinity are p and q.
- 7. Exercise 2.2: Show that the homeomorphism f of $\overline{\mathbb{C}}$ defined by setting

$$f(z) = az + b$$
 for $z \in \mathbb{C}$ and $f(\infty) = \infty$.

where $a, b \in \mathbb{C}$ and $a \neq 0$, takes Euclidean circles in \mathbb{C} to Euclidean circles in \mathbb{C} .