Homework 2

Due: Friday, October 10

October 9, 2008

1. The function $\xi: S^{1}-\{i\} \rightarrow \mathbb{R}$ given by $\xi(z)=\frac{\operatorname{Re}(z)}{1-\operatorname{Im}(z)}$ is referred to as steographic projection. Consider the four points $z_{k}=e^{\frac{\pi k}{4} i}, k=1,3,5,7$ of S^{1} that form the corners of a square in \mathbb{C}. Calculate their images under ξ.
2. Prove that the steographic projection function $\xi: S^{1}-\{i\} \rightarrow \mathbb{R}$ is onto.
3. Steographic projection can be generalized to the n-dimensional sphere

$$
S^{n}=\left\{\left(x_{1}, x_{2}, \ldots, x_{n+1}\right) \mid x_{1}^{2}+x_{2}^{2}+\cdots+x_{n+1}^{2}=1\right\}
$$

in \mathbb{R}^{n+1}. It is given by the function $\pi: S^{n}-N \rightarrow \mathbb{R}^{n}$ which is defined by the equation

$$
\pi\left(x_{1}, x_{2}, \ldots, x_{n+1}\right)=\frac{1}{1-x_{n+1}}\left(x_{1}, x_{2}, \ldots, x_{n}\right)
$$

where $N=(0,0, \ldots, 0,1)$ is the "north pole" of the sphere. Consider the 2 -sphere, S^{2}. Show that steographic projection sends the equator of S^{2} to the unit circle S^{1} in \mathbb{R}^{2}.
4. Exercise 1.8: Prove that \mathbb{H} is open in \mathbb{C}. For each point z of \mathbb{H}, calculate the maximum ϵ so that $B_{\epsilon}(z)$ is contained in \mathbb{H}.
5. Prove that $f: \mathbb{C} \rightarrow \mathbb{C}$ is continuous if and only if $f^{-1}(V)$ is open in \mathbb{C} for every open set V in \mathbb{C}. Note: This is a very useful characterization of continuity and is true for any continuous function for which the domain and range are metric spaces.
6. Exercise 1.18: Let p and q be two distinct points of $\overline{\mathbb{R}}$. Prove that p and q determine a unique hyperbolic line whose endpoints at infinity are p and q.
7. Exercise 2.2: Show that the homeomorphism f of $\overline{\mathbb{C}}$ defined by setting

$$
f(z)=a z+b \text { for } z \in \mathbb{C} \text { and } f(\infty)=\infty,
$$

where $a, b \in \mathbb{C}$ and $a \neq 0$, takes Euclidean circles in \mathbb{C} to Euclidean circles in \mathbb{C}.

