Homework 1

Due: Friday, October 3

October 1, 2008

1. Find the Cartesian form of these complex numbers:
(a) $(1+i)(1-i)$
(b) $(5+10 i)(-2+3 i)$
(c) $\frac{4+i}{1-2 i}$
2. Find the polar form of these complex numbers:
(a) $-1+i \sqrt{3}$
(b) $4 i$
(c) $5-i 5 \sqrt{3}$
3. Prove these properties of conjugate and modulus (z, w are complex numbers):
(a) $|k z|=|k||z|$ for $k \in \mathbb{R}$
(b) $|z|^{2}=z \bar{z}$
(c) $|w z|=|w||z|$
(d) $\overline{z w}=\bar{z} \bar{w}$
4. Show that the general complex linear function

$$
T z=a z+b
$$

where a and b are any complex numbers, is the composition of a rotation, followed by a dilation, followed by a translation.
5. The points $1,1+i, 1-i, 1+2 i$ all lie on a line. Plot them and their inversions. The inverted points lie on a circle. What is the equation of this circle?
6. Show that $(\mathbb{C}, \mathcal{E})$ is a geometry, where

$$
\mathcal{E}=\left\{T: \mathbb{C} \rightarrow \mathbb{C} \mid T z=e^{i \theta} z+b, 0 \leq \theta \leq 2 \pi, b \in \mathbb{C}\right\}
$$

7. Exercise 1.1 in book: Express the equations of the Euclidean line $a x+b y+c=0$ and the Euclidean circle $(x-h)^{2}+(y-k)^{2}=r^{2}$ in terms of the complex coordinate $z=x+i y$ in \mathbb{C}.
8. Exercise 1.2 in book: Let $S^{1}=\{z \in \mathbb{C}| | z \mid=1\}$ be the unit circle in \mathbb{C}. Let A be a Euclidean circle in \mathbb{C} with Euclidean center $r e^{i \theta}, r>1$, and Euclidean radius $s>0$. Show that A is perpendicular to S^{1} if and only if $s=\sqrt{r^{2}-1}$.
