ICCM 2007 - Vol. IT - 59-71

Stability of Einstein Metrics and Spin
Structures

Xianzhe Dai*

Abstract

We survey the recent work on the stability of Einstein metrics and related topics,
especially our joint work with Xiaodong Wang and Guofang Wei [12, 13]. Our work
shows that spinors and Dirac operators play an important role.
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1 Introduction

One of the most fruitful approaches to finding the “best” (or canonical) metric on
a manifold has been through the critical points of a natural geometric functional.
In this approach one is led to the study of variational problems and it is important
to understand the stability issue associated to the variational problem. Roughly
speaking stability means that the second variation has a definite sign. Stablhty
issue is also important in the study of geometric flows.

It is well known that the Einstein metrics are precisely the critical points
of the total scalar curvature functional (a.k.a. Hilbert-Einstein action in general
relativity)

S(g) = /M S(g)dvol(g)

on the space of Riemannian metrics with normalized volume on a closed manifold
M. Tt behaves in opposite ways along the conformal changes and transversal
directions. The variational problem in the conformal class of a metric is the
famous Yamabe problem, which was finally resolved by Schoen in the seminal work
[36], after Trudinger and Aubin’s work. Thus the question here is to study the
stability for the total scalar curvature functional when we restrict to the transversal
directions, that is, the changes of conformal structures.
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This has to do with the second variation of the total scalar curvature func-
tional restricted to the traceless transverse symmetric 2-tensors, which has the
Jacobi operator given by ° e '

Loh = V*Vh—2Rh,

where (Rh)ij = Rigjihi denotes the action of the curvature on symmetric 2-
tensors. It is eseentially the Lichnerowicz Laplacian [1] (exactly when the metric
g is Ricci flat; otherwise, they differ by a term involving the Ricel curvature). For
Ricci flat metrics, the stability problem is raised by Kazdan-Warner [22] about
thirty years ago:

Problem Are compact Ricci flat manifolds stable? In other words, if Ric(g) = 0,
is the Lichnerowicz Laplacian L, positive semi-definite?

This problem is referred as the “positive mass problem for Ricci flat man-
ifolds” in [7] (see also [12] for a conmection with the positive mass theorem in
[11]). There are positive results of Bourguignon and Koiso [1] in the case when the
sectional curvature is sufficiently pinched. However, not much else was known.

In [12], we solve this problem in the positive for a large class of Ricci flat
metrics, namely those which admit parallel spinors up to a cover. Manifolds with
parallel spinors are necessarily Ricci flat. Moreover, for simply connected irre-
ducible manifolds, the existence of parallel spinors is equivalent to special hon-
olomy; namely, Calabi-Yau, hyperKéhler, G2 and Spin{7). The problem in the
case of K3 surfaces is also solved in [17]. Our class of Ricci flat metrics encompass
all the known examples. However, it is still an open problem whether these are all
the Ricci flat metrics. '

Lichnerowicz Laplacian appears naturally in many geometric variational prob-
lems. In [7], Cao-Hamilton-Ilmanen studied the stability problem for Ricci solitons
and Ricci shrinking solitons using the functionals introduced by Perelman [35] and
showed that they are governed by the Lichnerowicz Laplacian. Thus, as an appli-
cation of our result, Cao-Hamilton-Ilmanen deduce that compact manifolds with
nonzero parallel spinors are also stable as Ricei soliton [7]. The application of our
result to Ricci flow is discussed in our work [13] based on (38].

The existence of parallel spinors forces the metric to be Ricci flat. In order to
deal with general Einstein metrics, in [13], we extended our approach using spin®
gtructures. We show that, if a compact Finstein manifold (M, g) with nonpositive
scalar curvature admits a nonzero parallel spin® spinor, then it is stable.

Since a Kihler manifold with its canonical spin® structure has nonzero parallel
spin® spinors, this implies any compact Kihler-Einstein manifold with non-positive
scalar curvature is stable. This also follows essentially from Koiso’s work [27], [1],
although it does not seem to have been noticed before.

Our approach of using spin® structure is new and gives more general result.
Moreover, by using interesting geometric variational problems, we give applica-
tions to Yamabe invariant and prove a surprising volume comparison for scalar
curvature. Let us also mention the well known result for compact Einstein man-
wEn T T T okt 1441 (11 Tn this cage the manifold
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is strictly stable in the sense that the operator £, is in fact positive definite. In
contrast, there are many Einstein manifolds with positive scalar curvature which
are unstable [26], [7] (see also [3]).

In the case of Kihler-Einstein manifold with Einstein constant.c we obtain
the following interesting Bochner type formula:

(D®(h), DO(h)) = (Lgh, b} + 2clhi, ha),

where hy denotes the Hermitian part of h. This shows that the eigenvalues of
the twisted Dirac operator D comes into play when dealing with Kéhler-Einstein
manifolds with positive scalar curvature.

2 Einstein metrics from variational problems

A Riemannian metric ¢ on M™ is called an Einstein metric if Ric = Ag for A some
constant.

If M™ is a compact Riemannian manifold, then (M™, g} is an Einstein metric
of volume 1 iff it’s a critical point of the total scalar curvature functional (Hilbert
action) S restricted to My ={ g | voly, =1 },

S: M—-R, Sg /deol

When (M™,g) is an Finstein metric of total volume 1, one can consider
the second variation of the total scalar curvature functional at g. Thus, for any
symmetric 2-tensor h on M, let g(t) for ¢t € (—e, ¢} be a smooth family of metrics
in My with g(0) = g and £g(t)|:=0 = h. Then [1]

j—;S(g(t))h:g = / (h, ——v Vh+Rh+> (Atrgh,)g
—(S/'n)(t?‘gh)g +8(0h)g + 87 4h),

Where the action of curvature tensor on the symmefric 2-tensors is given by

(Rh)m = Rijihii, § = d; denotes the divergence operator on the tensors and
&* its adjoint .

In the direction orthogonal to diffeomorphism and conformal changes, i.e.
when h € §,1(0) Ntr1(0), it simplifies considerably:

d? 1_. o 1
SO0 = [ (h=5VVhr By = =5 [ (hoh).

The infinitesimal Finstein deformations in M4 modulo diffeomorphism are
solutions of the system

S,h=0, trgh=0, Loh=V*Vh—2Rh=0.
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Definition: Let.g be an Einstein metric on M.
1). g is (infinitesimally) stable if
- (Loh h) >0 ' :

for any symmetric 2-tensor h € §;7(0) N tr;(0).
2). g is strictly stable if
(Lgh, h) >0

for any symmetric 2-tensor h € §;1(0) N tr; 1 (0).
3). g is strongly stable if there exists A > 0 such that

(Lohy ) 2 Allbil?
for any symmetric 9-tensor h € 5;‘1(0) N tr;l(O).

For compact manifolds, the last two notions are equivalent. In this paper
we restrict our attention to compact manifolds. Clearly, g is stable if the total
scalar curvature achieves a local maximum at g among the space of constant scalar
curvature metrics of volume 1.}

Early study concerns the strong /strict stability of Einstein metrics [1]. The
following is the result of [24].

Theorem 1 (Koiso). Let g be an Binstein metric on M™. Denote by Kmin and
Konas the minimum and the mazimum of its sectional curvature. If

. s S j s S
mln{(n_Z)Kmamw;I—, ;z——nKmm}<max L—n, 'Zn}’ (2.1)

then g is strongly stable.

It follows then that an Einstein metric with sufficiently pinched positive sec-
tional curvature, Kmin > %’%me, is strongly stable. (This is an unpublished
result of Bourguignon.) Also, an Einstein metric with negative sectional curvature
is strongly stable. Other examples of strongly stable Einstein metrics include all
compact irreducible symmetric spaces except Sp(n),n = 2, Sp(n) J/U(n),n 2 3,
and SU(2n)/Sp(n),

n > 3 [26]. In particular 5™, CP", HP™ are strongly stable.

An important consequence of strong stability is the local rigidity of such
Finstein metrics as the strong stability prevents infinitesimal Einstein deformation.
Hence by [24] they are not locally deformable.

For an Einstein metric to be stable, one allows infinitesimal Finstein defor-
mations. Thus, such Einstein metrics could be sitting in a moduli space of positive
dimension. Koiso’s result also gives us a class of stable Einstein metrics when one
replaces the strict inequality of (2.1) by the weak inequality (£). Tt is also inter-
esting to note that one of the examples above, SU(2n)/Sp(n) for n 2 3, although
not strongly stable, is actually stable [3].

1Some authors use this as the definition of stability, Cf. [26] also [3]-
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Let us mention several examples of unstable Einstein metrics: 1). product of
two Einstein metrics with positive Einstein constants; 2). Jensen spheres S4at3,
3). Kéhler-Einstein metrics with positive scalar curvature and dim H LMY =2

In particular CP?*#kCP?, 3 < k < 8; 4). many homogenous Einstein metrics ([4],

3)-

Einstein metrics are also critical points of

e the first eigenvalue of the conformal Laplacian A4 + P —2 Ty =S restrlcted to
M.

e Perelman invariant A(g), namely, the first eigenvalue of 44, + S, restricted
to Ml.

e the Yamabe functional Y {g) = Jua SodVs

Vol(g)* ™=
® K(Q) = IM ISg|n/2dVg-

Moreover, their second derivatives at an Einstein metric for h € 8,1 (0)Ntr; H(0) are
the same as the second derivative of the total scalar curvature (up to a constant).
Also, we note the functionals K and Y are scale invariant.

3 Parallel spinors and Bochner type formulas

In the work of [24], Bochner type formulas play a crucial role. One of such formulas
is obtained by viewing symmetric 2-tensors as 1-forms with values in the cotangent
bundle. In [12], we introduce spinors and Dirac operators into this circle of ideas
which enables us to deal with Ricci flat metrics.

Theorem 2. If a compact Riemannian manifold (M, g) has a cover which is spin
and admits nonzero parallel spinors, then g is stable.

If (M, g) has a cover which is spin and admits nonzero parallel spinors, then
g is necessarily Ricci flat. In [13], we generalize our results to manifolds with
nonzero parallel spin® spinor. The motivation here is to extend our method to
deal with nonzero scalar curvature and we found spin® to be a good framework to
work with.

Theorem 3. If a compact Einstein manifold (M, g) with nonpositive scalar cur-
vature admits a nonzero parallel spin® spinor, then it is stable.

For the spinors to be well defined, the manifold needs to have spin (or spin®)
structures. Recall a manifold M has a spin structure if the second Stiefel-Whitney
class wz{M) = 0. It has a spin® structure if wa(M) = ¢ mod 2 for some ¢ €
H?*(M,Z). Any manifold with an almost complex structure J has a (canonical)
spin® structure since we (M) = ¢1(J) mod 2.

Since Kihler manifold with its canonical spin® structure has a nonzero parallel
spin® spinor, we have

Corollary 4. A compact Kéhler-Einstein manifold with non-positive scalar cur-
vature is stable.



64 Xianzhe Dai

This also follows essentially from Koiso’s work on deformation of Kéahler-
Einstein metrics.

The key idea in [12, 13] is to construct a Dirac operator, suitably twisted,
whose square is the Lichnerowicz Laplacian plus some curvature terms. More
precisely, let (M, g) be a compact Riemannian manifold with a spin® structure.
Thus, we (M) = ¢, where ¢ € H?(M, Z) is the canonical class of the spin® structure.
Let 8¢ — M denote the spin® spinor bundle and L — M the complex line bundle
with ¢1(L) = ¢. Then

§¢=8eLY?

Here, on the right hand side, the spinor bundle & and the square root LY/?
may exist only locally. Since S has a natural connection induced by the Levi-Civita
connection on TM, a unitary connection V¥ on L gives rise to a connection Ve

on St Ve =V®l+1® Vvl The curvature of this connection is given by
1 1
Rxyo = ZR(X’Y’ €i,€i)eiej 0 — —Q-F(X, Yo,

for a spin® spinor ¢. Here F' is the curvature form of V.
If o is a parallel spin® spinor, i.e., og is a section of S° such that Voo =0
for all X, then Rxyo = 0. Hence we have

Ryiijeiej - op = 2E00.

This implies
Ruie; - 09 = Frrer - 0.

In the case when the spin® structure comes from a spin structure, the line
bundle L is trivial; consequently F' = 0. Thus Ric = 0 for manifolds with nonzero
parallel spinor.

Given oy a nonzero parallel spin® spinor (normalized to be of unit length),
we define a linear map ® : S?(M) — §°® T*M by

®(h) = hije; 00 ® el

This enables us to view a symmetric 2-tensors as a twisted spin® spinor.
The map ® satisfies the following properties:

L. Re (B(h), 2(h)) = (h. h),
2. V4 ®(h) = ®(Vxh).
Here Re denotes the real part. The following Bochner type formula is crucial.

Lemma 5. Let h be a symmetric 2-tensor on M. Then

D*DB(h) = B(V* Vh — 2Rh — ho F + Rico k).
Here (ho F)ij = hipFyj = —hipFyp and (Ricoh)y; = Riphjp-
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Once again, when the spin® structure comes from a spin structure, the formula
above becomes

D*D(h) = B(V*Vh — 2RA).

This formula was also found by M. Wang [43] in a different form.

By [33], a compact simply connected manifold with nonzero parallel spin®
spinor is the product of a Kihler manifold with a manifold with parallel spinor.
Moreover, the spin® structure is the product of the canonical spin® structure on
the Kihler manifold with the spin structure on the other factor.

For Kahler manifolds we have

Theorem 6. If (M, g) is a compact Kihler manifold with nonpositive Ricci cur-

vature, then Loh = V*Vh — 210%17, is positive semi-definite on S%2(M). That is,
(Lgh,h) = 0,

for any h € S*(M). Moreover, in the case of negative Ricci curvature, Lsh =10
iff D®(h) = 0 and h is skew-hermitian.

In general, the Licherowicz Laplacian is given by

Ay (h) = V*Vh— 2Rk + Rico h+ h o Ric.

For manifolds with nonnegative Ricci curvature, one can actually say something
about the Licherowicz Laplacian.

Theorem 7. If (M, g) is a compact Kihler manifold with nonnegative Ricci cur-
vature, then the Licherowicz Laplacian Ay is positive semi-definite on S2(M):

(Arh,h) 20,

for any h € S?(M). Moreover, in the case positive Ricci curvature, Aph =0 if
and only if D®(h) =0 and h is Hermitian.

In the case of Kihler-Einstein manifold with Einstein constant ¢ we have the
following interesting Bochner-Lichnerowics formula: *

(DB(R), DB(R)) = (V*Vh — 2Rh, h) + 2c(har, hr),

where hy denotes the Hermitian part of h.

We finish the section with the following question, which is an analog of
Kazdan-Warner’s question.

- Questions: Are all compact Einstein manifolds with nonpositive scalar cur-
vature stable?
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4 Applications to Yamabe invariant and volume

Recall that the Yamabe invariant is a conformal invariant of g given by p(g} =
inf Y'(g) with the infimum taking over the conformal class of g. By the solution to
Yamabe problem, the infimum is always achieved.

Theorem 8. Let (M,g) be a compact Einstein manifold with nonpositive scalar
curvature which admits o parallel spin® spinor. Suppose all infinitesimal Einstein
deformations of g are integrable. Then g is a local mazimum of the Yamabe in-
variant.

This property can be used to distinguish such Einstein metrics from the more
general ones; see the next section for some discussion.

In the case of when the spin® structure comes from a spin structure, the
integrability condition is automatic by the Bogomolov-Tian-Todorov theorem, 3],
[41], [42], see also [21].

For Kiahler-Finstein metrics, the integrability is equivalent to that of the
complex structure [27].

Theorem 9 (Koiso). Let (M, g, J) be a Kéhler-Einstein metric. If all infinstesimal
complez deformations of J are integrable and ¢i(J) <0, then the premoduli space
of Binstein metrics around g is smooth at g. Moreover, any metric g in it is Kahler
with respect to some complex structure J close to J.

From this result and the Kodaira-Spencer theory, one can find many exam-
ples of Kéhler-Einstein manifolds with negative scalar curvature which satisfy the
integrability condition, e.g., all hypersurfaces of degree d > m+2 in CP™ {m 2 3).
Remark In general these Kahler-Einstein metrics are not global maximum of
the Yamabe invariant since the manifolds could have metrics with § > 0 (e.g.
when dim = 6 mod 8 by using [39]). Moreover, by [34], the Yamabe constant of
compact simply connected manifold of dimension > 5 is nonnegative.

On the other hand, LeBrun [28] showed that Kahler-Einstein surfaces with
negative scalar curvature are global maximum of the Yamabe invariant.

In general, scalar curvature only give infinitesimal information on the volume
of geodesic balls. Using the functional K (g) introduced in §2 we have

Theorem 10. Let (M,go) be a compact Einstein manifold with Sg, < 0 which
admits a parallel spin® spinor. Suppose oll infinitesimal Einstein deformations
of go are integrable. Then there exists a neighborhood U of go such that for any
metric g € U with scalar curvature Sg 2 Sy,

>

Vol( M, g) Vol(M, go)

and equality holds iff g is also an Einstein metric which admits a parallel spin®
spinor and Sg = Sg,.

This class of metrics is essentially the same as that of Kihler-Einstein met-
rics. Besson-Courtois-Gallot [2] proved the same result for Einstein metrics with
negative sectional curvature. Note that if (M, go) is metric with negative constant
scalar curvature and satisfies the volume comparison above, then go is an Einstein

metric. \
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5 Positive scalar curvature and scalar flat metrics
on Calabi-Yau manifolds

In this section we discuss the implications of our stability result to metrics
with positive scalar curvature and scalar flat metrics on manifolds with special
holonomy, especially Calabi-Yau manifolds.

The stability result suggests that around the metric with parallel spinors the
total scalar curvature tends to be nonpositive. In fact, we have

Theorem 11. If (M, g) is a compact spin manifold which admits a nonzero parallel
spinor, then, there is no metrics of positive scalar curvature in a (scale invariant)
neighborhood of g in the space of Riemannian metrics.

This was conjectured by the physicists Hertog-Horowitz-Maeda [18]. Our
proof makes use of the variational problem for the first eigenvalue of the conformal
Laplacian A, + 4(n 1)S (g) whose second variation is also governed by Lg. Itis

interesting to compare with [35] where the first eigenvalue of Ay + $5(g) is used.
The existence of metrics with positive scalar curvature is a Well studied sub-
ject (see [40], [31], [19], [37], [16], {39]). A K3 surface does not admit any metric
of positive scalar curvature, but a simply connected Calabi-Yau 3-fold does [39].
However, these metrics of positive scalar curvature on a Calabi-Yau 3-fold should
not be too close to the Calabi-Yau metrics.
This result has the following interesting consequences.

Corollary 12. Any scalar flat deformation of a Calabi- Yau metric on a compact
manifold must be a Calabi-Yau deformation. In fact, any deformation with non-
negative scalar curvature of a Calabi-Yau metric on a compact manifold is neces-
sarily a Colabi-Yau deformation. The same is true for the other special holonomy
metrics, i.e., hyperkdhler, G, and Spin(7).

The following corollary is a special case of Theorem 8.

Corollary 13. Let (M, go) be a compact, simply connected Riemannian spin man-
ifold of dimension n with a parallel spinor. Then go is a local mazimum of the
Yamabe invariant.

Corollary 13 gives a geometric way of distinguishing Calabi-Yau (or other
special holonomy) metrics from the general Ricci flat or scalar flat metrics. For
example, we use it to show that there are scalar flat metrics on certain Calabi-Yau
(or Gi3) manifolds which are not Calabi-Yau (or G2) [12]. Here we need to use the
theorem of Stolz [39] on the existence of positive scalar curvature metrics and the
scalar fat metric is found along a path connecting a positive scalar metric to a
negative scalar curvature metric.

If one thinks the Kazdan-Warner’s problem as the infinitesimal stability, The-
orem 11 mentioned above is then a local stability. In this view, one is led to the
question of global stability for Calabi-Yau manifolds.

Question: Is there any scalar flat but not Ricci flat metric on a compact
Calabi-Yau manifold? In other words, must a scalar flat mefric on a compact
Calabi-Yau manifold Ricci flat?
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A closely related question is

Question: Are Ricci flat metrics necessarily Calabi-Yau on a compact Calabi-
Yau manifold?

We note that the deformation analogue of this question has a positive answer
by the work of [27], [5], [41], [42]. Morcover, in (real) dimension four, the answer
is positive by the work of Hitchin [20] on the rigidity case of Hitchin-Thorpe
inequality. However, one of these two questions will have a negative answer by our
result.

‘In another direction, Futaki [14] characterized scalar flat closed manifolds not
admitting positive scalar curvature metrics. Namely they are product of special
holonomy manifolds with nonzero o invariant. One can think of this result as
characterizing scalar flat metrics which achieve global maximal in Yamabe invari-
ant.

6 Stability of Ricci flow, Perelman invariant

There has been a lot of work recently concerning the stability of Ricci flow [17],
38], [10], see also [7]. The general question can be phrased as follows. If go is
a metric such that the (normalized) Ricci flow g(t) starting from go converges, is
it true that the {normalized) Ricci flow §(¢) starting from all metrics go that are
sufficiently close to go also converges? Using the method of Natasa Sesum [38] (see
also [9]), we obtain [13]

Theorem 14. Let (N, go,Jo) be a compact Kihler-Einstein manifold with non-
positive scalar curvature. Suppose all infinitesimal complez deformations of Jy are
integrable. Then the (normalized) Ricci flow starting from any Riemannian metric
sufficient close to go converges exponentially to o Kahler-Einstein metric.

The difference between this theorem and the well known result for Kéhler-
Ricci flow on Kihler-Einstein manifolds with nonpositive first Chern class [6] is
that the Ricci flow here starts with any metric nearby, rather than just the ones in
a given Kahler class. On the other hand, the result of [6] is a global result in the
sense that the initial metric is any metric in a given K&hler class. However, even
though we start with any nearby Riemmannian metric, the (normalized) Ricci flow
still converges to a Kéhler-Einstein metric.

In particular, we have

Corollary 15. The Calabi- Yau metrics and Go metrics are stable under the Ricci

flow.

We finally make Séme remarks about Perelman invariant. Recall that Perel-
man invariant, A(g), is the lowest eigenvalue of the operator 4A + 5.

The first variation formula for A(g) is given by [35] .

%lt=0'\(9(t)) = w/e_f(Ric+D2f7h);
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where e~f/2 is the eigenfunction of A(g) with f M e~Fdvol = 1. So f satisfies
—2Af + [DFI* + S = Ag).
Letting h = —2(Ric + D*f) one gets 35] .
Theorem 16 (Perelman). A(g(t)) is nondecreasing along any Ricci flow.

By restricting the variation to Mi, we deduce that g is a critical point of
A(g) iff g satisfies the equation

Ric+ D% f —

R+ Af
g=70.
e

In particular, Einstein metrics are critical points.
If g is Einstein, the second variation is [7)

2
Aol = [

1 o 1
(—=V*Vh + Rh,h) + |6h|* — =|Dup|* + i(m«h)zafvg,

where vy, satisfies Avp, = 6%h — —?‘z—'trh.
Since A(g) is diffeomorphism invariant, we can restrict the variation to h with
§h = 0. Then we deduce that

dQ
d?
if g is Kahler-Einstein with .S < 0.

AMg(t))le=0 < 0
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