A REMARK ON WEIGHTED BERGMAN KERNELS ON ORBIFOLDS

XIANZHE DAI, KEFENG LIU AND XIAONAN MA

ABSTRACT. In this note, we explain that Ross-Thomas' result [4, Theorem 1.7] on the weighted Bergman kernels on orbifolds can be directly deduced from our previous result [1]. This result plays an important role in the companion paper [5] to prove an orbifold version of Donaldson theorem.

In two very interesting papers [4, 5], Ross-Thomas describe a notion of ampleness for line bundles on Kähler orbifolds with cyclic quotient singularities which is related to embeddings in weighted projective spaces. They then apply [4, Theorem 1.7] to prove an orbifold version of Donaldson theorem [5]. Namely, the existence of an orbifold Kähler metric with constant scalar curvature implies certain stability condition for the orbifold. In these papers, the result [4, Theorem 1.7] on the asymptotic expansion of Bergman kernels plays a crucial role.

In this note, we explain how to directly derive Ross-Thomas' result [4, Theorem 1.7] from Dai-Liu-Ma [1, (5.25)], provided Ross-Thomas condition [4, (1.8)] on c_i holds. Since in [1, Section 5], we state our results for general symplectic orbifolds, in what follows, we will just use the version from [2, Theorem 5.4.11], where Ma-Marinescu wrote them in detail for Kähler orbifolds. We will use freely the notation in [2, Section 5.4]. We assume also the auxiliary vector bundle E therein is \mathbb{C} .

Let (X, J, ω) be a compact n-dimensional Kähler orbifold with complex structure J, and with singular set X_{sing} . Let (L, h^L) be a holomorphic Hermitian proper orbifold line bundle on X. Let ∇^L be the holomorphic Hermitian connections on (L, h^L) with curvature $R^L = (\nabla^L)^2$.

We assume that (L, h^L, ∇^L) is a prequantum line bundle, i.e.,

$$(0.1) R^L = -2\pi\sqrt{-1}\,\omega.$$

Let $g^{TX} = \omega(\cdot, J \cdot)$ be the Riemannian metric on X induced by ω . Let ∇^{TX} be the Levi–Civita connection on (X, g^{TX}) . We denote by $R^{TX} = (\nabla^{TX})^2$ the curvature, by r^X the scalar curvature of ∇^{TX} . For $x \in X$, set $d(x, X_{\text{sing}}) := \inf_{y \in X_{\text{sing}}} d(x, y)$ the distance from x to X_{sing} .

For $p \in \mathbb{N}$, the Bergman kernel $P_p(x, x')$ $(x, x' \in X)$ is the smooth kernel of the orthogonal projection from $\mathscr{C}^{\infty}(X, L^p)$ onto $H^0(X, L^p)$, with respect to the Riemannian volume form $dv_X(x')$.

Theorem 0.1 ([1, Theorem 1.4], [2, Theorem 5.4.10]). There exist smooth coefficients $\boldsymbol{b}_r(x) \in \mathscr{C}^{\infty}(X)$ which are polynomials in R^{TX} and its derivatives with order $\leq 2r-2$

Received by the editors August 23, 2011.

at x, and $C_0 > 0$ such that for any $k, l \in \mathbb{N}$, there exist $C_{k,l} > 0$, $M \in \mathbb{N}$ with

(0.2)
$$\left| \frac{1}{p^n} P_p(x, x) - \sum_{r=0}^k \boldsymbol{b}_r(x) p^{-r} \right|_{\mathscr{C}^l} \\ \leqslant C_{k,l} \left(p^{-k-1} + p^{l/2} (1 + \sqrt{p} d(x, X_{\text{sing}}))^M e^{-\sqrt{C_0 p} d(x, X_{\text{sing}})} \right),$$

for any $x \in X$, $p \in \mathbb{N}^*$. Moreover,

(0.3)
$$\boldsymbol{b}_0 = 1, \quad \boldsymbol{b}_1 = \frac{1}{8\pi} r^X.$$

In local coordinates, there is a more precise form [1, (5.25)], see also [2, Theorem 5.4.11]. Let $\{x_i\}_{i=1}^I \subset X_{\text{sing}}$. For each point x_i we consider corresponding local charts $(G_{x_i}, \widetilde{U}_{x_i}) \to U_{x_i}$ with $\widetilde{U}_{x_i} \subset \mathbb{C}^n$, such that $0 \in \widetilde{U}_{x_i}$ is the inverse image of $x_i \in U_{x_i}$, and 0 is a fixed point of the finite stabilizer group G_{x_i} at x_i , which acts \mathbb{C} -linearly and effectively on \mathbb{C}^n (cf. [2, Lemma 5.4.3]). We assume moreover that

$$B^{\widetilde{U}_{x_i}}(0,2\varepsilon) \subset \widetilde{U}_{x_i}$$
, and $X_{\text{sing}} \subset W := \bigcup_{i=1}^I B^{\widetilde{U}_{x_i}}(0,\frac{1}{4}\varepsilon)/G_{x_i}$.

Let $\widetilde{U}_{x_i}^g$ be the fixed point set of $g \in G_{x_i}$ in \widetilde{U}_{x_i} , and let $\widetilde{N}_{x_i,g}$ be the normal bundle of $\widetilde{U}_{x_i}^g$ in \widetilde{U}_{x_i} . For each $g \in G_{x_i}$, the exponential map $\widetilde{N}_{x_i,g,\widetilde{x}} \ni Y \to \exp^{\widetilde{U}_{x_i}}(Y)$ identifies a neighborhood of $\widetilde{U}_{x_i}^g$ with $\widetilde{W}_{x_i,g} = \{Y \in \widetilde{N}_{x_i,g}, |Y| \leqslant \varepsilon\}$. We identify $L|_{\widetilde{W}_{x_i,g}}$ with $L|_{\widetilde{U}_{x_i}^g}$ by using the parallel transport along the above exponential map. Then the g-action on $L|_{\widetilde{W}_{x_i,g}}$ is the multiplication by $e^{\sqrt{-1}\theta_g}$, and θ_g is locally constant on $\widetilde{U}_{x_i}^g$.

Let $\nabla^{\widetilde{N}_{x_i,g}}$ be the connection on $\widetilde{N}_{x_i,g}$ induced by the Levi–Civita connection via projection. We trivialize $\widetilde{N}_{x_i,g} \simeq \widetilde{U}^g_{x_i} \times \mathbb{C}^{n_g}$ by the parallel transport along the curve $[0,1] \ni t \to t\widetilde{Z}_{1,g}$ for $\widetilde{Z}_{1,g} \in \widetilde{U}^g_{x_i}$, which identifies also the metric on $\widetilde{N}_{x_i,g}$ with the canonical metric on \mathbb{C}^{n_g} . If $\widetilde{Z} \in \widetilde{W}_{x_i,g}$, we will write $\widetilde{Z} = (\widetilde{Z}_{1,g}, \widetilde{Z}_{2,g})$ with $\widetilde{Z}_{1,g} \in \widetilde{U}^g_{x_i}$, $\widetilde{Z}_{2,g} \in \mathbb{C}^{n_g}$. We will denote by Z the corresponding point on the orbifold.

Theorem 0.2 ([1, (5.25)], [2, Theorem 5.4.11]). On \widetilde{U}_{x_i} as above, there exist polynomials $\mathscr{K}_{r,\widetilde{Z}_{1,g}}(\widetilde{Z}_{2,g})$ in $\widetilde{Z}_{2,g}$ of degree $\leqslant 3r$, of the same parity as r, whose coefficients are polynomials in R^{TX} and its derivatives of order $\leqslant r-2$, and a constant $C_0 > 0$ such that for any $k, l \in \mathbb{N}$, there exist $C_{k,l} > 0$, $N \in \mathbb{N}$ such that

$$(0.4) \quad \left| \frac{1}{p^n} P_p(\widetilde{Z}, \widetilde{Z}) - \sum_{r=0}^k \boldsymbol{b}_r(\widetilde{Z}) p^{-r} \right| \\ - \sum_{r=0}^{2k} p^{-\frac{r}{2}} \sum_{1 \neq g \in G_{x_i}} e^{\sqrt{-1}\theta_g p} \mathscr{K}_{r, \widetilde{Z}_{1,g}}(\sqrt{p} \widetilde{Z}_{2,g}) e^{-2\pi p \langle (1-g^{-1}) \widetilde{z}_{2,g}, \overline{\widetilde{z}_{2,g}} \rangle} \right|_{\mathscr{C}^l} \\ \leqslant C_{k,l} \left(p^{-k-1} + p^{-k + \frac{l-1}{2}} \left(1 + \sqrt{p} d(Z, X_{\text{sing}}) \right)^N e^{-\sqrt{C_0 p} d(Z, X_{\text{sing}})} \right),$$

for any $|\widetilde{Z}| \leq \varepsilon/2$, $p \in \mathbb{N}$, with $\boldsymbol{b}_r(\widetilde{Z})$ as in Theorem 0.1 and $\mathscr{K}_{0,\widetilde{Z}_{1,g}} = 1$.

Given a function f(p, x) in $p \in \mathbb{N}$ and $x \in X$, we write $f = \mathcal{O}_{\mathscr{C}^j}(p^l)$ if the \mathscr{C}^j -norm of f is uniformly bounded by $C p^l$.

Theorem 0.3. Let (X, ω) be a compact n-dimensional Kähler orbifold with cyclic quotient singularities (i.e., the stabilizer group G_x is a cyclic group for any $x \in X$), and L be a proper orbifold line bundle on X equipped with a Hermitian metric h^L whose curvature form is $-2\pi\sqrt{-1}\omega$, such that for any $x \in X$, the stabilizer group G_x acts on $L_{\widetilde{x}}$ as $\mathbb{Z}_{|G_x|}$ -order cyclic group. Fix $N \geq 0$, and $r \geq 0$ and suppose c_i are a finite number of positive constants chosen so that if X has an orbifold point of order m then

(0.5)
$$\frac{1}{m} \sum_{i} i^k c_i = \sum_{i \equiv u \bmod m} i^k c_i, \quad \text{for all } u \text{ and all } k = 0, \dots, N + r.$$

Then the function

(0.6)
$$B_p^{\text{orb}}(x) := \sum_{i} c_i P_{p+i}(x, x)$$

admits a global \mathscr{C}^{2r} -expansion of order N. That is, there exist smooth functions b_0, \ldots, b_N on X such that

(0.7)
$$B_p^{\text{orb}} = \sum_{j=0}^N b_j p^{n-j} + \mathcal{O}_{\mathscr{C}^{2r}}(p^{n-N-1}).$$

Furthermore, b_j are universal polynomials in the constants c_i and the derivatives of ω ; in particular

(0.8)
$$b_0 = \sum_i c_i, \quad b_1 = \sum_i c_i \left(n \, i + \frac{1}{8\pi} r^X \right).$$

Remark 0.1. Theorem 0.3 recovers [4, Theorem 1.7] of Ross-Thomas, where the remainder estimate is $\mathcal{O}_{\mathscr{C}^r}(p^{n-N-1})$.

We improve here their remainder estimate to $\mathcal{O}_{\mathscr{C}^{2r}}(p^{n-N-1})$ and we get Theorem 0.3 directly from Theorems 0.1 and 0.2.

Remark 0.2. By Ma–Marinescu [3, (3.30), Remark 3.10], [2, Theorem 4.1.3, Remark 5.4.12], Theorem 0.3 generalizes to any *J*-invariant metric g^{TX} on TX. Set $\Theta := g^{TX}(J,\cdot)$. The only change is that the coefficients in the expansion become

$$(0.9) b_0 = \frac{\omega^n}{\Theta^n} \sum_i c_i, \ b_1 = \frac{\omega^n}{\Theta^n} \sum_i c_i \left[n \, i + \frac{r_\omega^X}{8\pi} - \frac{1}{4\pi} \Delta_\omega \log\left(\frac{\omega^n}{\Theta^n}\right) \right],$$

where r_{ω}^{X} , Δ_{ω} are the scalar curvature and the Bochner Laplacian associated to $g_{\omega}^{TX} = \omega(\cdot, J \cdot)$. Moreover, (0.7) can be taken to be uniform as (h^{L}, g^{TX}) runs over a compact set.

Proof of Theorem 0.3. Recall that now G is a cyclic group of order m. Let ζ be a generator of G. From the local condition for orbi-ample line bundles, ζ acts on L_{x_i} as

a primitive mth root of unity λ . Thus in (0.4), $e^{\sqrt{-1}\theta_{\zeta^u}} = \lambda^u$. For $u \in \{1, \ldots, m-1\}$, set

$$(0.10) \eta_u = e^{-2\pi\langle(1-\zeta^{-u})\tilde{z}_{2,\zeta^u},\tilde{\tilde{z}}_{2,\zeta^u}\rangle},$$

$$S_u(\tilde{Z}) = \sum_i c_i \sum_{j=0}^{2N+2r+1} (p+i)^{n-\frac{j}{2}} \mathcal{K}_{j,\tilde{Z}_{1,\zeta^u}}(\sqrt{p+i}\tilde{Z}_{2,\zeta^u})\lambda^{u(p+i)}\eta_u^{p+i},$$

$$S_2 = \sum_{u=1}^{m-1} S_u, S_1 = \sum_i c_i \sum_{i=0}^{N+r} \boldsymbol{b}_j(\tilde{Z})(p+i)^{n-j}.$$

Here $Z = z + \overline{z}$, and $z = \sum_{i} z_{i} \frac{\partial}{\partial z_{i}}$, $\overline{z} = \sum_{i} \overline{z}_{i} \frac{\partial}{\partial \overline{z}_{i}}$ when we consider them as vector fields, and $\left| \frac{\partial}{\partial z_{i}} \right|^{2} = \left| \frac{\partial}{\partial \overline{z}_{i}} \right|^{2} = \frac{1}{2}$. Similarly for \widetilde{Z} (and those with subscripts).

Applying (0.4) for k = N + r + 1 we obtain for $|\widetilde{Z}| \leq \varepsilon/2$,

$$(0.11) \quad |B_{p}^{\mathrm{orb}}(\widetilde{Z}) - \mathcal{S}_{1} - \mathcal{S}_{2}|_{\mathscr{C}^{l'}}$$

$$\leq C_{l'} p^{n-N-r-2} (1 + p^{\frac{l'+1}{2}} (1 + \sqrt{p}d(Z, X_{\mathrm{sing}}))^{M} e^{-\sqrt{C_{0} p} d(Z, X_{\mathrm{sing}})})$$

$$+ \sum_{i} c_{i} (p+i)^{n-N-r-1}$$

$$\times \left(\sum_{u=1}^{m-1} \left| \mathscr{K}_{2N+2r+2, \widetilde{Z}_{1,\zeta^{u}}} (\sqrt{p+i} \widetilde{Z}_{2,\zeta^{u}}) \eta_{u}^{p+i} \right|_{\mathscr{C}^{l'}} + \left| \boldsymbol{b}_{N+r+1}(\widetilde{Z}) \right|_{\mathscr{C}^{l'}} \right).$$

In what follows, we write for simplicity $\widetilde{Z}_{1,\zeta^u}$ as $Z_{1,u}$ and $\widetilde{Z}_{2,\zeta^u}$ as $Z_{2,u}$. For a function f(p,Z) with $p \in \mathbb{N}$ and $|Z| \leq \varepsilon/2$ we write $f = \mathcal{O}_{\mathscr{C}^j}(g(p,Z))$ if the \mathscr{C}^j -norm of f in Z can be uniformly controlled by C|g(p,Z)|.

Note that $\mathscr{K}_{j,Z_{1,u}}(Z_{2,u})$ is a polynomial in $Z_{2,u}$ with the same parity as j and $\deg \mathscr{K}_{j,Z_{1,u}} \leq 3j$. Denote by $\mathscr{K}_{j,Z_{1,u},l}$ the l-homogeneous part of $\mathscr{K}_{j,Z_{1,u}}$. Then $\mathscr{K}_{j,Z_{1,u},l} = 0$ if l and j are not in the same parity or l > 3j. By (0.10),

$$(0.12) S_{u}(Z) = \sum_{i} c_{i} \sum_{j=0}^{2N+2r+1} \sum_{l} (p+i)^{n-\frac{j-l}{2}} \mathscr{K}_{j,Z_{1,u},l}(Z_{2,u}) \lambda^{u(p+i)} \eta_{u}^{p+i}$$

$$= \lambda^{up} \sum_{j=0}^{2N+2r+1} \left\{ \left(\sum_{l \geq j-2n} \sum_{q=0}^{n-\frac{j-l}{2}} + \sum_{l < j-2n} \sum_{q=0}^{N+r} \right) \mathscr{K}_{j,Z_{1,u},l}(\sqrt{p} Z_{2,u}) \right\}$$

$$\times p^{n-\frac{j}{2}-q} \binom{n-\frac{j-l}{2}}{q} \sum_{i} c_{i} i^{q} \lambda^{ui} \eta_{u}^{p+i} + \mathcal{O}_{\mathscr{C}^{2r}}(p^{n-N-1}).$$

Here we used $(p+i)^{\gamma} = \sum_{q=0}^{N+r} p^{\gamma-q} {\gamma \choose q} i^q + \mathcal{O}(p^{\gamma-N-r-1})$ for $\gamma < 0$ and the following relations for $r', r'' \in \mathbb{N}, r'' \leq l$,

(0.13)
$$\mathcal{K}_{j,Z_{1,u},l}(\sqrt{p}Z_{2,u})\eta_u^p = \mathcal{O}_{\mathscr{C}^{r'}}(p^{\frac{r'}{2}}\eta_u^{p/2}),$$

$$\mathcal{K}_{j,Z_{1,u},l}(\sqrt{p}Z_{2,u}) = \mathcal{O}_{\mathscr{C}^{r''}}(p^{\frac{1}{2}}|Z_{2,u}|^{l-r''}).$$

In order to prove (0.7) it is sufficient to show that for $0 \le l \le N + r$, $r' \le 2r$,

(0.14)
$$w_{l,p} := \sum_{i} c_i i^l \lambda^{ui} \eta_u^{p+i} = \mathcal{O}_{\mathscr{C}^{r'}}(p^{l-N-r-1+\frac{r'}{2}} \eta_u^{p/2}).$$

In fact, we will prove that $w_{l,p} = \mathcal{O}_{\mathscr{C}^{r'}}(p^{l-N-r-1+\frac{r'}{2}}\eta_u^{(\frac{3}{4}-\frac{r'}{8r})p})$ for $r' \leq 2r$.

Since $dw_{l,p} = \frac{d\eta_u}{\eta_u}(pw_{l,p} + w_{l+1,p})$, and $\frac{d\eta_u}{\eta_u}$ has a term $z_{2,u}$ or $\overline{z}_{2,u}$ which can be absorbed by $\eta_u^{\frac{1}{8r}p}$ to get a factor $p^{-1/2}$, we see by induction that it is sufficient to prove $w_{l,p} = \mathcal{O}_{\mathscr{C}^0}(p^{l-N-r-1}\eta_u^{\frac{3}{4}p})$. To this end, write

(0.15)
$$w_{l,p} = \left[\frac{\sum_{i} c_{i} i^{l} \lambda^{ui} \eta_{u}^{i}}{(\eta_{u} - 1)^{N+r-l+1}} \right] (\eta_{u} - 1)^{N+r-l+1} \eta_{u}^{p}.$$

Since λ is a primitive mth root of unity, $\lambda^u \neq 1$ if $u \in \{1, \ldots, m-1\}$. From [4, Lemma 3.5], under the condition (0.5), the function $\eta \to \sum_i c_i i^l \lambda^{ui} \eta^i$ has a root of order N+r-l+1 at $\eta=1$ and so the term in square brackets is bounded.

For $|z_{2,u}| \leq \varepsilon$, we have by (0.10),

By using (0.10) and (0.16) and the fact that $[0, \infty) \ni x \mapsto x^s e^{-x}$ is bounded for any $s \ge 0$, we get

(0.17)
$$(\eta_u - 1)^s \eta_u^{p/4} = \mathcal{O}(p^{-s}), \quad \text{for } s \ge 1.$$

Thus, $w_{l,p} = \mathcal{O}_{\mathscr{C}^0}(p^{l-N-r-1}\eta_u^{\frac{3}{4}p})$ and (0.14) follows.

Back in (0.12), for q > N + r, the corresponding contribution is certainly $p^{n-\frac{j}{2}-q} \cdot \mathcal{O}_{\mathscr{C}^{2r}}(p^r\eta_u^{p/2}) = \mathcal{O}_{\mathscr{C}^{2r}}(p^{n-N-1}\eta_u^{p/2})$, by (0.13). On the other hand, if $0 \le q \le N + r$, then, by (0.13) and (0.14), the corresponding contribution is $p^{n-\frac{j}{2}-q}\mathcal{O}_{\mathscr{C}^{2r}}(p^{q-N-r-1+r}(1+\sqrt{p}|Z_{2,u}|)^{6N+6r+3}\eta_u^{p/2}) = \mathcal{O}_{\mathscr{C}^{2r}}(p^{n-N-1}\eta_u^{p/4})$ again. Thus $S_u = \mathcal{O}_{\mathscr{C}^{2r}}(p^{n-N-1})$. From (0.10) and the above argument, $S_2 = \mathcal{O}_{\mathscr{C}^{2r}}(p^{n-N-1})$. Combining with (0.10),

References

- [1] X. Dai, K. Liu and X. Ma, On the asymptotic expansion of Bergman Kernel, J. Differential Geom. 72 (2006), 1–41.
- [2] X. Ma and G. Marinescu, Holomorphic Morse inequalities and Bergman kernels, progress in mathematics, 254, Birkhäuser Boston Inc., Boston, MA, 2007, 422 pp.
- [3] X. Ma and G. Marinescu, Generalized Bergman kernels on symplectic manifolds, Adv. Math. 217(4) (2008), 1756–1815.
- [4] J. Ross and R. Thomas, Weighted Bergman kernels on Orbifolds, J. Differential Geom. 88 (2011), 87–108.
- [5] J. Ross and R. Thomas, Weighted projective embeddings, stability of orbifolds, and constant scalar curvature Kähler metrics, J. Differential Geom. 88 (2011), 109–160.

DEPARTMENT OF MATHEMATICS, UCSB, CA 93106, USA E-mail address: dai@math.ucsb.edu

Center of Mathematical Science, Zhejiang University and Department of Mathematics, UCLA, CA 90095-1555, USA

 $E ext{-}mail\ address: liu@math.ucla.edu}$

Université Paris Diderot - Paris 7, UFR de Mathématiques, Case 7012, Site Chevaleret, 75205 Paris Cedex 13, France

 $E\text{-}mail\ address{:}\ \mathtt{ma@math.jussieu.fr}$