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This paper consists of two parts. In the first part, we give an introduction to L2 cohomology.
This is partly based on [8]. We focus on the analytic aspect of the L2 cohomology theory. For the
topological story, we refer to [1, 22, 31] and of course the original papers [16, 17]. For the history
and comprehensive literature, see [29]. The second part is based on our joint work with Jeff Cheeger
[11] which gives the contribution to the L2 signature from non-isolated conical singularity.

It is a pleasure to thank Eugenie Hunsicker for numerous comments and suggestions.

1 L2 Cohomology—What and Why

1.1 What is L2 cohomology?

The de Rham theorem provides one of the most useful connections between the topological and
differential structure of a manifold. The differential structure enters the de Rham complex, which
is the cochain complex of smooth exterior differential forms on a manifold M, with the exterior
derivative as differential:

0→ Ω0(M) d→ Ω1(M) d→ Ω2(M) d→ Ω3(M)→ · · ·

The de Rham Theorem says that the de Rham cohomology, the cohomology of the de Rham
complex, Hk

dR(M) def= ker dk/Im dk−1, is isomorphic to the singular cohomology:

Hk
dR(M) ∼= Hk(M ; R).

The situation can be further rigidified by introducing geometry into the picture. Let g be a
Riemannian metric on M . Then g induces an L2-metric on Ωk(M). As usual, let δ denote the
formal adjoint of d. In terms of a choice of local orientation for M , we have δ = ± ∗ d∗, where ∗ is
the Hodge star operator. Define the Hodge Laplacian to be

∆ = dδ + δd.

A differential form ω is harmonic if ∆ω = 0.
The great theorem of Hodge then states that, for a closed Riemannian manifold M , every de

Rham cohomology class is represented by a unique harmonic form. This theorem provides a direct
bridge between topology and analysis of manifolds through geometry, and has had many remarkable
applications.

Naturally then, one would like to extend the theory to noncompact manifolds and manifolds
with singularity. The de Rham cohomology is still defined (one would restrict to the smooth open
submanifold of a manifold with singularity). However, it does not capture the information at infinity
or at the singularity.
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One way of remedying this is to restrict to a subcomplex of the usual de Rham complex, namely
that of the square integrable differential forms—this leads us to the L2 cohomology.

More precisely, let (Y, g) denote an open (possibly incomplete) Riemannian manifold, Ωi = Ωi(Y )
the space of C∞ i-forms on Y and L2 = L2(Y ) the L2 completion of Ωi with respect to the L2-metric.
Define d to be the exterior differential with the domain

dom d = {α ∈ Ωi(Y ) ∩ L2(Y ); dα ∈ L2(Y )}.

Put
Ωi(2)(Y ) = Ωi(Y ) ∩ L2(Y ).

Then, one has cochain complex

0→ Ω0
(2)(Y ) d→ Ω1

(2)(Y ) d→ Ω2
(2)(Y ) d→ Ω3

(2)(Y )→ · · · .

The L2-cohomology of Y is defined by to be the cohomology of this cochain complex:

Hi
(2)(Y ) = ker di/Im di−1 .

Thus defined, the L2 cohomology is in general no longer a topological invariant. However, the L2

cohomology depends only on the quasi-isometry class of the metric.

Examples

• The real line: For the real line R with the standard metric, one has

Hi
(2)(R) =

{
0, i = 0
∞ dimensional!, i = 1.

For the first part, this is because constant functions can never be L2, unless they are zero. For
the second part, a 1-form φ(x) dx, with φ(x) having compact support, is obviously closed and
L2, but can never be the exterior derivative of an L2 function, unless the total integral of φ is
zero.

• Finite cone: Let C(N) = C[0,1](N) = (0, 1) × N , N a closed manifold of dimension n, with
the conical metric g = dr2 + r2gN . Then a result of Cheeger [8] gives:

Hi
(2)(C(N)) =

{
Hi(N) if i < (n+ 1)/2,
0 if i ≥ (n+ 1)/2.

Intuitively this can be explained by the fact that some of the differential forms that define
classes for the cylinder N × (0, 1) cannot be L2 on the cone if their degrees are too big. More
specifically, let ω be an i-form on N and extend it trivially to C(N), i.e., constant along the
radial directions. Then ∫

C(N)

|ω|2gd volg =
∫ 1

0

∫
N

|ω|gN
rn−2idx dr.

Thus, the integral is infinite if i ≥ (n+ 1)/2.

As we mentioned, the L2 cohomology is in general no longer a topological invariant. Now clearly,
there is a natural map

Hi
(2)(Y ) −→ Hi(Y,R)
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via the usual de Rham cohomology. However, this map is generally neither injective nor surjective.
On the other hand, in the case when (Y, g) is a compact Riemannian manifold with corner (for a
precise definition see the article by Gilles Carron in this volume), the map above is an isomorphism
because the L2 condition is automatically satisfied for any smooth forms.

Also, another natural map is from the compact supported cohomolgy to the L2 cohomology:

Hi
c(Y ) −→ Hi

(2)(Y ).

As above, this map is also neither injective nor surjective in general.
Instead, the L2 cohomology of singular spaces is intimately related to the intersection cohomology

of Goresky-MacPherson ( [16, 17], see also Greg Friedman’s article in this volume for the intersection
cohomology). This connection was pointed out by Dennis Sullivan who observed that Cheeger’s
local computation of L2 cohomology for isolated conical singularity agrees with that of Goresky-
MacPherson for the middle intersection homology. In [8], Cheeger established the isomorphism of
the two cohomology theories for admissible pseudomanifolds. One of the fundamental questions has
been the topological interpretation of the L2 cohomology in terms of the intersection cohomology of
Goresky-MacPherson.

1.2 Reduced L2 Cohomology and L2 Harmonic Forms

In analysis, one usually works with complete spaces. That means, in our case, the full L2 space
instead of just smooth forms which are L2. Now the coboundary operator d has well defined strong
closure d̄ in L2: α ∈ dom d̄ and d̄α = η if there is a sequence αj ∈ dom d such that αj → α and
dαj → η in L2. Similarly, δ has the strong closure δ̄.

One can also define the L2-cohomology using the strong closure d̄. Thus, define

Hi
(2),#(Y ) = ker d̄i/Im d̄i−1 .

Then, the natural map,
ι(2) : Hi

(2)(Y ) −→ Hi
(2),#(Y ) ,

turns out to be always an isomorphism [8].
This is good, but does not produce any new information .......yet! The crucial observation is that,

in general, the image of d̄ need not be closed. This leads to the notion of reduced L2-cohomology,
which is defined by quotienting out by the closure instead:

H̄i
(2)(Y ) = ker d̄i/Im d̄i−1 .

The reduced L2-cohomology is generally not a cohomology theory but it is intimately related to
the Hodge theory as we will see.

Now we define the space of L2-harmonic i-forms Hi
(2)(Y ) to be the space

Hi
(2)(Y ) = {θ ∈ Ωi ∩ L2; dθ = δθ = 0}.

We remark that some authors define the L2-harmonic forms differently (cf. [31]). The definitions
coincide when the manifold is complete. The advantage of our definition is that, when Y is oriented,
the Hodge star operator induces

∗ : Hi
(2)(Y )→ Hn−i

(2) (Y ),

which is naturally the Poincaré duality isomorphism.
Now the big question is,“do we still have a Hodge theorem?”.
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1.3 Kodaira decomposition, L2 Stokes and Hodge Theorems

To answer the question, let’s look at the natural map, the Hodge map

Hi
(2)(Y ) −→ Hi

(2)(Y ) .

Then the question becomes when this map is an isomorphism. Following Cheeger [8], when the
Hodge map is an isomorphism, we will say that the Strong Hodge Theorem holds.

The most basic result in this direction is the Kodaira decomposition [23] (see also [14]),

L2 = Hi
(2) ⊕ dΛi−1

0 ⊕ δΛi+1
0 ,

an orthogonal decomposition which leaves invariant the subspaces of smooth forms. Here subscript
“0” denotes having compact support. This result is essentially the elliptic regularity.

It follows from the Kodaira decomposition that

ker d̄i = Hi
(2) ⊕ dΛi−1

0 .

Therefore the question is reduced to what the space Im d̄i−1 is in the decomposition. We divide the
discussion into two parts: surjectivity and injectivity.

Surjectivity: If Im d̄ is closed, then Im d̄ ⊃ dΛi−1
0 . Hence, the Hodge map is surjective in this

case.
In particular, this holds if the L2-cohomology is finite dimensional.
Injectivity: The issue of injectivity of the Hodge map has to do with the L2 Stokes theorem.

We say that Stokes’ theorem holds for Y in the L2 sense, if

〈d̄α, β〉 = 〈α, δ̄β〉

for all α ∈ dom d̄, β ∈ dom δ̄; or equivalently, one has

〈dα, β〉 = 〈α, δβ〉

α ∈ dom d, β ∈ dom δ.
If the L2 Stokes theorem holds, then one has

Hi
(2)(Y ) ⊥ Im d̄i−1,

and consequently, the Hodge map is injective in this case. Moreover,

Hi
(2)(Y ) = Hi

(2)(Y )⊕ Im d̄i−1/Im d̄i−1.

Here, by the closed graph theorem, the last summand is either 0 or infinite dimensional. Note also,
since it follows that

Hi
(2)(Y ) ⊥ Im d̄i−1 ,

one has,
H̄i

(2)(Y ) ∼= Hi
(2)(Y ).

That is, when the L2 Stokes theorem holds, the reduced L2 cohomology is simply the space of L2

harmonic forms.
Summarizing the discussion above, if the L2-cohomology of Y is finite dimensional and Stokes’

Theorem holds on Y in the L2-sense, then the Hodge theorem holds in this case, and L2-cohomology
of Y is isomorphic to the space of L2-harmonic forms. Therefore, when Y is orientable, Poincáre
duality holds as well. Consequently, the L2 signature of Y is well-defined in this case.
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Regarding the L2 Stokes theorem, there are several now classical results. By Gaffney [15], L2

Stokes theorem holds for complete Riemannian manifolds. On the other hand, for manifolds with
conical singularity M = M0∪C(N), the general result of Cheeger [9] says that the L2 Stokes theorem
holds provided that L2 Stokes holds for N and in addition the middle dimensional (L2) cohomology
group of N vanishes if dimN is even. In particular, if N is a closed manifold of odd dimension, or
HdimN/2(N) = 0 if dimN is even, the L2 Stokes theorem holds for M .

Remark: There are various extensions of L2 cohomology, for example, to cohomology with
coefficients or the Dolbeault cohomology for complex manifolds.

2 L2 Signature of Non-isolated Conical Singularity

2.1 Non-isolated Conical Singularity

We now consider manifolds with non-isolated conical singularity whose strata are smooth manifolds
themselves. In other words, singularities are of the following type:
a). Singular stratum consists of disjoint unions of smooth submanifolds.
b). Singularity structure along the normal directions is conical.

More precisely, a neighborhood of a singular stratum of positive dimension can be described as
follows. Let

Zn →Mm π→ Bl (1)

be a fibration of closed oriented smooth manifolds. Denote by CπM the mapping cylinder of the
map π : M → B. This is obtained from the given fibration by attaching a cone to each of the fibres.
Indeed, we have

C[0,1](Z)→ CπM → B .

The space CπM also comes with a natural quasi-isometry class of metrics. A metric can be
obtained by choosing a submersion metric on M :

gM = π∗gB + gZ .

Then, on the nonsingular part of CπM , we take the metric,

g1 = dr2 + π∗gB + r2gZ . (2)

The general class of spaces with non-isolated conical singularities as above can be described as
follows. A space X in the class will be of the form

X = X0 ∪X1 ∪ · · · ∪Xk,

where X0 is a compact smooth manifold with boundary, and each Xi (for i = 1, . . . , k) is the
associated mapping cylinder, Cπi

Mi, for some fibration, (Mi, πi), as above.
More generally, one can consider the iterated construction where we allow manifolds in our initial

fibration to have singularities of the type considered above. However we will restrict ourselves to
the simplest situation where the initial fibrations are all modeled on smooth manifolds.

Remark: An n-dimensional stratified pseudomanifold X is a topological space together with a
filtration by closed subspaces

X = Xn = Xn−1 ⊃ Xn−2 ⊃ · · · ⊃ X1 ⊃ X0

such that for each point p ∈ Xi−Xi−1 there is a distinguished neighborhood U in X which is filtered
homeomorphic to C(L) × Bi for a compact stratified pseudomanifold L of dimension n − i − 1.
Xi − Xi−1 is an i-dimensional manifold called the i-dimensional stratum. A conical metric on X
is a Riemannian metric on the regular set of X such that on each distinguished neighborhood it is
quasi-isometric to a metric of the type (2) with B = Bi, Z = L and gB the standard metric on Bi,
gZ a conical metric on L. Such conical metrics always exist on a stratified pseudomanifold.

5



2.2 L2 Signature of Generalized Thom Spaces

A generalized Thom space T is obtained by coning off the boundary of the space CπM .
Namely,

T = CπM ∪M C(M)

is a compact stratified pseudomanifold with two singular strata, B and a single point (unless B is a
sphere).

Example Let ξ π→ B be a vector bundle of rank k. Then we have the associated sphere bundle:

Sk−1 → S(ξ) π→ B.

The generalized Thom space constructed out of this fibration coincides with the usual Thom space
equipped with a natural metric.

Now consider the generalized Thom space constructed from an oriented fibration (1) of closed
manifolds, i.e., both the base B and fiber Z are closed oriented manifolds and so is the total space
M . Then T will be a compact oriented stratified pseudomanifold with two singular strata. Since we
are interested in the L2 signature, we assume that the dimension of M is odd (so dimT is even).
In addition, we assume the Witt conditions; namely, either the dimension of the fibers is odd or
its middle dimensional cohomology vanishes. Under the Witt cnditions, the strong Hodge theorem
holds for T . Hence the L2 signature of T is well defined.

Question: What is the L2 signature of T?
Let’s go back to the case of the usual Thom space.
Example (continued) In this case,

sign(2)(T ) = −sign(D(ξ)),

the signature of the disk bundle D(ξ) (as a manifold with boundary).
Let Φ denote the Thom class and χ the Euler class. Then the Thom isomorphism gives the

commutative diagram

H∗+k(D(ξ), S(ξ)) ⊗ H∗+k(D(ξ), S(ξ)) → R

↑ π∗(·) ∪ Φ ↑ π∗(·) ∪ Φ

H∗(B) ⊗ H∗(B) → R

φ ψ → [φ ∪ ψ ∪ χ][B] .

Thus, sign(2)(T ) is the signature of this bilinear form on H∗(B).

We now introduce the topological invariant which gives the L2-signature for a generalized Thom
space. In [13], in studying adiabatic limits of eta invariants, the second author introduced a global
topological invariant associated with a fibration. (For adiabatic limits of eta invariants, see also
[32, 5, 10, 3].) Let (Er, dr) be the Er-term with differential, dr, of the Leray spectral sequence of
the fibration (1) in the construction of the generalized Thom space T . Define a pairing

Er ⊗ Er → R
φ⊗ ψ 7→ 〈φ · drψ, ξr〉,

where ξr is a basis for Emr naturally constructed from the orientation. In case m = 4k − 1, when

restricted to E
m−1

2
r , this pairing becomes symmetric. We define τr to be the signature of this

symmetric pairing and put
τ =

∑
r≥2

τr .
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When the fibration is a sphere bundle with the typical fiber a (k − 1)-dimensional sphere, then
the spectral sequence satisfies E2 = · · · = Ek, Ek+1 = E∞ with d2 = · · · = dk−1 = 0, dk(ψ) = ψ∪χ.
Hence τ coincides with the signature of the bilinear form from the Thom isomorphism theorem. The
main result of [11] is the following

Theorem 1 (Cheeger-Dai) Assume that the fibre Z is either odd dimensional or its middle di-
mensional cohomology vanishes. Then the L2-signature of the generalized Thom space T is equal to
−τ :

sign(2)(T ) = −τ.

In spirit, our proof of the theorem follows the example of the sphere bundle of a vector bundle.
Thus, we first establish an analog of Thom’s isomorphism theorem in the context of generalized
Thom spaces. In part, this consists of identifying the L2-cohomology of T in terms of the spectral
sequence of the original fibration; see [11] for complete details.

Corollary 2 For a compact oriented space X with non-isolated conical singularity satisfying the
Witt conditions, the L2-signature is given by

sign(2)(X) = sign(X0) +
k∑
i=1

τ(Xi) .

The study of the L2-cohomology of the type of spaces with conical singularities discussed here
turns out to be related to work on the L2-cohomology of noncompact hyper-kähler manifolds which is
motivated by Sen’s conjecture; see e.g [19], [18] . Hyper-kähler manifolds often arise as moduli spaces
of (gravitational) instantons and monopoles, and so-called S-duality predicts the dimension of the
L2-cohomology of these moduli spaces (Sen’s conjecture). Many of these spaces can be compactified
to given a space with non-isolated conical singularities. In such cases, our results can be applied.
We would also like to refer the reader to the work of Hausel-Hunsicker-Mazzeo, [18], which studies
the L2-cohomology and L2-harmonic forms of noncompact spaces with fibered geometric ends and
their relation to the intersection cohomology of the compactification. Various applications related
to Sen’s conjecture are also considered there.

Combining the index theorem of [4] with our topological computation of the L2-signature of T ,
we recover the following adiabatic limit formula of [13]; see also [32, 5, 9, 3].

Corollary 3 Assume that the fibre Z is odd dimensional. Then we have the following adiabatic
limit formula for the eta invariant of the signature operator.

lim
ε→0

η(AM,ε) =
∫
B

L(
RB

2π
) ∧ η̃ + τ.

In the general case i.e. with no the dimension restriction on the fibre, the L2-signature for
generalized Thom spaces is discussed in [21]. In particular, Theorem 1 is proved for the general
case in [21]. However, one of ingredients there is the adiabatic limit formula of [13], rather than
the direct topological approach taken here. One of our original motivations was to give a simple
topological proof of the adiabatic limit formula. In [20], the methods and techniques in [11] are used
in the more general situation to derive a very interesting topological interpretation for the invariant
τr. On the other hand, in [7], our result on the generalized Thom space, together with the result in
[13], is used to derive the signature formula for manifolds with non-isolated conical singularity.
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