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1. Introduction

The η-invariant is introduced by Atiyah–Patodi–Singer in their seminal series of pa-
pers [1–3] as the correction term from the boundary for the index formula on a manifold 
with boundary. It is a spectral invariant associated to the natural geometric operator on 
the (boundary) manifold and it vanishes for even dimensional manifolds (in this case the 
corresponding manifold with boundary will have odd dimension). In our previous work 
[14], we introduced an invariant of eta type for even dimensional manifolds. It plays the 
same role as the eta invariant of Atiyah–Patodi–Singer.

Any elliptic differential operator on an odd dimensional closed manifold will have 
index zero. In this case, the appropriate index to consider is that of Toeplitz operators. 
This also fits perfectly with the interpretation of the index of Dirac operator on even 
dimensional manifolds as a pairing between the even K-group and K-homology. Thus 
in the odd dimensional case one considers the odd K-group and odd K-homology. For a 
closed manifold M , an element of K−1(M) can be represented by a differentiable map 
from M into the unitary group

g : M −→ U(N), (1.1)

where N is a positive integer. As we mentioned the appropriate index pairing between 
the odd K-group and K-homology is given by that of the Toeplitz operator, defined as 
follows.

Consider L2(S(TM) ⊗E), the space of L2 spinor fields3 twisted by an auxilliary vector 
bundle E. It decomposes into an orthogonal direct sum

L2(S(TM) ⊗E) =
⊕

λ∈Spec(DE)

Eλ,

according to the eigenvalues λ of the Dirac operator DE . The “Hardy space” will be

L2
≥0(S(TM) ⊗E) =

⊕
λ≥0

Eλ.

The corresponding orthogonal projection from L2(S(TM) ⊗E) to L2
≥0(S(TM) ⊗E) will 

be denoted by PE
≥0.

The Toeplitz operator TE
g is then defined as

TE
g = PE

≥0gP
E
≥0 : L2

≥0
(
S(TM) ⊗ E ⊗ CN

)
−→ L2

≥0
(
S(TM) ⊗ E ⊗ CN

)
. (1.2)

3 In this paper, for simplicity, we will generally assume that our manifolds are spin, although our discussion 
extends trivially to the case of Dirac type operators.
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This is a Fredholm operator whose index is given by

indTE
g = −

〈
Â(TM)ch(E)ch(g), [M ]

〉
, (1.3)

where ch(g) is the odd Chern character associated to g [4]. It is represented by the 
differential form (cf. [21, Chap. 1])

ch(g) =
dim M−1

2∑
n=0

n!
(2n + 1)!Tr

[(
g−1dg

)2n+1
]
.

In [14] we established an index theorem which generalizes (1.3) to the case where M
is an odd dimensional spin manifold with boundary ∂M . The definition of the Toeplitz 
operator now uses Atiyah–Patodi–Singer boundary conditions on ∂M . The self-adjoint
Atiyah–Patodi–Singer boundary conditions depend on choices of Lagrangian subspaces 
L ⊂ kerDE

∂M . We will denote the corresponding boundary condition by P∂M (L). The 
resulting Toeplitz operator will then be denoted by TE

g (L).
We recall the main result in [14] as follows.

Theorem 1.1. The Toeplitz operator TE
g (L) is Fredholm with index given by

indTE
g (L) = −

(
1

2π
√
−1

)(dim M+1)/2 ∫
M

Â
(
RTM

)
Tr
[
exp

(
−RE

)]
ch(g)

− η(∂M,E, g) + τμ
(
gP∂M (L)g−1, P∂M (L),PM

)
. (1.4)

Here η(∂M, E, g) denotes the invariant of η-type for even dimensional manifold ∂M
and the K1 representative g. The third term is an interesting new integer term, a triple 
Maslov index introduced in [15]. See [14] for details.

Remark. Our index formula is closely related to the so called WZW theory in physics 
[18]. When ∂M = S2 or a compact Riemann surface and E is trivial, the local term in 
Theorem 1.1 is precisely the Wess–Zumino term, which allows an integer ambiguity, in 
the WZW theory. Thus, our eta invariant η(∂M, g) gives an intrinsic interpretation of the 
Wess–Zumino term without passing to the bounding 3-manifold. In fact, for ∂M = S2, 
it can be further reduced to a local term on S2 by using Bott’s periodicity, see [14, 
Remark 5.9].

The eta invariant η(∂M, E, g) is defined on a finite cylinder [0, 1] ×∂M , rather than on 
∂M itself. Thus it is an interesting question to find an intrinsic spectral interpretation 
of this new invariant. In this paper we answer this question by using the adiabatic 
limit technique. First, under invertibility assumptions, we give an explicit formula for 
our eta invariant in terms of a natural family of Dirac type operators on the manifold. 
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This family arises from the original Dirac operator by a perturbation involving the K1

representative. The general formulation relates (the mod Z reduction of) the eta invariant 
for even dimensional manifolds with the holonomy of the determinant line bundle of this 
natural family of Dirac type operators. The work of [10] on the adiabatic limit of eta 
invariants for manifolds with boundary and that of [13] on Witten’s holonomy theorem 
play an important role here.

This paper is organized as follows. In Section 2, we review the definition of the eta 
invariant for an even dimensional closed manifold introduced in [14]. In Section 3, we 
give an intrinsic spectral interpretation of the eta invariant under certain invertibility 
assumption. Section 4 deals with the general case. And we end with a conjecture and a 
few remarks in the last section.

Some of the results in this paper have been described in [12].

2. An invariant of η type for even dimensional manifolds

For an even dimensional closed manifold X (which may or may not be the boundary of 
an odd dimensional manifold) and a K1 representative g : X → U(N), the eta invariant 
will be defined in terms of an eta invariant on the cylinder [0, 1] ×X with appropriate 
APS boundary conditions.

In general, for a compact manifold M with boundary ∂M with the product structure 
near the boundary, the Dirac operator DE twisted by a Hermitian vector bundle E⊗CN

decomposes near the boundary as

DE = c

(
∂

∂x

)(
∂

∂x
+ DE

∂M

)
. (2.1)

The APS projection P∂M is an elliptic global boundary condition for DE . However, 
for self-adjoint boundary conditions, we need to modify it by a Lagrangian subspace of 
kerDE

∂M , namely, a subspace L of kerDE
∂M such that c( ∂

∂x )L = L⊥ ∩ (kerDE
∂M ). Since 

∂M bounds M , by the cobordism invariance of the index, such Lagrangian subspaces 
always exist.

The modified APS projection is then obtained by reducing the kernel part of the 
projection to the projection onto the Lagrangian subspace. More precisely, denote

L2
+((S(TM) ⊗ E ⊗ CN )|∂M ) =

⊕
λ>0

Eλ(DE⊗CN

∂M ),

where λ runs over the positive eigenvalues of DE⊗CN

∂M . Denote by P∂M the orthogo-
nal projection from L2((S(TM) ⊗ E ⊗ CN )|∂M ) to L2

+((S(TM) ⊗ E ⊗ CN )|∂M ). Let 
P∂M (L) denote the orthogonal projection operator from L2((S(TM) ⊗E ⊗CN )|∂M ) to 
L2

+((S(TM) ⊗E ⊗ CN )|∂M ) ⊕ L:
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P∂M (L) = P∂M + PL, (2.2)

where PL denotes the orthogonal projection from L2((S(TM) ⊗E ⊗ CN )|∂M ) to L.
The pair (DE , PE

∂M (L)) forms a self-adjoint elliptic boundary problem, and P∂M(L)
is called an Atiyah–Patodi–Singer boundary condition associated to L. We will denote 
the corresponding elliptic self-adjoint operator by DE

P∂M (L).
In [14], we originally intend to consider the conjugated elliptic boundary value prob-

lem DE
gP∂M (L)g−1 (cf. [22]). However, the analysis turns out to be surprisingly subtle 

and difficult. To circumvent this difficulty, a perturbation of the original problem was 
constructed.

Let ψ = ψ(x) be a cut off function which is identically 1 in the ε-tubular neighborhood 
of ∂M (ε > 0 sufficiently small) and vanishes outside the 2ε-tubular neighborhood of ∂M . 
Consider the Dirac type operator

Dψ = (1 − ψ)DE + ψgDEg−1.

The motivation for considering this perturbation is that, near the boundary, the 
operator Dψ is actually given by the conjugation of DE , and therefore, the elliptic 
boundary problem (Dψ, gP∂M (L)g−1) is now the conjugation of the APS boundary 
problem (DE , P∂M (L)), i.e., this is now effectively standard APS situation and we have 
a self-adjoint boundary value problem (Dψ, gP∂M (L)g−1) together with its associated 
self-adjoint elliptic operator Dψ

gP∂M (L)g−1 .
The same thing can be said about the conjugation of Dψ:

Dψ,g = g−1Dψg = DE + (1 − ψ)g−1[DE , g]. (2.3)

We will in fact use Dψ,g.
We are now ready to construct the eta invariant for even dimensional manifolds. Given 

an even dimensional closed spin manifold X, we consider the cylinder [0, 1] × X with 
the product metric. Let g : X → U(N) be a map from X into the unitary group 
which extends trivially to the cylinder. Similarly, E → X is a Hermitian vector bundle 
which is also extended trivially to the cylinder. We assume that indDE

+ = 0 on X which 
guarantees the existence of the Lagrangian subspaces L.

Consider the analog of Dψ,g as defined in (2.3), but now on the cylinder [0, 1] × X

and denote it by Dψ,g
[0,1]. Here ψ = ψ(x) is a cut off function on [0, 1] which is identically 

1 for 0 ≤ x ≤ ε (ε > 0 sufficiently small) and vanishes when 1 − 2ε ≤ x ≤ 1. We equip it 
with the boundary condition PX(L) on one of the boundary components {0} ×X and 
the boundary condition Id − g−1PX(L)g on the other boundary component {1} × X

(note that the Lagrangian subspace L exists by our assumption of vanishing index). 
Then (Dψ,g

[0,1], PX(L), Id − g−1PX(L)g) forms a self-adjoint elliptic boundary problem. 
For simplicity, we will still denote the corresponding elliptic self-adjoint operator by 
Dψ,g .
[0,1]
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Let η(Dψ,g
[0,1], s) be the η-function of Dψ,g

[0,1] which, when Re(s) >> 0, is defined by

η(Dψ,g
[0,1], s) =

∑
λ �=0

sgn(λ)
|λ|s , (2.4)

where λ runs through the nonzero eigenvalues of Dψ,g
[0,1].

By [17,13], one knows that the η-function η(Dψ,g
[0,1], s) admits a meromorphic extension 

to C with s = 0 a regular point (and it has only simple poles). One then defines, as in 
[1], the η-invariant of Dψ,g

[0,1] by η(Dψ,g
[0,1]) = η(Dψ,g

[0,1], 0), and the reduced η-invariant by

η
(
Dψ,g

[0,1]

)
=

dim kerDψ,g
[0,1] + η

(
Dψ,g

[0,1]

)
2 . (2.5)

Definition 2.1. We define an invariant of η type for the Hermitian vector bundle E on 
the even dimensional manifold X (with vanishing index) and the K1 representative g by

η(X,E, g) = η
(
Dψ,g

[0,1]

)
− sf

{
Dψ,g

[0,1](s); 0 ≤ s ≤ 1
}
, (2.6)

where Dψ,g
[0,1](s) is a path connecting g−1DEg with Dψ,g

[0,1] defined by

Dψ,g(s) = DE + (1 − sψ)g−1[DE , g]

on [0, 1] ×X, with the boundary condition PX(L) on {0} ×X and the boundary condition 
Id − g−1PX(L)g at {1} ×X.

It was shown in [14] that η(X, E, g) does not depend on the cut off function ψ.

3. An intrinsic spectral interpretation, the invertible case

The usefulness of the eta invariant of Atiyah–Patodi–Singer comes, at least partially, 
from the spectral nature of the invariant, i.e. that it is defined via the spectral data 
of the Dirac operator on the (odd dimensional) manifold. Our eta invariant for even 
dimensional manifold is defined via the eta invariant on the corresponding odd dimen-
sional cylinder by imposing APS boundary conditions. Thus, it will be desirable to have 
a direct spectral interpretation in terms of the spectral data of the original manifold 
(and the K1 representative). In this section we give such an interpretation under cer-
tain invertibility assumption. This invertibility condition will be removed in the next 
section.

The crucial point here is the following observation. As in the previous section, we 
can also consider the invariant η(Dψ,g

[0,a]), similarly constructed on a cylinder [0, a] ×X of 
radial size a > 0. In what follows, we will use subscript X to indicate the Dirac operator 
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on X. Namely DE
X is the Dirac operator on X while DE denotes the Dirac operator on 

the cylinder [0, 1] ×X. Note that [DE
X , g] = c(dg) where dg is a U(N)-valued 1-form on 

X and c(dg) denotes the Clifford multiplication by the one forms on the spinor part and 
natural unitary action of U(N) on CN .

Lemma 3.1. Assuming that ker[DE
X + s c(g−1dg)] = 0, ∀ 0 ≤ s ≤ 1, then η(Dψ,g

[0,a]), and 
hence η(X, E, g), is independent of a. Without the invertibility assumption, the mod Z
reduction of η(X, E, g) is independent of a.

Proof. The basic idea comes from [14]; compare also with [17, Proposition 2.16] and [11, 
Theorem 3.2].

First of all, without the invertibility assumption, we work with mod Z and hence 
can disregard the spectral flow term. Thus, it suffices to show that η

(
Dψ,g

[0,a]

)
mod Z

is independent of a > 0. Now choose a diffeomorphism ϕa : [0, 1] → [0, a] such that 
ϕa(x) = x, x ∈ [0, ε] and ϕa(x) = x + a − 1, x ∈ [1 − ε, 1]. Then ϕa extends trivially to 
a diffeomorphism from [0, 1] ×X to [0, a] ×X.

Such a ϕa defines an isomorphism ϕ∗
a between spinors fields (with values in E) on 

[0, a] ×X and spinors fields (with values in E) on [0, 1] ×X. Clearly

η(Dψ,g
[0,a]) = η(ϕ∗

aD
ψ,g
[0,a](ϕ

∗
a)−1).

But Dψ,g,a
[0,1] = ϕ∗

aD
ψ,g
[0,a](ϕ

∗
a)−1 = D̃E + (1 − ψ ◦ ϕa)c(g−1dg), where D̃E is the Dirac 

operator on [0, 1] ×X, but with the metric (ϕ′
a(x)dx)2 + gX . By the product structure 

near the boundaries, the variation of η(Dψ,g,a
[0,1] ) (mod Z) is given by a local formula 

independent of the boundary conditions. More precisely, it is given by the integration 
over [0, 1] ×X of

LIMt→0 t
1/2 tr

(
∂

∂a
Dψ,g,ae−t(Dψ,g,a)2

)
,

where we have dropped the subscript [0, 1] on the operator to indicate that we take 
the heat kernel, say, over R × X, and LIMt→0 means taking the constant term in the 
asymptotic expansion.

This can be computed by now standard local index theory technique. Indeed, we 
introduce an auxilliary Grassman variable z. Then

t1/2 tr
(

∂

∂a
Dψ,g,ae−t(Dψ,g,a)2

)
= trz

(
e−t(Dψ,g,a)2+zt1/2 ∂

∂aDψ,g,a
)
.

Here the subscript “z” means taking the z-part of the trace. Now

−t(Dψ,g,a)2 + zt1/2
∂
Dψ,g,a
∂a
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= −t

[
c(dx)ϕ′

a(x) ∂

∂x
+ DX + (1 − ψ ◦ ϕa(x))c(g−1dg)

]2

+ zt1/2
∂

∂a
ϕ′
a(x)c(dx) ∂

∂x

− zt1/2
∂

∂a
(ψ ◦ ϕa)(x)c(g−1dg)

= t

[
ϕ′
a(x) ∂

∂x
+ 1

2zt
−1/2 ∂

∂a
lnϕ′

a(x)c(dx)
]2

− tD2
X − t(1 − ψ ◦ ϕa(x))[DX , c(g−1dg)]

− t(1 − ψ ◦ ϕa(x))2(c(g−1dg))2 + tϕ′
a(x)(ψ ◦ ϕa)′(x)c(dx)c(g−1dg)

− zt1/2
∂

∂a
(ψ ◦ ϕa)(x)c(g−1dg) − 1

2zt
1/2 ϕ′

a(x) ∂2

∂x∂a
lnϕ′

a(x)c(dx).

The singular term in the first term of the last equation can be cancelled out by 
conjugating with the exponential transform

e
1
2 zt

−1/2 xc(dx)(ϕ′
a(x))−1 ∂

∂a ln ϕ′
a(x) = 1 + 1

2zt
−1/2 xc(dx)(ϕ′

a(x))−1 ∂

∂a
lnϕ′

a(x).

Then we can apply the Getzler transform to see that the conjugation of −t(Dψ,g,a)2 +
zt1/2 ∂

∂aD
ψ,g,a by the exponential transform converges to

[
ϕ′
a

∂

∂x
− z

2(ϕ′
a(x))−1 ∂2

∂x∂a
lnϕ′

a(x)xdx
]2

+ HX − ψ ◦ ϕa(1 − ψ ◦ ϕa)(g−1dg)2

+ ϕ′
a(ψ ◦ ϕa)′dx ∧ g−1dg − z

∂

∂a
(ψ ◦ ϕa)g−1dg − zϕ′

a

∂2

∂x∂a
lnϕ′

adx,

where HX denotes the generalized harmonic oscillator on X. Computing the heat kernel 
and collecting the zdx terms, noticing that tr(g−1dg)2k = 0 for all nonnegative integer k, 
we found that

LIMt→0 t
1/2 tr

(
∂

∂a
Dψ,g,ae−t(Dψ,g,a)2

)
= 0.

This shows that η
(
Dψ,g

[0,a]

)
mod Z is independent of a > 0.

The invertibility assumption guarantees that the spectral flow term vanishes and the 
computation of the variation of the eta invariant is still the same. �

On the other hand, as we mentioned before,

Lemma 3.2. η(X, E, g), is independent of the choice of the cut off function ψ.

This is Proposition 5.1 of [14].
These two lemmas together show that

η(X,E, g) = lim η(Dψ,g
[0,a]) (3.1)
a→∞



X. Dai, W. Zhang / Advances in Mathematics 279 (2015) 291–306 299
for any cut off function which may depend on a ((3.1) is to be interpreted as an equation 
mod Z without the invertibility assumption). This is exactly the adiabatic limit.

We now recall the setup and result from [10] on the adiabatic limit of eta invariant, 
which is an extension of [5] to manifolds with boundary. More precisely, let

Y → M
π→ B (3.2)

be a fibration where the fiber Y is closed but the base B may have nonempty boundary. 
Let gB be a metric on B which is of the product type near the boundary ∂B. Now equip 
M with a submersion metric g,

g = π∗gB + gY

so that g is also product near ∂M . This is equivalent to requiring gY to be independent 
of the normal variable near ∂B, given by the distance to ∂B.

The adiabatic metric gx on M is given by

gx = x−2π∗gB + gY , (3.3)

where x is a positive parameter.
For simplicity we assume that M as well as the vertical tangent bundle TV M are 

spin. Associated to these data we have in particular the total Dirac operator Dx on 
M , the boundary Dirac operator D∂M

x on ∂M , and the family of Dirac operators DY

along the fibers. If the family DY is invertible, then, according to [5], the boundary 
Dirac operator D∂M

x is also invertible for all small x, therefore the eta invariant of Dx

with the APS boundary condition, η(Dx), is well-defined. We have the following result 
from [10].

Theorem 3.3. Consider the fibration Y → M → B as above. Assume that the Dirac 
family along the fiber, DY , is invertible. Consider the total Dirac operator Dx on X with 
respect to the adiabatic metric gx and let η(Dx) denote the eta invariant of Dx with 
the APS boundary condition. Then the limit limx→0 η̄(Dx) = limx→0

1
2η(Dx) exists in R

and

lim
x→0

η̄(Dx) =
∫
B

Â

(
RB

2π

)
∧ η̃, (3.4)

where RB is the curvature of gB, Â denotes the the Â-polynomial and η̃ is the η-form of 
Bismut and Cheeger [5].
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Recall that the (unnormalized) η-form of Bismut–Cheeger, the η̂ form, is defined as

η̂ =

⎧⎪⎪⎨
⎪⎪⎩

∫ ∞

0
trs

[(
DY + c(T )

4t

)
e−B2

t

]
dt

2t1/2 if dimY = 2l∫ ∞

0
treven

[(
DY + c(T )

4t

)
e−B2

t

]
dt

2t1/2 if dimY = 2l − 1
, (3.5)

assuming that kerDY does define a vector bundle on B. Here Bt denotes the rescaled 
Bismut superconnection:

Bt = ∇̃u + t1/2DY − c(T )
4t1/2

. (3.6)

We normalize η̂ by defining (note that from definition η̂ is a differential form with 
only odd (even resp.) degrees when dimY = 2l (dim Y = 2l − 1 resp.))

η̃ =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

l∑
j=1

1
(2πi)j [η̂]2j−1 if dimY = 2l

l−1∑
j=0

1
(2πi)j [η̂]2j if dimY = 2l − 1

(3.7)

where [η̂]k denotes the degree k component of the eta form η̂.
We now turn to the intrinsic spectral interpretation of our eta invariant.

Theorem 3.4. Under the assumption that ker[DX + s c(g−1dg)] = 0, ∀ 0 ≤ s ≤ 1,

η (X,E, g) = i

4π

1∫
0

∞∫
0

trs
[
c
(
g−1dg

) (
DX + s c

(
g−1dg

))
e−t

(
DX+s c

(
g−1dg

))2]
dt ds.

Proof. We apply Theorem 3.3 to our current situation where M = [0, 1] ×X fibers over 
[0, 1] with the fibre X. The operator

Dψ,g
[0,1] = DE + (1 − ψ)g−1[DE , g] = DE + (1 − ψ)c(g−1dg)

is of Dirac type, and of product type near the boundaries. Hence the result still applies.
By the invertibility assumption there is no spectral flow contribution and hence, by 

(3.1), η (X,E, g) is given by the adiabatic limit formula.
The Dirac family along the fiber is DX + (1 − ψ(x))c(g−1dg). The curvature of the 

Bismut superconnection is given by

B2
t = t

[
DX + (1 − ψ(x))c

(
g−1dg

)]2 − t1/2ψ′(x)dx c
(
g−1dg

)
.
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Thus,

η̂ = ψ′(x)dx
2

∞∫
0

trs
[
c
(
g−1dg

) (
DX + (1 − ψ(x))c

(
g−1dg

))
e−t

(
DX+(1−ψ(x))c

(
g−1dg

))2]
dt.

Since η̃ = 1
2πi η̂ here, the adiabatic limit formula in Theorem 3.3 gives

η(X,E, g)

=
1∫

0

ψ′(x)
4πi

∞∫
0

trs
[
c
(
g−1dg

) (
DX + (1 − ψ(x))c

(
g−1dg

))
e−t

(
DX+(1−ψ(x))c

(
g−1dg

))2]
dtdx

= i

4π

1∫
0

∞∫
0

trs
[
c
(
g−1dg

) (
DX + s c

(
g−1dg

))
e−t

(
DX+s c

(
g−1dg

))2]
dt ds

as claimed. �
4. The noninvertible case

For a fibration over the circle, Witten’s holonomy theorem [19,6,9] says that the 
adiabatic limit of the eta invariant of the total space is related to the holonomy of the 
determinant line bundle of the family operators along the fibers. Indeed, in the invertible 
case, namely the family operators along the fibers are invertible, there is an explicit 
formula for the adiabatic limit of the eta invariant in terms of the family operators, [6, 
(3.166)], [9, (1.56)], which states

lim
x→0

η̄(Dx) = i

4π

∫
S1

∞∫
0

trs
[(
∇̃uDY

)
DY e

−tD2
Y

]
dt. (4.1)

Of course, the integrand in the formula (4.1) is just the degree one term of the Bismut–
Cheeger η-form.

If one applies (4.1) to the family s ∈ [0, 1] −→ DX + s c(g−1dg), we would obtain 
Theorem 3.4. However, the family here is not periodic. Nevertheless, it is almost periodic 
in the sense that the operators at the endpoints differ by a conjugation. This leads us to 
the generalization to the general noninvertible case.

To deal with the noninvertible case, we make use of the framework and result of [13]. 
We first recall the setup of [13].

Suppose M is a compact odd dimensional Riemannian manifold with nonempty 
boundary. For simplicity, we assume M is spin so that one can consider the Dirac op-
erator DM (the same consideration can be adapted to Dirac type operators). Further, 
assume that the metric is of product type near the boundary. In order to consider eta 
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invariant, one needs to impose boundary conditions and the self-adjoint APS boundary 
condition amounts to a “trivialization” of the graded kernel of the boundary Dirac oper-
ator D∂M . Taking this into consideration, the result of [13] says that the exponentiated 
eta invariant of DM actually defines an element of the inverse determinant line of the 
boundary Dirac operator D∂M .

More precisely, let K+
∂M ⊕K−

∂M be the (graded) kernel of D∂M and Det−1
∂M the inverse 

determinant line of D∂M :

Det−1
∂M = ΛmaxK+

∂M ⊗̂[ΛmaxK−
∂M ]−1. (4.2)

Here inverse denotes the dual.
A self-adjoint APS boundary condition is determined by a choice of isometry

T : K+
∂M −→ K−

∂M . (4.3)

Let η(DM (T )) denote the reduced eta invariant of DM with the self-adjoint APS bound-
ary condition determined by T (cf. [13]). A basic result of [13] says that

τM = e2πiη(DM (T ))(detT )−1 ∈ Det−1
∂M (4.4)

is independent of T (and satisfies the laws of TQFT as well as a variation formula).
Relevant to our discussion here is Witten’s holonomy theorem as formulated in this 

framework. Let π : Y → Z be a fibration whose typical fiber is a closed even dimensional 
manifold, and as before we assume that both Y and TV Y are spin for simplicity. Let 
L → Z denote the corresponding inverse determinant line bundle. It comes equipped with 
a (Quillen) metric and a natural unitary (Bismut–Freed) connection ∇. The curvature 
of ∇ is [6, Theorem 1.21]

ΩL = −2πi

⎡
⎢⎣ ∫

Y/Z

Â(ΩY/Z)

⎤
⎥⎦

(2)

.

Given γ : [0, 1] → Z a smooth path, let Yγ = γ∗Y denote the pullback of π : Y → Z

via γ; then πγ : Yγ → [0, 1] is a fibration, the induced fibration. Let g[0,1] denote an 
arbitrary metric on the unit interval and gY/Z the metric on the vertical tangent bundle 
TV Y . Define a family of metrics on Yγ by the formula

gε =
g[0,1]

ε2
⊕ gY/Z , ε �= 0.

(We assume that γ is constant near the two endpoints so that gε is of the product type 
near the boundary.)

The construction above gives rise to a linear map
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τYγ
(ε) : Lγ(0) −→ Lγ(1). (4.5)

Theorem 4.1 (Dai–Freed). The adiabatic limit τγ = lim
ε→0

τYγ
(ε) exists and gives the holon-

omy along γ of the Bismut–Freed connection.

Consider now the fibration π : R ×X −→ R given by the projection, with the family 
of Dirac type operators

s ∈ R → Ds = DX + sc(g−1dg). (4.6)

Let L → R be the inverse determinant line bundle with the Quillen metric and the 
Bismut–Freed connection. Denote by Ls the fiber of L at s ∈ R. Since D1 = DX +
c(g−1dg) = g−1DXg = g−1D0g, there is an isomorphism

g−1 : L0 � L1 (4.7)

determined by the isomorphism g−1 between the graded kernels kerD0 and kerD1. On 
the other hand, since R is one dimensional, any two monotonic paths from 0 to 1 are 
reparametrizations of each other. Hence there is a unique holonomy map

τ0,1 : L0 → L1. (4.8)

Composing with the isomorphism (4.7) gives rise to a map

L0 → L1 � L0 (4.9)

which can then be identified with a complex number τ ∈ C. In fact, since both the 
holonomy map (4.8) and the isomorphism (4.7) are unitary maps, τ has modulus one.

We can now state the main result of this paper as follows.

Theorem 4.2. We have

τ = e2πiη(X,E,g).

Proof. By taking the exponential we discount the contribution from the spectral flow to 
our eta invariant. Thus we are only concerned with η(Dψ,g

[0,1]). By definition, η(Dψ,g
[0,1]) is 

the reduced eta invariant of

Dψ,g = DE + (1 − ψ)g−1[DE , g]

on the cylinder [0, 1] ×X with the boundary condition PX(L) on one of the boundary 
components {0} ×X and the boundary condition Id−g−1PX(L)g on the other boundary 
component {1} ×X, where L is a Lagrangian subspace of kerDX . Let kerDX = K+

X⊕K−
X

be its Z2 grading. Then an isometry
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T : K+
X → K−

X

gives rise to a Lagrangian subspace, namely the graph of T . A little linear algebra shows 
that the boundary condition Id − g−1PX(L)g corresponds to the isometry

g−1T−1g : g−1K−
X → g−1K+

X .

Hence, we have by the previous theorem and the definition (using the notation a-lim to 
denote the adiabatic limit)

τ0,1 = a- lim e2πiη(Dψ,g
[0,1])(detT )−1 det g−1Tg

= lim
a→∞

e2πiη(Dψ,g
[0,a])(detT )−1 det g−1Tg

= e2πiη(Dψ,g
[0,1])(detT )−1 det g−1Tg.

Therefore

τ = e2πiη(X,E,g)

using the identification. �
Remark 4.3. Recall that in [14, Remarks 2.5 and 5.9], the η-invariant is used to give an 
intrinsic analytic interpretation of the Wess–Zumino term in the WZW theory. Now by 
Theorem 4.2, this term is further interpreted by using holonomy.

Remark 4.4. Theorem 4.1 gives an adiabatic limit formula for (reduced) eta invariants 
without invertibility assumption for one dimensional manifolds with boundary, namely 
the interval. Theorem 3.3, on the other hand, is such a formula with invertibility assump-
tion, but for any compact manifold with boundary as the base. It will be interesting to 
have a general result combining these two. This will be addressed elsewhere.

5. Final remarks

We end this paper by recalling a conjecture from [14], and also by some remarks.
As we mentioned before, the eta type invariant η(X, E, g), which we introduced using 

a cut off function, is in fact independent of the cut off function. This leads naturally 
to the question of whether η(X, E, g) can actually be defined directly. The following 
conjecture is stated in [14] and [22].

Let D[0,1] be the Dirac operator on [0, 1] × X. We impose the boundary condition 
gPX(L)g−1 at {0} ×X and the boundary condition Id − PX(L) at {1} ×X.

Then (D[0,1], gPX(L)g−1, Id−PX(L)) forms a self-adjoint elliptic boundary problem. 
We denote the corresponding elliptic self-adjoint operator by D[0,1]

−1 .
gPX(L)g ,PX(L)
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Let η(D[0,1]
gPX(L)g−1,PX(L), s) be the η-function of D[0,1]

gPX(L)g−1,PX(L). By [15, Theorem 

3.1], one knows that the η-function η(D[0,1]
gPX(L)g−1,PX(L), s) admits a meromorphic ex-

tension to C with poles of order at most 2. One then defines, as in [15, Definition 3.2], 
the η-invariant of D[0,1]

gPX(L)g−1,PX(L), denoted by η(D[0,1]
gPX(L)g−1,PX(L)), to be the constant 

term in the Laurent expansion of η(D[0,1]
gPX(L)g−1,PX(L), s) at s = 0.

Let η(D[0,1]
gPX(L)g−1,PX(L)) be the associated reduced η-invariant.

Conjecture.

η(X,E, g) = η
(
D

[0,1]
gPX(L)g−1,PX(L)

)
.

We would also like to say a few words about the technical assumption that indDE
+ = 0

imposed in order to define the eta invariant η(X, E, g). The assumption guarantees the 
existence of the Lagrangian subspaces L which are used in the boundary conditions. In 
the Toeplitz index theorem, this assumption is automatically satisfied since X = ∂M

is a boundary. In general, of course, it may not. However, if one is willing to overlook 
the integer contribution (as one often does in applications), this technical issue can be 
overcome by using another eta invariant, this time on S1 ×X, as follows. Note that we 
now have no boundary, hence no need for boundary conditions!

Consider S1 ×X = [0, 1] ×X/ ∼ where ∼ is the equivalence relation that identifies 
0 ×X with 1 ×X. Let Eg → S1×X be the vector bundle which is E⊗C

N over (0, 1) ×X

and the transition from 0 ×X to 1 ×X is given by g : X → U(N). Denote by DEg
the 

Dirac operator on S1 ×X twisted by Eg.

Proposition 5.1. 4 One has

η(X,E, g) ≡ η(DEg
) mod Z.

This is an easy consequence of the so called gluing law for the eta invariant, see [8,7,
13]. An analog of this result in the noncommutative setting plays an important role in 
[20], which also contains an odd dimensional analog of [16].

Remark 5.2. An application of the Witten holonomy theorem [19,6,9] to the right hand 
side of the above formula leads to an analogous result as Theorem 4.2. However the 
family of operators here is not as explicit as in Theorem 4.2.

Remark 5.3. It might be interesting to note the duality that η(X, E, g) is a spectral 
invariant associated to a K1-representative on an even dimensional manifold, while 
the usual Atiyah–Patodi–Singer η-invariant [1] is a spectral invariant associated to a 
K0-representative on an odd dimensional manifold.

4 We thank Jean-Michel Bismut for pointing this out to us several years ago.
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