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1. Curves in the Plane and in Space 5

The following result is intuitively clear:

Proposition 1.1

If the tangent vector of a parametrised curve is constant, the image of the curve
is (part of) a straight line

Proof 1.1

If 4(t) = a for all t, where a is a constant vector, we have, integrating compo-
nentwise,

")'(t)m/%%dtm /adtmta+b,

where b is another constant vector If a # 0, this is the parametric equation
of the straight line parallel to a and passing through the point with position
vector b:

ta v(t)

0
If a = 0, the image of «y is a single point {namely, the point with position vector
b). O

EXERCISES

11 Is () = (t%,t') a parametrisation of the parabola y = 2?7
1.2 Find parametrisations of the following level curves:
1) y*-22=1
i) Z+L =1
1.3 Find the cartesian equations of the following parametrised curves:
i) {t) = {cos®t,sin’ t);
(i) ¥(t) = (e', 7).

14 Calculate the tangent vectors of the curves in Exercise 1.3.
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1.5

16

« 17

1.8

19

Sketch the astroid in Example 1.3, Calculate its tangent vector at
each point At which points is the tangent vector zero?

If P is any point on the circle € in the zy-plane of radius a > 0 and
centre (0, a), let the straight line through the origin and P intersect
the line y = 2a at @, and let the line through P parallel to the z-axis
intersect the line through @ parallel to the y-axis at R. As P moves
around C, R traces out a curve called the witch of Agnesi For this
curve, find

(i) a parametzisation;
(i) its cartesian equation

A eycloid is the plane curve traced out by a point on the circum-
ference of a circle as it rolls without shipping along a straight line.
Show that, if the straight line is the z-axis and the circle has radius
a > 0, the cycloid can be parametrised as

¥(t) = a{t —sint,1 ~ cost)

Generalise the previous exercise by finding parametrisations of an
epicycloid (resp. hypoecycloid), the curve traced out by a point on
the circumference of a circle as it rolls without slipping around the
outside (resp. inside) of a fixed circle

Show that y(t) == (cos® ¢ ~ ,sint cost,sint) is a parametrisation of
the curve of intersection of the circular cylinder of radius —;— and axis
the z-axis with the sphere of radius 1 and centre (—£,0,0) (This is

called Viviani's Curve).
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Definition 1.4

If4: (@,B) — R™ is a parametrised curve, its speed at the point (t) is || ¥(t) [i,
and 7 is said to be a unit-speed curve if ¥(t) is a unit vector for all ¢ € (a, B).

We shall see many examples of formulas and results relating to curves that
take on a much simpler form when the curve is unit-speed. The reason for this
simplification is given in the next proposition Although this admittedly looks
uninteresting at first sight, it will be extremely useful for what follows.

Proposition 1.2

Let n(t) be a unit vector that is a smooth function of o parameter t. Then, the
dot product
a{t) n(t} =0
for all t, i.e n{t) is zero or perpendicular to n(t) for all i
In particular, if 7y is a unit-speed curve, then 4 is zero or perpendicular to
¥

Proof 1.2
We use the ‘product formula’ for differentiating dot products of vector-valued
functions a(t) and b():

d da db

&-t-(a.b) - a,b -+ a-a'-

Using this to differentiate both sides of the equation n.n = 1 with respect to ¢
gives

nn+nn=j,

so 2an =0.
The last part follows by taking n = 4. ]

EXERCISES

1.11 Calculate the arc-length of the catenary ¥(t) = (¢, cosh t) starting at
the point (0,1).

1.12 Show that the following curves are unit-speed:
M 70 = (3007250 - 092 &);

(i) Y(£) = (fcost, 1 —sint, -2 cost).
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1. Curves in the Plane and in Space 15

Our final example shows that a given level curve can have both regular and
non-regular parametrisations.

Frample 18

For the parametrisation

¥(t) = (¢,¢%)

of the parabola y = z*, 4(¢) = (1, 2t) is obviously never zero, so ¥ is regular.
But’

At} = (£,1°)

is also a parametrisation of the same parabola. This time, 4 = {3t%,6t%), and
this is zero when t = 0, so % is not regular.

EXERCISES

« 1.14 Which of the following curves are regular?
(i) () = (cos®t,sin? t) for —oo < t < o0;
(i) the same curve as in {i), but with 0 <t < n/2;
(81} o{t) = (¢,cosht) for —0 <t < 0
Find unit-speed reparametrisations of the reguiar curve(s).

1.16 The cissoid of LMocles (see above) is the curve whose equation in
terms of polar coordinates (r,#) is

r=ginftand, -w/2<6 < n/f2

Write down a parametrisation of the cissoid using 8 as a parameter
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and show that
, t
"f(t) = (t",—'{ﬂlﬂt—g‘) , -l<t< 1,

is a reparametrisation of it.

1.16 Let  be a curve in B™ and let 4 be a reparametrisation of v with
reparametrisation map ¢ (so that F(f) = ¥{(¢(7)))- Let fo be a fixed
value of f and let tg = ¢(f) Let 5 and § be the arc-lengths of v and
4 starting at the point Y(to) = J(fo). Prove that & = s if dep/dt > 0
for alt £, and § = —s if d¢p/df < 0 for all £,

1.4. Level Curves vs. Parametrised Curves

We shall now try to clarify the precise relation between the two types of curve
we have considered in previous sections.

Level curves in the generality we have defined them are not always the
kind of objects we would want to call curves. For example, the level ‘curve’
22 + 32 = 0 is a single point. The correct conditions to impose on a function
f{z,y) in order that f(z,y) = ¢, where c is a constant, will be an acceptable
level curve in the plane are contained in the following theorem, which shows
that such level curves can be parametrised. Note that we might as well assume
that ¢ = 0 (since we can replace f by f —c}.

Theorem 1.1

Let f(z,y) be a smooth function of two variables (which means that all the par-
tial derivatives of f, of all orders, exist and are continuous functions ). Assume
that, at every point of the level curve

C = {(z,y) € R* | f(z,y) =0},

8f/08z and 8f/8y are not both zero If P is e point of C, with coordinates
(zg,w0), say, there is a regulor parametrised curve ¥(t), defined on an open
interval containing 0, such that vy passes through P whent =0 and (t) is
contained in  for all t.

The proof of this theorem makes use of the inverse function theorem (one
version of which has already been used in the proof of Propaosition 1.5). For the
moment, we shall only try to convince the reader of the truth of this theorem.
The proof will be given in a later exercise (Exercise 4.31) after the inverse
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2. How Much Does a Curve Curve? 97

for some value of 6, then 22 +y* = a?, showing that the helix lies on the cylinder
with axis the z-axis and radius |a}; the positive number |a| is called the radius
of the helix As @ increases by 2w, the point (acosf,asing,bf) rotates once
round the z-axis and moves up the z-axis by 27b; the positive number 2#ib| is
called the pitch of the helix {we take absolute values since we did not assume
that a or b is positive)

Let us compute the curvature of the helix using the formula in Proposition
21 Denoting d/df by a dot, we have

4(8) = (~asinf,acosd,b),
[ 4(8) 1| = Va2 + b2,

This shows that ¥(f) is never zero, so 7 is regular (unless a = b = 0, in which
case the image of the helix is 2 single point} Hence, the formula in Proposition
2 1 applies, and we have

4= (—acos,—asinf,0),
4 % 4 = (—absin 8, abcosd, —a*),
i (—absinf,abcos8, —a*} || _ (a®b° +a')/? ol )
T T (—asind,acos€;b) P (e + 6132 T a4 b2

Thus, the curvature of the helix is constant.

Let us examine some limiting cases to see if this result agrees with what we
already know. First, suppose that b = 0 (but 4 # 0}. Then, the helix is simply a
circle in the zy-plane of radius |al, so by the calculation following Definition 11
its curvature is 1/|a] On the other hand, the formula (3) gives the curvature
as

ol _lal_ el _ 1
a®+02 a2 e el
Next, suppose that a = 0 (but b # 0) Then, the image of the helix is just the
z-axis, a straight line, so the curvature is zeto And (3} gives zerc when a = 0
too.

EXERCISES

21 Compute the curvature of the following curves:
() )= (501 + 0972 30— 9%, &)
(i) () = (&cost,1—sint,—$ cost);

{iii) 4(t) = (¢,cosht);
(iv) ¥(t) = (cos® t,sin® t)




28 : Elementary Differential Geometry

For the astroid in (iv), show that the curvature tends to oo as we
approach one of the points (41,0}, (0, £1}). Compare with the sketch
found in Exercise 1 5.

2.2 Show that, if the curvature x{t) of a regular curve ¥{t} is > 0 every-
where, then «(t) is a smooth function of . Give an example to show
that this may not be the case without the assumption that £ > 0.

2.2. Plane Curves

For plane curves, it is possible to refine the definition of curvature stightly and
give it an appealing geometric interpretation.
Suppose that y(s) is a unit-speed curve in R?. Denoting d/ds by a dot, let

L=
be the tangent vector of <; note that t is a unit vector. There are two unit

vectors perpendicular to t; we make a choice by defining n,, the signed unit
normal of 4, to be the unit vector obtained by rotating t anti-clockwise by n/2.

By Proposition 1.2, £ = # is perpendicular to t, and hence parallel to n, Thus,
there is a number k; such that

N = Kgllg.

The scalar &, is called the signed curvature of v (it can be positive, negative or
zero) Note that, since || n, || = 1, we have

k=l F = ke {|= lrl, (4)

so the curvature of 7y is the absolute value of its signed curvature. The following
diagrams show how the sign of the signed curvature is determined (in each case,
the arrow on the curve indicates the direction of increasing s).
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