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A Ricci curvature bound is weaker than a sectional curvature bound but
stronger than a scalar curvature bound. Ricci curvature is also special that it
occurs in the Einstein equation and in the Ricci flow. Comparison geometry
plays a very important role in the study of manifolds with lower Ricci curva-
ture bound, especially the Laplacian and the Bishop-Gromov volume compar-
isons. Many important tools and results for manifolds with Ricci curvature lower
bound follow from or use these comparisons, e.g. Meyers’ theorem, Cheeger-
Gromoll’s splitting theorem, Abresch-Gromoll’s excess estimate, Cheng-Yau’s
gradient estimate, Milnor’s result on fundamental group. We will present the
Laplacian and the Bishop-Gromov volume comparison theorems in the first lec-
ture, then discuss their generalizations to integral Ricci curvature, Bakry-Emery
Ricci tensor and Ricci flow in the rest of lectures.
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Chapter 1

Basic Tools and
Characterizations of Ricci
Curvature Lower Bound

The most basic tool in studying manifolds with Ricci curvature bound is the
Bochner formula, which measures the non-commutativity of the covariant deriva-
tive and the connection Laplacian. Applying the Bochner formula to distance
functions we get important tools like mean curvature and Laplacian comparison
theorems, volume comparison theorem. Each of these tools can be used to give
a characterization of the Ricci curvature lower bound. These tools have many
applications, see next two chapters.

1.1 Bochner’s formula

For a smooth function u on a Riemannian manifold (Mn, g), the gradient of u
is the vector field ∇u such that 〈∇u,X〉 = X(u) for all vector fields X on M .
The Hessian of u is the symmetric bilinear form

Hess (u)(X,Y ) = XY (u)−∇XY (u) = 〈∇X∇u, Y 〉,

and the Laplacian is the trace ∆u = tr(Hessu). For a bilinear form A, we
denote |A|2 = tr(AAt).

The Bochner formula for functions is

Theorem 1.1.1 (Bochner’s Formula) For a smooth function u on a Rie-
mannian manifold (Mn, g),

1
2

∆|∇u|2 = |Hessu|2 + 〈∇u,∇(∆u)〉+ Ric(∇u,∇u). (1.1.1)

5
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Proof: We can derive the formula by using local geodesic frame and commuting
the derivatives. Fix x ∈M , let {ei} be an orthonormal frame in a neighborhood
of x such that, at x, ∇eiej(x) = 0 for all i, j. At x,

1
2

∆|∇u|2 =
1
2

∑
i

eiei〈∇u,∇u〉

=
∑
i

ei〈∇ei∇u,∇u〉 =
∑
i

eiHessu(ei,∇u)

=
∑
i

eiHessu(∇u, ei) =
∑
i

ei〈∇∇u∇u, ei〉

=
∑
i

〈∇ei∇∇u∇u, ei〉

=
∑
i

[
〈∇∇u∇ei∇u, ei〉+ 〈∇[ei,∇u]∇u, ei〉+ 〈R(ei,∇u)∇u, ei〉

]
.(1.1.2)

Now at x,∑
i

〈∇∇u∇ei∇u, ei〉 =
∑
i

[∇u〈∇ei∇u, ei〉 − 〈∇ei∇u,∇∇uei〉]

= ∇u(∆u) = 〈∇u,∇(∆u)〉, (1.1.3)

and ∑
i

〈∇[ei,∇u]∇u, ei〉 =
∑
i

Hessu([ei,∇u], ei)

=
∑
i

Hessu(ei,∇ei∇u)

=
∑
i

〈∇ei∇u,∇ei∇u〉 = |Hessu|2. (1.1.4)

Combining (1.1.2), (1.1.3) and (1.1.4) gives (1.1.1).

Applying the Cauchy-Schwarz inequality |Hessu|2 ≥ (∆u)2

n to (1.1.1) we
obtain the following inequality

1
2

∆|∇u|2 ≥ (∆u)2

n
+ 〈∇u,∇(∆u)〉+ Ric(∇u,∇u), (1.1.5)

with equality if and only if Hessu = hIn for some h ∈ C∞(M). If Ric ≥
(n− 1)H, then

1
2

∆|∇u|2 ≥ (∆u)2

n
+ 〈∇u,∇(∆u)〉+ (n− 1)H|∇u|2. (1.1.6)

The Bochner formula simplifies whenever |∇u| or ∆u are simply. Hence it
is natural to apply it to the distance functions, harmonic functions, and the
eigenfunctions among others, getting many applications. The formula has a
more general version (Weitzenböck type) for vector fields (1-forms).
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1.2 Mean Curvature and Local Laplacian Com-
parison

Here we apply the Bochner formula to distance functions. We call ρ : U → R,
where U ⊂Mn is open, is a distance function if |∇ρ| ≡ 1 on U .

Example 1.2.1 Let A ⊂M be a submanifold, then ρ(x) = d(x,A) = inf{d(x, y)|y ∈
A} is a distance function on some open set U ⊂M . When A = q is a point, the
distance function r(x) = d(q, x) is smooth on M \ {q, Cq}, where Cq is the cut
locus of q. When A is a hypersurface, ρ(x) is smooth outside the focal points of
A.

For a smooth distance function ρ(x), Hess ρ is the covariant derivative of
the normal direction ∂r = ∇ρ. Hence Hess ρ = II, the second fundamental
form of the level sets ρ−1(r), and ∆ρ = m, the mean curvature. For r(x) =
d(q, x), m(r, θ) ∼ n−1

r as r → 0; for ρ(x) = d(x,A), where A is a hypersurface,
m(y, 0) = mA, the mean curvature of A, for y ∈ A.

Putting u(x) = ρ(x) in (1.1.1), we obtain the Riccati equation along a radial
geodesic,

0 = |II|2 +m′ + Ric(∂r, ∂r). (1.2.1)

By the Cauchy-Schwarz inequality,

|II|2 ≥ m2

n− 1
.

Thus we have the Riccati inequality

m′ ≤ − m2

n− 1
− Ric(∂r, ∂r). (1.2.2)

If RicMn ≥ (n− 1)H, then

m′ ≤ − m2

n− 1
− (n− 1)H. (1.2.3)

From now on, unless specified otherwise, we assume m = ∆r, the mean
curvature of geodesic spheres. Let Mn

H denote the complete simply connected
space of constant curvature H and mH (or mn

H when dimension is needed) the
mean curvature of its geodesics sphere, then

m′H = − m2
H

n− 1
− (n− 1)H. (1.2.4)

Let snH(r) be the solution to

sn′′H +HsnH = 0
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such that snH(0) = 0 and sn′H(0) = 1, i.e. snH are the coefficients of the Jacobi
fields of the model spaces Mn

H :

snH(r) =


1√
H

sin
√
Hr H > 0

r H = 0
1√
|H|

sinh
√
|H|r H < 0

. (1.2.5)

Then

mH = (n− 1)
sn′H
snH

. (1.2.6)

As r → 0, mH ∼ n−1
r . The mean curvature comparison is

Theorem 1.2.2 (Mean Curvature Comparison) If RicMn ≥ (n−1)H, then
along any minimal geodesic segment from q,

m(r) ≤ mH(r). (1.2.7)

Moreover, equality holds if and only if all radial sectional curvatures are equal
to H.

Since limr→0(m−mH) = 0, this follows from the Riccati equation comparison.
However, a direct proof using only the Riccati inequalities (1.2.3), (1.2.4) does
not seem to be in the literature. From (1.2.3) and (1.2.4) we have

(m−mH)′ ≤ − 1
n− 1

(m2 −m2
H). (1.2.8)

Here we present three somewhat different proofs. The first proof uses the
continuity method, the second solving linear ODE, the third by considering
sn2
H(m−mH) directly. The last two proofs are motived from generalizations of

the mean curvature comparison to weaker Ricci curvature lower bounds [111, ?],
allowing natural extensions, see Chapters ??.
Proof I: Let mH

+ = (m−mH)+ = max{m−mH , 0}, amount of mean curvature
comparison failed. By (1.2.8)

(mH
+ )′ ≤ − 1

n− 1
(m+mH)mH

+ .

If m + mH ≥ 0, then (mH
+ )′ ≤ 0. When r is small, m is close to mH , so

m+mH > 0. Therefore mH
+ = 0 for all r small. Let r0 be the biggest number

such that mH
+ (r) = 0 on [0, r0] and mH

+ > 0 on (r0, r0 + ε0] for some ε0 > 0.
We have r0 > 0. Claim: r0 = the maximum of r, where m,mH are defined on
(0, r]. Otherwise, we have on (r0, r0 + ε0]

(mH
+ )′

mH
+

≤ − 1
n− 1

(m+mH) (1.2.9)
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and m,mH are bounded. Integrate (1.2.9) from r0 + ε to r0 + ε0 (where 0 < ε <
ε0) gives

ln
mH

+ (r0 + ε0)
mH

+ (r0 + ε)
≤
∫ r0+ε0

r0+ε

− 1
n− 1

(m+mH)dr.

The right hand side is bounded by Cε0 since m,mH are bounded on (r0, r0 +ε0].
Therefore mH

+ (r0+ε0) ≤ mH
+ (r0+ε)eCε0 . Now let ε→ 0 we get mH

+ (r0+ε0) ≤ 0,
which is a contradiction.

Proof II: We only need to work on the interval where m −mH ≥ 0. On this
interval −(m2 − m2

H) = −mH
+ (m − mH + 2mH) = −mH

+ (mH
+ + 2mH). Thus

(1.2.8) gives

(mH
+ )′ ≤ −

(mH
+ )2

n− 1
− 2

mH
+ ·mH

n− 1
≤ −2

mH
+ ·mH

n− 1
= −2

sn′H
snH

mH
+ .

Hence (sn2
Hm

H
+ )′ ≤ 0. Since sn2

H(0)mH
+ (0) = 0, we have sn2

Hm
H
+ ≤ 0 and

mH
+ ≤ 0. Namely m ≤ mH .

Proof III: We have(
sn2
H(m−mH)

)′
= 2sn′HsnH(m−mH) + sn2

H(m−mH)′

≤ 2
n− 1

sn2
HmH(m−mH)− 1

n− 1
sn2
H(m2 −m2

H)

= − sn2
H

n− 1
(m−mH)2 ≤ 0

Here in the 2nd line we have used (1.2.8) and (1.2.6).
Since limr→0 sn2

H(m−mH) = 0, integrating from 0 to r yields

sn2
H(r)(m(r)−mH(r)) ≤ 0,

which gives (6.3.3).
When equality occurs, the Cauchy- Schwarz inequality is an equality, which

means II = sn′H
snH

In−1 along the minimal geodesic. Therefore all radial sectional
curvatures are equal to H.

Recall that m = ∆r. From (6.3.3), we get the local Laplacian comparison
for distance functions

∆r ≤ ∆Hr, for all x ∈M \ {q, Cq}. (1.2.10)

The local Laplacian comparison immediately gives us Myers’ theorem [97],
a diameter comparison. Let SnH be the sphere with radius 1/

√
H.

Theorem 1.2.3 (Myers, 1941) If RicM ≥ (n − 1)H > 0, then diam(M) ≤
diam(SnH) = π/

√
H. In particular, π1(M) is finite.
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Proof: If diam(M) > π/
√
H, let q, q′ ∈ M such that d(q, q′) = π/

√
H + ε

for some ε > 0, and γ be a minimal geodesic connecting q, q′ with γ(0) =
q, γ(π/

√
H + ε) = q′. Then γ(t) 6∈ Cq for all 0 < t ≤ π/

√
H. Let r(x) = d(q, x),

then r is smooth at γ(π/
√
H), therefore ∆r is well defined at γ(π/

√
H). By

(1.2.10) ∆r ≤ ∆Hr at all γ(t) with 0 < t < π/
√
H. Now limr→π/

√
H ∆Hr = −∞

so ∆r is not defined at γ(π/
√
H). This is a contradiction.

Equation (1.2.4) also holds when mH = ∆d(x,AH), where AH ⊂ Mn
H is a

hypersurface. Therefore the proof of Theorem 1.2.2 carries over, and we have a
comparison of the mean curvature of level sets of d(x,A) and d(x,AH) when A
and AH are hypersurfaces with mA ≤ mAH and RicM ≥ (n − 1)H. Equation
(1.2.4) doesn’t hold if AH is a submanifold which is not a point or hypersurface,
therefore one needs stronger curvature assumption to do comparison [?].

1.3 Global Laplacian Comparison

The Laplacian comparison (1.2.10) holds globally in various weak senses and
the standard PDE theory carries over. As a result the Laplacian comparison is
very powerful, see next Chapter for some crucial applications.

First we prove an important property about cut locus.

Lemma 1.3.1 For each q ∈M , the cut locus Cq has measure zero.

One can show Cq has measure zero by observing that the region inside the cut
locus is star-shaped [27, Page 112]. The author comes up with the following
argument in proving that Perelman’s l-cut locus [107] has measure zero.

since the L-exponential map is smooth and the l-distance function is locally
Lipschitz. Proof: Recall that if x ∈ Cq, then either x is a (first) conjugate
point of q or there are two distinct minimal geodesics connecting q and x [39],
so x ∈{conjugate locus of q} ∪ {the set where r is not differentiable}. The
conjugate locus of q consists of the critical values of expq. Since expq is smooth,
by Sard’s theorem, the conjugate locus has measure zero. The set where r is
not differentiable has measure zero since r is Lipschitz. Therefore the cut locus
Cq has measure zero.

First we review the definitions (for simplicity we only do so for the Laplacian)
and study the relationship between these different weak senses.

Definition 1.3.2 For a continuous function f on M, q ∈ M , a function fq
defined in a neighborhood U of q, is an upper (lower) barrier of f at q if fq is
C2(U) and

fq(q) = f(q), fq(x) ≥ f(x) (fq(x) ≤ f(x)) (x ∈ U). (1.3.11)

Definition 1.3.3 For a continuous function f on M , we say ∆f(q) ≤ c (∆f(q) ≥
c) in the barrier sense (f is a barrier subsolution to the equation ∆f = c
at q), if for all ε > 0, there exists an upper (lower) barrier fq,ε such that
∆fq,ε(q) ≤ c+ ε (∆f(q) ≥ c− ε).
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This notion was defined by Calabi [25] back in 1958 (he used the terminology
“weak sense” rather than “barrier sense”). A weaker version is in the sense of
viscosity, introduced by Crandall and Lions in [48].

Definition 1.3.4 For a continuous function f on M , we say ∆f(q) ≤ c in
the viscosity sense (f is a viscosity subsolution of ∆f = c at q), if ∆φ(q) ≤ c
whenever φ ∈ C2(U) and (f − φ)(q) = infU (f − φ), where U is a neighborhood
of q.

Clearly barrier subsolutions are viscosity subsolutions.
Another very useful notion is subsolution in the sense of distributions.

Definition 1.3.5 For continuous functions f, h on an open domain Ω ⊂M , we
say ∆f ≤ h in the distribution sense (f is a distribution subsolution of ∆f = h)
on Ω, if

∫
Ω
f∆φ ≤

∫
Ω
hφ for all φ ≥ 0 in C∞0 (Ω).

By [73] if f is a viscosity subsolution of ∆f = h on Ω, then it is also a
distribution subsolution and vice verse, see also [83], [71, Theorem 3.2.11].

For geometric applications, the barrier and distribution sense are very useful
and the barrier sense is often easy to check. Viscosity gives a bridge between
them. As observed by Calabi [25] one can easily construct upper barriers for
the distance function.

Lemma 1.3.6 If γ is minimal from p to q, then for all ε > 0, the function
rq,ε(x) = ε + d(x, γ(ε)), is an upper barrier for the distance function r(x) =
d(p, x) at q.

Since rq,ε trivially satisfies (1.3.2) the lemma follows by observing that it is
smooth in a neighborhood of q.

Upper barriers for Perelman’s l-distance function can be constructed very
similarly.

Therefore the Laplacian comparison (1.2.10) holds globally in all the weak
senses above. Cheeger-Gromoll (unaware of Calabi’s work at the time) had
proved the Laplacian comparison in the distribution sense directly by observing
the very useful fact that near the cut locus ∇r points towards the cut locus [40],
see also [31]. (However it is not clear if this fact holds for Perelman’s l-distance
function.)

One reason why these weak subsolutions are so useful is that they still satisfy
the following classical Hopf strong maximum principle, see [25], also e.g. [31]
for the barrier sense, see [84, 75] for the distribution and viscosity senses, also
[71, Theorem 3.2.11] in the Euclidean case.

Theorem 1.3.7 (Strong Maximum Principle) If on a connected open set,
Ω ⊂ Mn, the function f has an interior minimum and ∆f ≤ 0 in any of the
weak senses above, then f is constant on Ω.

These weak solutions also enjoy the regularity (e.g. if f is a weak sub and
sup solution of ∆f = 0, then f is smooth), see e.g. [57].
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The Laplacian comparison also works for radial functions (functions com-
posed with the distance function). In geodesic polar coordinate, we have

∆f = ∆̃f +m(r, θ)
∂

∂r
f +

∂2f

∂r2
, (1.3.12)

where ∆̃ is the induced Laplacian on the sphere and m(r, θ) is the mean curva-
ture of the geodesic sphere in the inner normal direction. Therefore

Theorem 1.3.8 (Global Laplacian Comparison) If RicMn ≥ (n− 1)H, in
all the weak senses above, we have

∆f(r) ≤ ∆Hf(r) (if f ′ ≥ 0), (1.3.13)
∆f(r) ≥ ∆Hf(r) (if f ′ ≤ 0). (1.3.14)

1.4 Volume Comparison

1.4.1 Volume of Riemannian Manifold

How do we compute the volume of Riemannian manifold? Recall that for a
subset U ⊂ Rn, we define

Vol(U) =
∫
U

1 dvol =
∫
U

1 dx1 · · · dxn,

where x1, · · · , xn are the standard coordinate. One can compute it with different
coordinates by using the change of variable formula.

Lemma 1.4.1 (Change of Variables Formula) Suppose U, V ⊂ Rn and that
ψ : V → U is a diffeomorphism. Suppose ψ(x) = y. Then∫

U

dvol =
∫
U

1 dy1 · · · dyn =
∫
V

|Jac(ψ)| dx1 · · · dxn.

For a general Riemannian manifold Mn, let

ψα : Uα → Rn

be a chart and set Eip = (ψ−1
α )∗( ∂

∂xi
). In general, the Eip’s are not orthonormal.

Let {ek} be an orthonormal basis of TpM . Then

Eip =
n∑
k=1

aikek.

The volume of the parallelepiped spanned by {Eip} is |det(aik)|. Now

gij =
n∑
k=1

aikajk,
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so det(gij) = (det(aij))
2. Thus

Vol(Uα) =
∫
ψ(Uα)

√
|det(gij)| ◦ (ψ−1

α ) dx1 · · · dxn.

By the change of variables formula in Rn (Lemma 1.4.1), this volume is well
defined, namely it is independent of local coordinate charts.

Definition 1.4.2 (Volume Form) Any term

dvol =
√
|det(gij)| ◦ (ψ−1

α ) dx1 · · · dxn

is called a volume density element, or volume form, on M .

Now we can compute the volume of M by partition of unity,

Vol(M) =
∫
M

1 dvol =
∑
α

∫
ψ(Uα)

fα dvol,

where {Uα} are coordinate charts covering M , {fα} is a partition of unity
subordinate to {Uα}.

Since partitions of unity are not practically effective, we look for charts that
cover all but a measure zero set. Since the cut locus has measure zero, the best
is the exponential coordinate. For q ∈Mn, let Dq ⊂ TqM be the segment disk.
Then

expq : Dq →M \ Cq

is a diffeomorphism. We can either use Euclidean coordinates or polar coor-
dinates on Dq. For balls it is convenient to use polar coordinate. From the
diffeomorphism

expq : Dq \ {0} →M \ (Cq ∪ {q}),

set

Ei = (expq)∗(
∂

∂θi
)

and

En = (expq)∗(
∂

∂r
).

To compute the gij ’s, we want explicit expressions for Ei and En. Since expq is
a radial isometry, gnn = 1 and gni = 0 for 1 ≤ i < n. Let Ji(r, θ) be the Jacobi
field with Ji(0) = 0 and J

′

i (0) = ∂
∂θi

. Then

Ei(expq(r, θ)) = Ji(r, θ).
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If we write Ji and ∂
∂r in terms of an orthonormal basis {ek}, we have Ji =

n∑
k=1

aikek. Thus

√
det(gij)(r, θ) = |det(aik)| = ||J1 ∧ · · · ∧ Jn−1 ∧

∂

∂r
||.

Let

A(r, θ) = ||J1 ∧ · · · ∧ Jn−1 ∧
∂

∂r
||, (1.4.1)

the volume density, or volume element, of M is

dvol = A(r, θ) drdθn−1.

Example 1.4.3 Rn has Jacobi equation J ′′ = R(T, J)T . Thus, if J(0) = 0 and
J ′(0) = ∂

∂θi
,

J(r) = r
∂

∂θi
.

Hence the volume element is

dvol = rn−1 drdθn−1.

Example 1.4.4 Sn has Ji(r) = sin(r) ∂
∂θi

. Hence

dvol = sinn−1(r) drdθn−1.

Example 1.4.5 Hn has Ji(r) = sinh(r) ∂
∂θi

. Hence

dvol = sinhn−1(r) drdθn−1.

In fact for space form Mn
H , the volume element is dvol = snn−1

H (r) drdθn−1,
where snH is defined in (1.2.5).

Example 1.4.6 We can compute the volume of unit disk in Rn.

ωn =
∫
Sn−1

∫ 1

0

rn−1 drdθn−1 =
1
n

∫
Sn−1

dθn−1,

noting that∫
Sn−1

dθn−1 =
2(π)n/2

Γ(n/2)
.
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1.4.2 Comparison of Volume Elements

Theorem 1.4.7 Suppose Mn has RicM ≥ (n−1)H. Let dvol = A(r, θ) drdθn−1

be the volume element of M in geodesic polar coordinate at q and let dvolH =
AH(r, θ) drdθn−1 be the volume element of the model space Mn

H . Then

A(r, θ)
AH(r)

is nonincreasing along any minimal geodesic segment from q.(1.4.2)

This follows from the following lemma and the mean curvature comparison.

Lemma 1.4.8 The relative rate of change of the volume element is given by
the mean curvature,

A′

A
(r, θ) = m(r, θ). (1.4.3)

Proof: Let γ be a unit speed geodesic with γ(0) = q, Ji(r) be the Jacobi field
along γ with Ji(0) = 0 and J ′i(0) = ∂

∂θi
for i = 1 · · ·n − 1 and J ′n(0) = γ′(0)

where { ∂
∂θ1

, ∂
∂θ2

, · · · , γ′(0)} is an orthonormal basis of TqM . Recall

A′(r, θ)
A(r, θ)

=
||J1 ∧ · · · ∧ Jn||′

||J1 ∧ · · · ∧ Jn||
.

For any r = r0 such that γ|[0,r0+ε) is minimal, let {J̄i(r0)} be an orthonormal
basis of Tγ(r0)M with J̄n(r0) = γ′(r0). Since we are inside the cut locus, there
are no conjugate points. Therefore, {Ji(r0)} is also a basis of Tγ(r0)M . So we
can write

J̄i(r0) =
n∑
k=1

bikJk(r0).

For all 0 ≤ r < r0 + ε, define

J̄i(r) =
n∑
k=1

bikJk(r).

Then {J̄i} are Jacobi fields along γ which is an orthonormal basis at γ(r0).
Since

||J̄1 ∧ · · · ∧ J̄n|| = det(bij)||J1 ∧ · · · ∧ Jn||

for all r ∈ [0, r0 + ε), and bijs are constant,

||J1 ∧ · · · ∧ Jn||′

||J1 ∧ · · · ∧ Jn||
(r) =

||J̄1 ∧ · · · ∧ J̄n||′

||J̄1 ∧ · · · ∧ J̄n||
(r).

At r0, ||J̄1 ∧ · · · ∧ J̄n||(r0) = 1. Therefore

A′(r, θ)
A(r, θ)

(r0) = ||J̄1 ∧ · · · ∧ J̄n||′(r0)

=
n∑
k=1

||J̄1 ∧ · · · ∧ J̄ ′k ∧ · · · ∧ J̄n||. (1.4.4)
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Since {J̄i(r0)} is an orthonormal basis of Tγ(r0)M we have that

J̄ ′k(r0) =
n∑
l=1

〈J̄ ′k(r0), J̄l(r0)〉J̄l(r0).

Plug this into (1.4.4), we get

A′(r, θ)
A(r, θ)

(r0) =
n∑
k=1

〈J̄ ′k(r0), J̄k(r0)〉 =
n−1∑
k=1

〈∇J̄kγ
′, J̄k〉(r0) = m(r0, γ

′(0)).

Proof of Theorem 1.4.7: By (1.4.3),(
A(r, θ)
AH(r)

)′
=
mAAH −AmHAH

A2
H

= (m−mH)
A(r, θ)
AH(r)

.

The mean curvature comparison (6.3.3) gives m −mH ≤ 0, therefore A(r,θ)
AH(r) is

nonincreasing in r.

1.4.3 Volume Comparison

Integrating (1.4.2) along the sphere directions, and then the radial direction
gives the relative volume comparison of geodesic spheres and balls. Let Γr =
{θ ∈ Sn−1| the normal geodesic γ with γ(0) = x, γ′(0) = θ has d(γ(0), γ(r)) =
r}. Then the volume of the geodesic sphere, S(x, r) = {y ∈ M |d(x, y) =
r}, A(x, r) =

∫
Γr
A(r, θ)dθn−1. Extend A(r, θ) by zero to all Sn−1, we have

A(x, r) =
∫
Sn−1 A(r, θ)dθn−1. Let AH(r) be the volume of the geodesic sphere

in the model space. If A(r0, θ) = 0, then A(r0, θ) = 0 for all r ≥ r0, so (1.4.2)
also holds in the extended region.

Theorem 1.4.9 (Bishop-Gromov’s Relative Volume Comparison) Suppose
Mn has RicM ≥ (n− 1)H. Then

A(x, r))
AH(r))

and
Vol (B(x, r))
VolH(B(r))

are nonincreasing in r. (1.4.5)

In particular,

Vol (B(x, r)) ≤ VolH(B(r)) for all r > 0, (1.4.6)

Vol (B(x, r))
Vol (B(x,R))

≥ VolH(B(r))
VolH(B(R))

for all 0 < r ≤ R, (1.4.7)

and equality holds if and only if B(x, r) is isometric to BH(r).
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Proof:

d

dr

(
A(x, r)
AH(r)

)
=

1
VolSn−1

∫
Sn−1

d

dr

(
A(r, θ)
AH(r)

)
dθn−1 ≤ 0.

The monotonicity of the ratio of volume of balls follows from this and the lemma
below since Vol(B(x, r)) =

∫ r
0
A(x, t)dt.

Lemma 1.4.10 If f(t)/g(t) is nonincreasing in t, with g(t) > 0, then

H(r,R) =

∫ R
r
f(t)dt∫ R

r
g(t)dt

is nonincreasing in r and R.

Proof: We have

∂

∂r
H(r,R) =

−f(r)
∫ R
r
g(t)dt+ g(r)

∫ R
r
f(r)dr(∫ R

r
g(t)dt

)2 .

Now

f(t)
g(t)

≤ f(r)
g(r)

implies

g(r)f(t) ≤ f(r)g(t),

so ∫ R

r

g(r)f(t)dt ≤
∫ R

r

f(r)g(t)dt.

Thus ∂
∂rH(r,R) ≤ 0. Similarly we have ∂

∂RH(r,R) ≤ 0.

Instead of integrating (1.4.2) along the whole unit sphere and/or radial di-
rection, we can integrate along any sector of Sn−1 and/or segment of the radial
direction. Fix x ∈ Mn, for any measurable set B ⊂ M , connect every point
of y ∈ B to x with a minimal geodesic γy such that γy(0) = x, γy(1) = y. For
t ∈ [0, 1], let Bt = {γy(t)|y ∈ B}. Since cut locus Cx has measure zero, Bt is
uniquely determined up to a modification on a null measure set. Integrating
(1.4.2) gives immediately the following localized Bishop-Gromov volume com-
parison [101], see also [130, 35].

Proposition 1.4.11 If RicM ≥ (n− 1)H, then for 0 ≤ t ≤ 1

Vol(Bt) ≥ t
∫
B

AH(td(x, y))
AH(d(x, y))

dvoly. (1.4.8)
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Proof: Since Bt is obtained from B by scaling the radial direction with t,
Vol(Bt) =

∫
exp−1

x (B)∩Dx tA(tr, θ)drdθ, where Dx is the injectivity domain of x

in TxM . From (1.4.2) we have A(tr, θ) ≥ AH(tr)
AH(r) A(r, θ). Therefore

Vol(Bt) ≥ t
∫

exp−1
x (B)∩Dx

AH(tr)
AH(r)

A(r, θ)drdθ = t

∫
B

AH(td(x, y))
AH(d(x, y))

dvoly.

In particular, we have volume comparison for annulus and star-shaped sets.
All these comparisons need to have the same centers or it will depends on the
distance between the centers. When H = 0, we have the following comparison
for nonconcentric balls which does not depends on the distance between the
centers.

Proposition 1.4.12 (Volume Comparison for Nonconcentric Balls) Given
x, y ∈M , 0 < r ≤ R with r + d(x, y) ≤ R, if RicM ≥ 0, then

VolB(y, r)
VolB(x,R)

≥
( r
R

)3n

. (1.4.9)

Proof: We will show that for any 1
2 ≤ α < 1 (so − lnα ≤ 2 ln(2− α)),

VolB(y, r)
VolB(x,R)

≥ αn
( r
R

)3n

.

Let γ : [0, d(x, y)]→M be a minimizing geodesic from x to y. We will construct

a sequence of increasing balls centered on γ. Let k = b ln(1+
d(x,y)
r )

ln(2−α) c + 2 and
yi = γ(d(x, y)+r−(2−α)i−1r) for 1 ≤ i ≤ k−1, yk = x, ri = α(2−α)i−2r, Ri =
(2−α)i−1r. We have B(yi+1, ri+1) ⊂ B(yi, Ri) ⊂ B(x,R) for any 1 ≤ i ≤ k− 1
and ri/Ri = α/(2− α). Now

VolB(yi, Ri)
VolB(x,R)

≥ VolB(yi+1, ri+1)
VolB(x,R)

≥
(

α

2− α

)n VolB(yi+1, Ri+1)
VolB(x,R)

.

Since y1 = y,R1 = r, yk = x, by iteration,

VolB(y, r)
VolB(x,R)

≥
(

α

2− α

)n(k−2) VolB(yk−1, Rk−1)
VolB(x,R)

≥
(

α

2− α

)n(k−2) VolB(yk, rk)
VolB(x,R)

≥
(

α

2− α

)n(k−2) (rk
R

)n
= αnαn(k−2)

( r
R

)n
.
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By the definition of k, αn(k−2) ≥ αn
ln(1+ d(x,y)

r
)

ln(2−α) =
(

r
r+d(x,y)

) −n lnα
ln(2−α) ≥

(
r
R

)2n.

The Bishop-Gromov volume comparison (Theorem 1.4.9) is a powerful result
because it is a global comparison. The volume of any ball is bounded above by
the volume of the corresponding ball in the model, and if the volume of a big
ball has a lower bound, then all smaller balls also have lower bounds. Hence
the volume comparison has many geometric and topological applications. Here
we give two nice simple applications, see Chapter 3 for topological applications.

By Myers’s theorem (Theorem 1.2.3) diamM ≤ diam(SnH) = π/
√
H if RicM ≥

(n−1)H > 0. Cheng [45] gives a characterization of the equality case — a rigid-
ity result.

Theorem 1.4.13 (Cheng’s Maximal Diameter Theorem 1975) Suppose Mn

has RicM ≥ (n−1)H > 0. If diamM = π/
√
H, then M is isometric to the sphere

SnH with radius 1/
√
H.

Proof: Cheng’s original proof uses the rigidity of first eigenvalue comparsion
(see Section 2.4.1). The following proof uses the rigidity of volume compari-
son, due to Shiohama [122]. Let p, q ∈ M have d(p, q) = π/

√
H. By volume

comparison (1.4.7)

VolB(p, π/(2
√
H))

VolM
=

VolB(p, π/(2
√
H))

VolB(p, π/
√
H)

≥ VolHB(π/(2
√
H))

VolHB(π/
√
H)

= 1/2

Thus VolB(p, π/2
√
H) ≥ (VolM)/2. Similarly VolB(q, π/2

√
H) ≥ (VolM)/2.

Since the balls B(p, π/2
√
H) and B(q, π/2

√
H) are disjoint, we have

VolB(p, π/(2
√
H)) = (VolM)/2, (1.4.10)

so we have equality in the volume comparison. By rigidity, B(p, π/(2
√
H)) is

isometric to the upper hemisphere of SnH . Then by (1.4.10) VolM = VolSnH .
Hence M is isometric to the sphere SnH .

Given a rigidity result, one naturally asks if it is stable. Namely what
happens if diameter is close to be maximal? In the sectional curvature case, we
have the beautiful Grove-Shiohama diameter sphere theorem [65], that if Mn

has sectional curvature KM ≥ 1 and diamM > π/2 then M is homeomorphic
to Sn. For Ricci curvature there are manifolds Mn(n ≥ 4) with Ric ≥ n − 1
and diameter arbitrarily close to π which are not homotopic to sphere [3, 102].
On the other hand, these spaces still have very nice structure. If Mn has
RicM ≥ n − 1, and for ε > 0 small, there are k pairs of points pi, qi with
d(pi, qi) ≥ π − ε, i = 1, · · · , k, and |d(pi, pj)− π/2| ≤ ε for i 6= j, then Mn looks
like (in Gromov-Hausdorff sense) a k-fold spherical suspension of a compact
geodesic space. Moreover when k, Mn is diffeomorphic to Sn [34, 35, ?].
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1.5 The Jacobian Determinant of the Exponen-
tial Map

Besides the Bochner’s formula, another basic entity that encodes Ricci curva-
ture is the Jacobian determinant of the exponential map. The two are in fact
equivalent. However, we will derive the equation about the Jacobian determi-
nant of the exponential map directly since it is very geometric and elegant. We
will show the equivalence with the Bochner’s formula at the end of the section.

Let ξ be a vector field on a Riemannian manifold Mn. Consider the family
of maps Tt(x) = T (t, x) = expx(tξ(x)) : Mn → Mn, which moves x along the
geodesic in the direction of ξ(x). Then its differential is given in terms of Jacobi
fields. Indeed, let {ei} be an orthonormal basis of TxMn. Then

dTt|x : TxM
n → TT (t,x)M

n

ei 7→ dTt(ei) = d
ds |s=0Tt(γei(s)),

and Ji(t) = dTt(ei) is the Jacobi field along the geodesic γ(t) = expx(tξ(x))
with Ji(0) = ei, J

′
i(0) = (∇eiξ)(x). Denote by {ei(t)} the orthonormal basis at

γ(t) by parallel translating {ei} from x along γ. Then J(t) = (Jij(t))n×n, with
Jij = 〈Ji, ej〉, is the Jacobian matrix of T , and it satisfies the Jacobi equation

J ′′(t) +K(t)J(t) = 0, (1.5.1)

where K(t) = (Kij(t))n×n with Kij(t) = 〈R(ei(t), γ̇(t))γ̇(t), ej(t)〉γ(t), and
J(0) = In, J

′(0) = ∇ξ(x).
Set J (t, x) = detJ(t, x). Then

J̇ (t, x) = J (t, x)
(

tr(J̇(t, x)J−1(t, x))
)

= J (t, x) (trU(t, x)) ,

where we have denoted by U(t, x) = J̇ ·J−1. Then U̇ = J̈ ·J−1−J̇ ·J−1 ·J̇ ·J−1 =
−K − U2. With this change of variable, (1.5.1) becomes the first order Ricatti
type equation

U̇ +K + U2 = 0. (1.5.2)

By taking trace, we arrive at another important equation involving Ricci cur-
vature:

d

dt
(trU) + tr (U2) + Ric(γ̇, γ̇) = 0. (1.5.3)

When ξ = ∇ψ is a gradient vector field, ∇ξ = Hessψ is symmetric, which im-
plies U(t, x) is symmetric. Therefore we can use the Cauchy-Schwartz inequality,
tr(U2) ≥ (trU)2

n , to deduce

d

dt
(trU) +

(trU)2

n
+ Ric(γ̇, γ̇) ≤ 0. (1.5.4)
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Using trU = J̇
J , (1.5.4) becomes

J̈
J
− (1− 1

n
)(
J̇
J

)2 ≤ −Ric(γ̇, γ̇). (1.5.5)

This can be better formulated using the following notations. Let D(t) =
(J (t))

1
n , l(t) = − logJ (t). Then the above can be rewritten into the following

two important inequalities:

D̈
D
≤ −Ric(γ̇, γ̇)

n
, (1.5.6)

l̈(t) ≥ l̇(t)2

n
+ Ric(γ̇, γ̇). (1.5.7)

By using the fact that K(t) is effectively an (n− 1)× (n− 1) matrix, we can
refine the above estimate by a factor of (n − 1)/n, which will be useful later.
The intuitive idea is that one does not feel the effect of curvature along the
direction of motion (i.e. along geodesics). Choose e1(0) = γ̇(0)/|γ̇(0)|, then

K1j = Kj1 = 0.

Let U11 be the (1, 1) entry of U and U⊥ be the (n−1)× (n−1) matrix obtained
by removing the first row and first column in U . Then

trU = U11 + trU⊥.

Write J = J11 · J⊥ where J11 is obtained by solving the equation

J̇11

J11
= U11, J11(0) = 1,

i.e. J11 = e
R t
0 U11(s)ds. Also let D11 = J11, D⊥ = J

1
n−1
⊥ , l11 = − logJ11 and

l⊥ = − logJ⊥. Since the first row of K(t) is zero, by (1.5.2), U̇11 = −
∑
j U

2
1j ≤

U2
11. Hence

D̈11 = J̈11 ≤ 0, l̈11 ≥ l̇211. (1.5.8)

For the orthogonal part, note that

tr (U2
⊥) = tr(U2)− 2

∑
j

U2
1j + U2

11 ≤ tr(U2)−
∑
j

U2
1j ,

tr U̇⊥ = tr U̇ − U̇11 = tr U̇ +
∑
j

U2
1j .

Hence

tr U̇⊥ + trU2
⊥ + Ric(γ̇, γ̇) ≤ 0.

From

U11 + trU⊥ = trU = (logJ )′ = (logJ11)′ + (logJ⊥)′
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and the choice of U11 we obtain trU⊥ = J̇⊥/J⊥. Thus the same argument as
before gives

D̈⊥
D⊥

≤ −Ric(γ̇, γ̇)
n− 1

, (1.5.9)

l̈⊥ ≥ (l̇⊥)2

n− 1
+ Ric(γ̇, γ̇). (1.5.10)

As before, the above are equivalent to

J̈⊥
J⊥
− (1− 1

n− 1
)(
J̇⊥
J⊥

)2 ≤ −Ric(γ̇, γ̇). (1.5.11)

The fundamental formula (1.5.3) is actually equivalent to the Bochner for-
mula. Philosophically, (1.5.3) is a equation along a geodesic (the Lagrangian
point of view), while the Bochner formula involves its velocity field (the Eule-
rian point of view); hence they are dual to each other. To see the equivalence
directly, put γ(t, x) = expx tξ(x), and let ξ(t, x) be its velocity vector field, i.e.
γ̇(t, x) = ξ(t, γ(t, x)). Since γ is a geodesic, γ̈ = ∂ξ

∂t + ∇ξξ = 0. On the other
hand, the Jacobian map

J(t, x) = dTt(x) : TxM −→ TTt(x)M (1.5.12)

satisfies J̇(t, x) = ∇ξ(t, γ(t, x)) · J(t, x). Hence U(t, x) = J̇J−1 = ∇ξ(t, γ(t, x)).

d

dt
(trU)(t, x) =

d

dt
(div ξ)(t, γ(t, x))

= div
(
∂ξ

∂t
(t, γ(t, x))

)
+ γ̇(t, x) · ∇(div ξ)(t, γ(t, x))

= (−div(∇ξ(ξ) + ξ · ∇(divξ)) (t, γ(t, x)).

Consequently, (1.5.3) implies that(
−div(∇ξξ) + ξ · ∇(divξ) + tr (∇ξ)2 + Ric(ξ, ξ)

)
(t, γ(t, x)) = 0.

When t = 0, this is the Bochner formula for a general vector field. In particular,
when ξ = ∇ψ, we have

−1
2

∆|∇ψ|2 +∇ψ · ∇(∆ψ) + |Hessψ|2 + Ric(∇ψ,∇ψ) = 0,

which is exactly the Bochner formula (1.1.1).

1.6 Characterizations of Ricci Curvature Lower
Bound

Proposition 1.6.1 For a Riemannian manifold (Mn, g), the following are equiv-
alent:

a) RicM ≥ (n− 1)H;
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b) The inequality (1.1.6) holds for all u ∈ C3(M);
c) For every x ∈ M , the mean curvature (Laplacian) comparison (6.3.3)

holds in a neighborhood of x;
d) For every x ∈ M , the volume element comparison (1.4.2) holds in a

neighborhood of x;
e) For every x ∈ M , the local Bishop-Gromov volume comparison (1.4.8)

holds in a neighborhood of x;
f) For D in (1.5.6), D

′′

D ≤ −
(n−1)H

n .
g) For all f ∈ C∞c (M), t > 0, x ∈M ,

|∇(Etf)|2(x) ≤ e−2(n−1)HtEt(|∇f |2)(x). (1.6.1)

Proof: In the previous sections we proved a) implies b), c), d), e) and f). We
will show each b), c), d) ⇒ a), e) ⇒ d) and a) ⇒ g).

b) ⇒ a): Given any x0 ∈ M and v0 ∈ Tx0M , let u be a C3 function
such that ∇u(x0) = v0 and Hessu(x0) = λ0In. For example, in terms of a
geodesics frame at x0 with coordinate {xi}, write v0 =

∑n
i=1 ai

∂
∂xi

. Then
u = λ0

2 (x2
1 + · · · + x2

n) +
∑n
i=1 aixi satisfies the conditions. Plug u into (1.1.1)

and (1.1.6), we have Ric(v0, v0) ≥ (n− 1)H|v0|2, so Ric ≥ (n− 1)H.
d) ⇒ a): The Jacobi fields Ji has the Taylor expansion

Ji(r) = r
∂

∂θi
+
r3

3!
R(∂r,

∂

∂θi
)∂r + · · · ,

plug this into (1.4.1), we have the following Taylor expansion for A,

A(r, θ) = rn−1 − rn+1

6
Ric(∂r, ∂r) + · · · . (1.6.2)

We have same expansion for AH . Since A ≤ AH for all r small, we have
Ric ≥ (n− 1)H.

c) ⇒ a): From (1.4.3) and (1.6.2) one gets the following Taylor expansion
for the mean curvature,

m(r, θ) =
n− 1
r
− r

3
Ric(∂r, ∂r) + · · · . (1.6.3)

Same argument as above gives Ric ≥ (n− 1)H.
e) ⇒ d): Given any point x0 = (r0, θ0) ∈M . Let Bε be the ε-ball at x0. By

(1.4.8)

Vol(Bεt )
Vol(Bε)

≥ t

Vol(Bε)

∫
Bε

AH(td(x, y))
AH(d(x, y))

dvoly.

When ε→ 0, Bε → (r0, θ0), we have

t
A(tr0, θ0)
A(r0, θ0)

≥ tAH(tr0)
AH(r0)

,

which is (1.4.2).
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a)⇒ g): Let ψ(s) = e−2(n−1)HsEs
(
|∇Et−sf |2

)
. Then ψ(0) = |∇Etf |2, ψ(t) =

e−2(n−1)HtEt(|∇f |2). It is enough to show ψ is increasing in s.

ψ′(s) = −2(n− 1)He−2(n−1)HsEs
(
|∇Et−sf |2

)
+e−2(n−1)Hs

[
∆Es

(
|∇Et−sf |2

)
+ 2Es〈∇(−∆Et−sf),∇Et−sf〉

]
.

By Bochner formula (1.1.1) and a),

2〈∇(−∆Et−sf),∇Et−sf〉
= 2|HessEt−sf |2 + 2Ric(∇Et−sf,∇Et−sf)−∆|∇Et−sf |2

≥ 2(n− 1)H|∇Et−sf |2 −∆|∇Et−sf |2.

Therefore ψ′(s) ≥ 0.

and Cheeger-Colding’s segment inequality [34, Theorem 2.11], see also [31].
Given a function g ≥ 0 on Mn, put

Fg(x1, x2) = inf
γ

∫ l

0

g(γ(s))ds,

where the inf is taken over all minimal geodesics γ from x1 to x2 and s denotes
the arclength.

Theorem 1.6.2 (Segment Inequality, Cheeger-Colding 1996) Let RicMn ≥
−(n− 1), A1, A2 ⊂ B(p, r), and r ≤ R. Then∫

A1×A2

Fg(x1, x2) ≤ c(n,R) · r · (Vol(A1) + Vol(A2)) ·
∫
B(p,2R)

g, (1.6.4)

where c(n,R) = 2 sup0< s
2≤u≤s,0<s<R

Vol−1(∂B(s))
Vol−1(∂B(u)) .

The segment inequality shows that if the integral of g on a ball is small then
the integral of g along almost all segments is small. It also implies a Poincaré
inequality of type (1, p) for all p ≥ 1 for manifolds with lower Ricci curvature
bound [24]. In particular it gives a lower bound on the first eigenvalue of the
Laplacian for the Dirichlet problem on a metric ball; compare [79].

1.7 Characterization of Warped Product

Definition 1.7.1 Given two Riemannian manifolds (Bn, gM ), (Fm, gF ) and a
positive smooth function f on B, the warped product metric on B×F is defined
by

g = gB + f2gF . (1.7.1)

We denote it as B ×f F .
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Warped product metrics are useful in many constructions since quantities
like curvature are easy to compute. Many interesting examples are constructed
by multiple warped product, see e.g. [16, Chapter 9, J], [108], [134, ?]. One
especially important and simple case is when B is one dimensional. One has
the following nice characterization about these warped product. It goes back to
Brinkmann [22], see also [16, 9.117], [34].

Theorem 1.7.2 A Riemannian manifold (M, g) is a warped product ((a, b)×f
N, dr2 + f2(r)gN ) if and only if there is a nontrivial smooth function u on M
such that

∇u 6= 0, Hessu = hg

for some function h : M −→ R. (f = u′ up to a multiplicative constant)

Proof: If g = dr2 + f2(r)g0 simply take u(r) =
∫
f(t)dt. Then u′(r) = ∂

∂ru =
f(r) > 0, Hessu = u′′(r)g = f ′(r)g.

Conversely, if u satisfies Hessu = hg, then for any vector field X,

X

(
1
2
|∇u|2

)
= Hessu(X,∇u) = h · g(X,∇u)

which shows that |∇u| is constant on level sets of u. Let N = u−1(c), a level
set of u, gN the metric restricted to this level set, and r the signed distance to
N defined by requiring that ∇r and ∇u point in the same direction. Then it is
easy to see that u is a function of r: u = u(r). Hence,

∇u = u′∇r, Hessu = u′′dr2 + u′Hess r.

Comparing with the equation Hessu = hg shows that h = u′′ and that

Hess r =
u′′

u′
g

on the orthogonal complement of ∇r. On the other hand, g = dr2 + gr with gr
the restriction of g on the level set of r. Since

L∇rgr = 2Hess r = 2
u′′

u′
gr.

Again the Hessian here is restricted to the orthogonal complement of ∇r. Thus,
g = dr2 + (ku′)2gN where ku′(0) = 1.

Corollary 1.7.3 (M, g) is a Riemannian product ((a, b)×N, dr2 + gN ) if and
only if there is a nontrivial smooth function u on M such that ∇u 6= 0, Hessu =
0.

Of course this follows from the de Rham decomposition theorem since Hessu = 0
is equivalent to ∇u is a parallel vector field. This characterization is useful in
splitting and almost splitting results.
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If a is finite and limr→a f = 0, then the warped product metric ((a, b) ×f
F, dr2 + f2(r)gF ) is smooth at r = a if and only if F = Sn−1, f ′(a) = 1 and f
is odd at a. If limr→a f > 0 (and also at b if b is finite), in order to be smooth,
the identification on the boundary of [a, b]× F or [0,∞)× F can be: either an
isometry of order two of {a}×F with itself acting freely (and similarly at b if b
is finite), and then f has to be even at a (and similarly at b); or an isometry of
{a}×F with {b}×F and then f has to be the restriction of a smooth function
on R satisfying f(a)f(r + b− a) = f(b)f(t).

Example 1.7.4 Spaces with constant sectional curvature can be viewed as var-
ious warped product:

Rn = R×1 Rn−1 with u = x and Hessu = 0;
Rn \ 0 = (0,∞)×r Sn−1 with u = 1

2r
2 and Hessu = g;

Sn \ {x,−x} = (0, π)×sin r Sn−1 with u = − cos r and Hessu = cos rg;
RPn \ {x,Cx} = (0, π2 ) ×sin r Sn−1 with u = − cos r and Hessu = cos rg,

where Cx is the cut-locus of x;
Hn = R×et Rn−1 with u = et and Hessu = etg;
Hn \ 0 = (0,∞)×sinh r Sn−1 with u = cosh r and Hessu = cosh rg.

Corollary 1.7.5 (M, g) has constant sectional curvature H if and only if there
is a nontrivial smooth function u on M such that Hessu = −Hug.



Chapter 2

Geometry of Manifolds
with Ricci Curvature Lower
Bound

2.1 Cheeger-Gromoll’s Splitting Theorem

The Cheeger-Gromoll’s splitting theorem [40] is the most important rigidity re-
sult for manifolds with nonnegative Ricci curvature. It plays a very fundamental
and important role in studying manifolds with nonnegative Ricci curvature and
later, manifolds with general Ricci lower bound. In a certain sense, the splitting
theorem is an analog of the maximal diameter theorem (Theorem 1.4.13) in the
case of nonnegative Ricci curvature and noncompact spaces.

Definition 2.1.1 A normalized geodesic γ : [0,∞) → M is called a ray if
d(γ(0), γ(t)) = t for all t. A normalized geodesic γ : (−∞,∞) is called a line if
d(γ(t), γ(s)) = s− t for all s ≥ t.

Example 2.1.2 A paraboloid has rays but no lines. A cylinder has lines. A
surface of revolution has lines.

Definition 2.1.3 M is called connected at infinity if for all K ⊂ M, K com-
pact, there is a compact set K̃ ⊃ K such that every two points in M − K̃ can
be connected in M −K.

A well known fact about existence of rays and lines is the following.

Lemma 2.1.4 If M is noncompact then for each p ∈ M there is a ray γ with
γ(0) = p. If M is disconnected at infinity then M has a line.

When a noncompact manifold has a line, it has “maximal diameter”, so it
has strong rigidity when Ricci curvature is nonnegative.

27
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Theorem 2.1.5 (Splitting Theorem, Cheeger-Gromoll 1971) Let Mn be
a complete Riemannian manifold with RicM ≥ 0. If M has a line, then M is
isometric to the product R×Nn−1, where N is an n− 1 dimensional manifold
with RicN ≥ 0.

To use the “big” diameter, it is natural to consider the distance function
from infinity, of course we need to renormalize it so it is finite. This is the so
called the Busemann functions.

Definition 2.1.6 If γ : [0,∞)→M is a ray, set bγt (x) = t− d(x, γ(t)).

Lemma 2.1.7 We have

1. |bγt (x)| ≤ d(x, γ(0)).

2. For x fixed, bγt (x) is nondecreasing in t.

3. |bγt (x)− bγt (y)| ≤ d(x, y).

Proof: (1) and (3) are the triangle inequality. For (2), suppose s < t. Then

bγs (x)− bγt (x) = (s− t)− d(x, γ(s)) + d(x, γ(t))
= d(x, γ(t))− d(x, γ(s))− d(γ(s), γ(t)) ≤ 0

Definition 2.1.8 If γ : [0,∞)→M is a ray, the Busemann function associated
to γ is

bγ(x) = lim
t→∞

bγt (x) = lim
t→∞

(t− d(x, γ(t))).

By the above, Busemann functions are well defined and Lipschitz continuous.
Intuitively, bγ(x) is the distance from γ(∞). Also, since

bγ(γ(s)) = lim
t→∞

t− d(γ(s), γ(t))

= lim
t→∞

t− (t− s) = s,

bγ(x) is linear along γ(t).

Example 2.1.9 In Rn, the rays are γ(t) = γ(0) + γ′(0)t. In this case, bγ(x) =
〈x− γ(0), γ′(0)〉. The level sets of bγ are hyperplanes.

The local Laplacian comparison (1.2.10) gives the following key estimate.

Proposition 2.1.10 If M has RicM ≥ 0 and γ is a ray on M then ∆(bγ) ≥ 0
in the barrier sense (see Definition 1.3.3).
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Proof: For each q ∈ M, we construct a family of lower barrier functions of bγ

at q as follows.
Pick any ti →∞. For each i, connect q and γ(ti) by a minimal geodesic σi.

Then {σ′i(0)} ⊂ Sn−1, so there is a subsequential limit v0 ∈ TqM . We call the
geodesic γ̃ with γ̃′(0) = v0 an asymptotic ray of γ at q; note that in general
different sequence of ti →∞ might give different asymptotic rays.

Define the function ht(x) = t−d(x, γ̃(t))+ bγ(q). Since γ̃ is a ray, the points
q = γ̃(0) and γ̃(t) are not cut points to each other. Hence the function d(x, γ̃(t))
is smooth in a neighborhood of q and thus so is ht. Clearly ht(q) = bγ(q), thus
to show ht is a lower barrier for bγ we only need to show ht(x) ≤ bγ(x). To see
this, first note that for any s,

−d(x, γ̃(t)) ≤ −d(x, γ(s)) + d(γ̃(t), γ(s))
= s− d(x, γ(s))− s+ d(γ̃(t), γ(s)).

Taking s→∞, this gives

−d(x, γ̃(t)) ≤ bγ(x)− bγ(γ̃(t)). (2.1.1)

Also

bγ(q) = lim
i→∞

(ti − d(q, γ(ti)))

= lim
i→∞

(ti − d(q, σi(t))− d(σi(t), γ(ti)))

= −d(q, γ̃(t)) + lim
i→∞

(ti − d(σi(t), γ(ti)))

= −t+ bγ(γ̃(t)). (2.1.2)

Combining (2.1.1) and (2.1.2) gives

ht(x) ≤ bγ(x), (2.1.3)

so ht is a lower barrier function for bγ at q.
Finally, since RicM ≥ 0, by the local Laplacian comparison (1.2.10)

∆(ht(x)) = −∆(d(x, γ̃(t))) ≥ − n− 1
d(x, γ̃(t))

,

which tends to 0 as t→∞. Thus ∆(bγ) ≥ 0 in the barrier sense.

With this estimate, the maximal principle (Theorem 1.3.7) and the regularity
result for harmonic functions immediately gives us that the Busemann functions
are smooth and harmonic. Furthermore we show the norm of its gradient is
constant 1; this together with Bochner formula finishes the proof of the splitting
theorem.
Proof of Theorem 2.1.5. Denote by γ+ and γ− the two rays which form the
line γ and let b+ and b− denote their Busemann functions.

Observe that

b+(x) + b−(x) = lim
t→∞

(t− d(x, γ+(t))) + lim
t→∞

(t− d(x, γ−(t)))

= lim
t→∞

2t− (d(x, γ+(t)) + d(x, γ−(t)))

≤ 2t− d(γ+(t), γ−(t)) = 0.
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Since b+(γ(0)) + b−(γ(0)) = 0, b+ + b− has a maximal at γ(0). Also Proposi-
tion 2.1.10 gives

∆(b+ + b−) = ∆b+ + ∆b− ≥ 0.

By the strong maximal principle (Theorem 1.3.7) b+ + b− ≡ 0. But then b+ =
−b−. Thus

0 ≤ ∆b+ = −∆b− ≤ 0,

so both b+ and b− are smooth by elliptic regularity.
Moreover, for any point q ∈M we can consider asymptotic rays γ̃+ and γ̃−

to γ+ and γ− and denote their Busemann functions by b̃+ and b̃−. From (2.1.3)
it follows that

b̃+(x) + b+(q) ≤ b+(x). (2.1.4)

The next step is to show that this inequality is in fact an equality when γ+

extends to the line.
First we show that the two asymptotic rays γ̃+ and γ̃− form a line. By

triangle inequality, for any t

d(γ̃+(s1), γ̃−(s2)) ≥ d(γ̃−(s2), γ+(t))− d(γ̃+(s1), γ+(t))
= (t− d(γ̃+(s1), γ+(t)))− (t− d(γ̃−(s2), γ+(t))),

so by taking t→∞ we have

d(γ̃+(s1), γ̃−(s2)) ≥ b+(γ̃+(s1))− b+(γ̃−(s2))
= b+(γ̃+(s1)) + b−(γ̃−(s2))
≥ b̃+(γ̃+(s1)) + b+(q) + b̃−(γ̃−(s2)) + b−(q)
= s1 + s2.

Thus any asymptotic ray to γ+ forms a line with any asymptotic ray to γ−.
Applying the same argument given above for b+ and b− we see that b̃+ = −b̃−.
By applying (2.1.4) to b−

−b̃−(x)− b−(q) ≤ −b−(x).

Substituting b+ = −b− and b̃+ = −b̃− we have

b̃+(x) + b+(q) ≥ b+(x).

This along with (2.1.4) gives

b̃+(x) + b+(q) = b+(x).

Thus, b̃+ and b+ differ only by a constant. Clearly, at q the derivative of b̃+

in the direction of (γ̃+)′(0) is 1. Since b̃+ has Lipschitz constant 1, this implies
that ∇b+(q) = (γ̃+)′(0) and |∇b+| ≡ 1. Apply the Bochner formula (1.1.1) to
b+ we have

0 = |Hess b+|2 + 〈∇b+,∇(∆b+)〉+ Ric(∇b+,∇b+).
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Since ∆b+ = 0 and Ric ≥ 0 we then have that Hess b+ = 0 which, along with
the fact that |∇b+| = 1 implies that M splits isometrically in the direction of
∇b+.

Cheeger-Gromoll’s splitting theorem has many geometric and topological
applications. It also has several generalizations. See Sections 3.2.2, ??.

2.2 Gradient Estimate

2.2.1 Harmonic Functions

For a complete manifold Mn with RicM ≥ (n − 1)H > 0, there are no (non-
trivial) harmonic functions since it’s closed. For noncompact manifolds, there
are in general positive harmonic functions. Using Bochner’s formula, maximal
principle, cut-off function and Laplacian comparison Yau proved a gradient es-
timate for log u, where u is a positive harmonic function [146]. The following
version is from an improved estimate given by Li-Wang [80].

Theorem 2.2.1 (Gradient Estimate, Yau 1975, Li-Wang 2002) Let Mn

be a complete Riemannian manifold with RicMn ≥ −(n− 1)H2(H ≥ 0). If u is
a positive harmonic function defined on the closed ball B(q, 2R) ⊂M . Then

|∇(log u)(x)| ≤ (n− 1)H + c(n,H)R−1 on B(q,R). (2.2.5)

In particular, for positive harmonic function u defined on M ,

|∇(log u)(x)| ≤ (n− 1)H. (2.2.6)

Estimate (2.2.6) is optimal. When equality occurs, it implies strong rigidity:
the manifold is a warped product, see [80]. When H = 0, (2.2.6) gives the
following Loiuville type result.

Corollary 2.2.2 Let Mn be a complete Riemannian manifold with RicMn ≥ 0,
then all positive harmonic functions are constant. In particular, all bounded
harmonic functions are constant.

Proof of Theorem 2.2.1: Let h = log u. Then ∇h = ∇u
u ,∆h = ∆u

u −
∣∣∇u
u

∣∣2 =
−|∇h|2. Apply the Bochner formula (1.1.1) to the function h we have

1
2

∆|∇h|2 = |Hessh|2 + 〈∇h,∇(∆h)〉+ Ric(∇h,∇h)

≥ |Hessh|2 − 〈∇h,∇(|∇h|2)〉 − (n− 1)H2|∇h|2. (2.2.7)

For the Hessian term one could use the Schwarz inequality

|Hessh|2 ≥ (∆h)2

n
. (2.2.8)

Indeed, when H = 0, this estimate is enough. For H > 0, using this estimate
one would get (n(n− 1))

1
2 instead of n− 1 in (2.2.6). To get the best constant
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for H > 0, note that (2.2.8) is only optimal when Hessian at all directions
are same. Harmonic functions in the model spaces are radial functions, so
their Hessian along the radial direction would be different from the spherical
directions. Therefore one computes the norm by separating the radial direction.
Let {ei} be an orthonormal basis with e1 = ∇h

|∇h| , the potential radial direction,
denote hij = Hessh(ei, ej). We compute

|Hessh|2 =
∑
i,j

h2
ij

≥ h2
11 + 2

n∑
j=2

h2
1j +

n∑
j=2

h2
jj

≥ h2
11 + 2

n∑
j=2

h2
1j +

(∆h− h11)2

n− 1

= h2
11 + 2

n∑
j=2

h2
1j +

(|∇h|2 + h11)2

n− 1

≥ n

n− 1

n∑
j=1

h2
1j +

1
n− 1

|∇h|4 +
2

n− 1
|∇h|2h11.

Now h11 = 1
|∇h|2 〈∇∇h∇h,∇h〉 = 1

2|∇h|2 〈∇|∇h|
2,∇h〉, h1j = 1

|∇h| 〈∇ej∇h,∇h〉 =
1

2|∇h|ej(|∇h|
2). Therefore

|Hessh|2 ≥ n

4(n− 1)
|∇|∇h|2|2

|∇h|2
+
|∇h|4 + 〈∇|∇h|2,∇h〉

n− 1
, (2.2.9)

and equality holds if and only if Hessh are same on the level set of h, i.e.

Hessh = −|∇h|
2

n− 1

(
g − 1
|∇h|2

dh⊗ dh
)
.

Plug (2.2.9) into (2.2.7) we get

1
2

∆|∇h|2 ≥ n

4(n− 1)
|∇|∇h|2|2

|∇h|2
+
|∇h|4

n− 1
− n− 2
n− 1

〈∇|∇h|2,∇h〉

−(n− 1)H2|∇h|2. (2.2.10)

If |∇h|2 achieves a maximum inside B(q, 2R) then we are done. Assume |∇h|(q0)
is the maximum for some q0 ∈ B(q, 2R), then ∇|∇h|2(q0) = 0,∆|∇h|2(q0) ≤ 0.
Plug these into (2.2.10) gives

0 ≥ |∇h|
4

n− 1
− (n− 1)H2|∇h|2.

Hence |∇h| ≤ (n− 1)H.
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In general the maximum could occur at the boundary and one has to use
a cut-off function to force the maximum is achieved in the interior. Let f :
[0, 2R]→ [0, 1] be a smooth function with

f |[0,R] ≡ 1, suppf ⊂ [0, 2R), (2.2.11)

−cR−1f1/2 ≤ f ′ ≤ 0, (2.2.12)
|f ′′| ≤ cR−2, (2.2.13)

where c > 0 is a universal constant. Let φ : B(q, 2R) → [0, 1] with φ(x) =
f(r(x)), where r(x) = d(x, q) is the distance function. Set G = φ|∇h|2. Then G
is nonnegative on M and has compact support in B(q, 2R). Therefore it achieves
its maximum at some point q0 ∈ B(q, 2R). We can assume r(q0) ∈ [R, 2R) since
if q0 ∈ B(q,R), then |∇h|2 achieves maximal at q0 on B(q,R) and previous
argument applies.

If q0 is not a cut point of q then φ is smooth at q0 and we have

∆G(q0) ≤ 0, ∇G(q0) = 0. (2.2.14)

At the smooth point of r, ∇G = ∇φ|∇h|2 + φ∇|∇h|2,

∆G = ∆φ|∇h|2 + 2〈∇φ,∇|∇h|2〉+ φ∆|∇h|2.

Using (2.2.10), (2.2.14) and express |∇h|2,∇|∇h|2 in terms of G,∇G we get,
At the maximal point q0 of G,

0 ≥ ∆G(q0) ≥ ∆φ
φ
G− 2

|∇φ|2

φ2
G+

n

2(n− 1)
|∇φ|2

φ2
G+

2
n− 1

G2

φ

+
2(n− 2)
n− 1

〈∇h,∇φ〉G
φ
− 2(n− 1)H2G. (2.2.15)

Since φ(x) = f(r(x)) is a radial function, |∇φ| = |f ′|, by (2.2.12),

〈∇h,∇φ〉 ≥ −|∇h||∇φ| = −G 1
2
|∇φ|
φ1/2

≥ −G 1
2
c

R
.

Also ∆φ = f ′∆r + f ′′. Since f ′ ≤ 0, by the Laplacian comparison (1.2.10) and
(2.2.13)

∆φ ≥ f ′∆Hr − cR−2,

where ∆Hr = (n − 1)H coth(Hr), which is ≤ (n − 1)H coth(HR) on [R, 2R].
Hence

∆φ ≥ −cR−1
(
(n− 1)H coth(HR) +R−1

)
≥ −cR−1

[
(n− 1)(2R−1 + 4H) +R−1

]
Multiply (2.2.15) by (n−1)φ

G and plug these in, we get

0 ≥ 2G− 2(n− 2)
c

R
G

1
2

− c

R

(
(n− 1)(2n− 1)

R
+ 4(n− 1)2H +

(
3n
2
− 2
))
− 2(n− 1)2H2.
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Solving this quadratic inequality gives

(G(q0))
1
2 ≤ (n− 1)H + c(n,H)R−1. (2.2.16)

Therefore

sup
B(q,R)

|∇h| = sup
B(q,R)

G1/2 ≤ sup
B(q,2R)

G1/2 ≤ (n− 1)H + c(n,H)R−1.

If q0 is in the cut locus of q, use the upper barrier rq0,ε(x) for r(x) and let ε→ 0
gives the same estimate.

Similar estimate also holds for positive functions u with ∆u = K(u), see e.g.
[31]. See [?, 21, 96] for generalizations.

2.2.2 Heat Kernel

2.3 First Eigenvalue and Heat Kernel Compar-
ison

Given a compact Riemannian manifold Mn, let

L2(M) = {φ measurable function on M |
∫
M

|φ|2dvol < +∞}.

With the inner product and induced norm given by

(φ, ψ) =
∫
M

φψ dvol, ‖φ‖2 = (φ, φ),

L2(M) is a Hilbert space.
When M is connected and closed, λ ∈ R is an eigenvalue of ∆ if there is a

nontrivial φ ∈ C2(M) such that

∆φ = −λφ. (2.3.1)

When M has boundary, ∂M 6= 0, M̄ is compact and connected, λ is a
Dirichlet eigenvalue if there is a nontrivial φ ∈ C2(M)∩C0(M̄) satisfying (2.3.1)
and φ|∂M = 0; λ is a Neumann eigenvalue if there is a nontrivial φ ∈ C2(M) ∩
C1(M̄) satisfying (2.3.1) and ∂

∂nφ|∂M = 0, where n is the outward unit normal
vector field on ∂M .

From (2.3.1) (and with these boundary conditions)

λ = ‖φ‖−2

∫
M

|∇φ|2dvol ≥ 0.

Hence λ = 0 if and only if the eigenfuctions are constant functions.
The set of eigenvalues, listed with multiplicity, consists of a sequence

0 ≤ λ1 ≤ λ2 ≤ · · · ↑ +∞,
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which represent the energy levels, so the metaphysical principle is that smaller
spaces correspond to larger eigenvalues.

By the mini-max principle, the first eigenvalue has the following upper
bound,

λ1 ≤ ‖φ‖−2

∫
M

|∇φ|2dvol (2.3.2)

for all φ ∈ H1
2 (M), φ 6= 0. Here H1

2 (M) denotes the completion of C∞0 (M)
with respect to the norm ∫

M

(|φ|2 + |∇φ|2)dvol.

Lower bound on the first eigenvalue is especially useful since it gives Poincaré
inequality.

2.3.1 First Nonzero Eigenvalue of Closed Manifolds

For closed manifold, λ = 0 is alway an eigenvalue (with multiplicity one). In
this case we denote λ1 the first nonzero eigenvalue. An immediate consequence
of the Bochner inequality (1.1.5) is the Lichnerowicz first eigenvalue comparison
[82], with equality characterized by Obata [100].

Theorem 2.3.1 Let Mn be a complete Riemannian manifold with Ric ≥ (n−
1)H > 0. Then

λ1(Mn) ≥ λ1(Mn
H) = nH. (2.3.3)

Moreover, equality holds if and only if M is isometric to Mn
H .

Proof: By Myers’ theorem (Theorem 1.2.3) M is compact. Applying (1.1.6) to
an eigenfunction u of λ1 gives

1
2

∆|∇u|2 ≥ λ2
1u

2

n
+ ((n− 1)H − λ1) |∇u|2. (2.3.4)

Integrating over M , we have

0 ≥
∫
M

(
λ2

1u
2

n
+ ((n− 1)H − λ1) |∇u|2

)
dvol.

Since
∫
M
|∇u|2dvol = λ1

∫
M
u2dvol and u 6≡ constant, we obtain (2.3.3).

Equality in (2.3.3) implies equality in (2.3.4) on all of M . Therefore Hessu =
hIn for some h ∈ C∞(M). Now nh = trHessu = ∆u = −λ1u, so h = −Hu. By
Theorem 1.7.2, M is isometric to Mn

H .

Stability case!
The estimate (2.3.3) does not give any information when H ≤ 0. In this

case Li-Yau’s method of getting a gradient estimate on the first eigenfunction
by using the Bochner formula and maximal principle gives estimates on λ1.
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When H = 0, Zhong and Yang [148], improving an earlier estimate of Li and
Yau [81], obtained a sharp estimate. The equality case is characterized by Hang
and Wang [69]. From our slightly modified proof below, the equality case follows
quickly.

Theorem 2.3.2 If Mn is a closed compact Riemannian manifold with Ric ≥ 0,
then

λ1(Mn) ≥ π2

d2
M

, (2.3.5)

where dM is the diameter of M . Moreover, equality holds if and only if M is
isometric to S1 with radius dM

π .

Proof: Let u be an eigenfunction with ∆u = −λ1u. Since λ1 > 0,
∫
M
u dvol =

0. We can assume that

1 = max
M

u > min
M

u = −k, 0 < k ≤ 1.

For small ε > 0, let (the oscillation of u from the midpoint of its range, suitably
normalized)

vε =
u− 1−k

2

(1 + ε) 1+k
2

,

then {
∆vε = −λ1(vε + aε), aε = 1−k

1+k ·
1

1+ε ,

maxM vε = 1
1+ε , minM vε = − 1

1+ε .
(2.3.6)

Set vε = sin θε. The function θε = sin−1 vε has its range in [−π2 + δ, π2 − δ],
where δ is specified by

sin
(π

2
− δ
)

=
1

1 + ε
.

Then ∇θε =
∇vε√
1− v2

ε

and

∆θε =
∆vε√
1− v2

ε

+
vε|∇vε|2

(
√

1− v2
ε )3

=
−λ1(vε + aε) + vε|∇θε|2√

1− v2
ε

= −λ1(tan θε + aε sec θε) + tan θε|∇θε|2. (2.3.7)

Now, by the Bochner’s formula (1.1.1), we have

1
2

∆|∇θε|2 = |Hess θε|2+〈∇θε,∇∆θε〉+Ric(∇θε,∇θε) ≥ 〈∇θε,∇∆θε〉.(2.3.8)

From (2.3.7),

∇∆θε = sec2 θε[−λ1(1 + aε sin θε) + |∇θε|2]∇θε + tan θε∇|∇θε|2. (2.3.9)
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At the maximal point of |∇θε|2, ∆|∇θε|2 ≤ 0,∇|∇θε|2 = 0. Hence evaluate
(2.3.8) at the maximal point of |∇θε|2 gives

0 ≥ sec2 θε[−λ1(1 + aε sin θε) + |∇θε|2]|∇θε|2.

Namely

|∇θε|2 ≤ λ1(1− aε sin θε) ≤ λ1(1 + aε) (2.3.10)

at the maximal point of |∇θε|2, hence everywhere (for the second inequality).
Now, let γ be the shortest geodesic from the minimal point of θε to the

maximal point. Then

dM
√
λ1(1 + aε) ≥

∫
γ

√
λ1(1 + aε)dt ≥

∫
γ

|∇θε|dt

≥
∫ π

2−δ

−π2 +δ

dθε = π − 2δ. (2.3.11)

Taking ε to zero, we derive that

dM
√
λ1(1 + a) ≥ π,

with a = 1−k
1+k . This gives us the optimal estimate when a = 0, but weaker than

the desired estimate by a factor of 1
1+a when a 6= 0. From now on, we assume

0 < a < 1.
The estimate (2.3.10) can not be improved when the righthand side is inde-

pendent of the points. To get a more precise estimate for |∇θε|2, the estimate
will have to be a function. Motivated from (2.3.10), we look for estimate in the
form of λ1(1 + aεφ(θ)). For this purpose, we consider

h(θ) = max
x∈M,θε(x)=θ

|∇θε|2.

Then h(θ) ∈ C0
([
−π2 + δ, π2 − δ

])
and h(−π2 + δ) = h(π2 − δ) = 0 since −π2 + δ

and π
2 − δ are minimum and maximum points of θε respectively. Now define

φ(θ) ∈ C0
([
−π2 + δ, π2 − δ

])
so that

h(θ) = λ1(1 + aεφ(θ)), (2.3.12)

and the goal is to get an estimate on φ(θ).
By (2.3.10), h(θ) ≤ λ1(1 + aε), so φ(θ) ≤ 1. Since h(θ) vanishes at the

end points of the interval
[
−π2 + δ, π2 − δ

]
, φ(−π2 + δ) = φ(π2 − δ) < −1. Since

φ is only continuous, we will get an estimate on its upper barrier (see Defini-
tion 1.3.2).

Using the Bochner formula and maximal principle again we get the following
key estimate for upper barrier of φ.

Lemma 2.3.3 Let y(θ) be an upper barrier function of φ(θ) at θ0 ∈
(
−π2 + δ, π2 − δ

)
.

Moreover, y′(θ0) ≥ 0 and |y(θ0)| ≤ 1. Then

y′′(θ0)− 2 tan θ0 · y′(θ0)− 2 sec2 θ0 · y(θ0) ≥ −2 tan θ0 · sec θ0. (2.3.13)
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The proof of the lemma will be deferred at the end. The lemma motivates
us to consider the solution of the ODE

y′′(θ)− 2 tan θ · y′(θ)− 2 sec2 θ · y(θ) = −2 tan θ · sec θ. (2.3.14)

Rewrite this as

(y′ − 2 tan θy)′ = −2 tan θ · sec θ,

we find the general solutions are

y = −2 tan θ · sec θ + c1(θ sec2 θ + tan θ) + c2 sec2 θ.

In order for the limits of the solutions to exist at θ = −π2 ,
π
2 , we have to let

c2 = 0, c1 = 4
π . This leads us to ψ : [−π2 ,

π
2 ]→ R,{

ψ(θ) = 4
π (θ sec2 θ + tan θ)− 2 tan θ · sec θ, θ ∈

(
−π2 ,

π
2

)
ψ
(
π
2

)
= 1, ψ

(
−π2
)

= −1

So ψ satisfies the ODE (2.3.14) and is an odd function which is continuous on
[−π2 ,

π
2 ]. We computer ψ′(θ) = 2 sec3 θ

[
4
π (cos θ + θ sin θ)− 1− sin2 θ

]
> 0 on(

−π2 ,
π
2

)
. Hence |ψ(θ)| ≤ 1.

Now we show

φ(θ) ≤ ψ(θ) on [−π
2

+ δ,
π

2
− δ]. (2.3.15)

Otherwise,
max

θ∈[−π2 +δ,π2−δ]
(φ(θ)− ψ(θ)) = b > 0.

Since φ(−π2 + δ) = φ(π2 − δ) < −1 and |ψ(θ)| ≤ 1, the maximum is achieved
at an interior point θ0 ∈

(
−π2 + δ, π2 − δ

)
. Then y(θ) = ψ(θ) + b is an upper

barrier of φ(θ) at θ0. Clearly y′(θ0) ≥ 0. Moreover

−1 ≤ ψ(θ0) ≤ y(θ0) = ψ(θ0) + b = φ(θ0) ≤ 1.

Hence Lemma 2.3.3 yields

φ(θ0) = y(θ0) ≤ sin θ0 − sin θ0 cos θ0 y
′(θ0) +

1
2

cos2 θ0 y
′′(θ0)

= sin θ0 − sin θ0 cos θ0 ψ
′(θ0) +

1
2

cos2 θ0 ψ
′′(θ0)

= ψ(θ0)

which contradicts to b > 0.
Now we can finish the proof of the theorem. By (2.3.12), (2.3.15), we have

|∇θε|2 ≤ λ1(1 + aεψ(θε)).
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Choosing γ as before, we obtain

dM
√
λ1 ≥

∫
γ

√
λ1dt ≥

∫ π
2−δ

−π2 +δ

dθ√
1 + aεψ(θ)

=
∫ π

2−δ

0

(
1√

1 + aεψ(θ)
+

1√
1− aεψ(θ)

)
dθ

= 2
∫ π

2−δ

0

(
1 +

∞∑
k=1

(4k − 1)!!
(4k)!!

a2k
ε ψ

2k(θ)

)
dθ

≥ π − 2δ +
3
4
a2
ε

∫ π
2

0

ψ2(θ)dθ.

Letting ε→ 0+, hence δ → 0, we get

dM
√
λ1 ≥ π +

3
4
a2

∫ π
2

0

ψ2(θ)dθ.

Therefore, λ1 ≥ π2

d2M
and the inequality is strict unless a = 0.

Now when a = 0 and λ1 = π2

d2M
, the inequalities (2.3.11) (2.3.10) (2.3.8) all

become equalities as ε → 0. Therefore we have λ1 = |∇θ|2, Hess θ = 0 and
M = S1 ×N splits isometrically.

Proof of Lemma 2.3.3. Consider the function

G(x) = |∇θε(x)|2 − λ1(1 + aεy(θε(x))),

then G(x) ≤ 0, G(x0) = 0, where θ0 = θε(x0), i.e. G(x) achieves the maximum
value at x0. By maximum principle,

∇G(x0) = 0, ∆G(x0) ≤ 0.

I.e.

|∇θε|2(x0) = λ1(1 + aεy(θε(x0))),
∇|∇θε|2(x0) = λ1aεy

′(θε(x0)) · (∇θε)(x0),
∆|∇θε|2(x0) ≤ λ1aε(∆[y(θε)])(x0).

By (2.3.8) and (2.3.9),

∆|∇θε|2 ≥ 2 sec2 θε[−λ1(1 + aε sin θε) + |∇θε|2]|∇θε|2 + 2 tan θε〈∇|∇θε|2,∇θε〉.

By (2.3.7),

∆[y(θε(x))] = y′′|∇θε(x)|2 + y′∆θε(x)
= (y′′ + y′ tan θε)|∇θε|2 − λ1(tan θε + aε sec θε)y′.

Combining these together and dividing by λ1aε|∇θε|2, we have at x0,

2 sec2 θε [− sin θε + y]+2 tan θεy′ ≤ y′′+y′ tan θε−
tan θε + aε sec θε

1 + aεy
y′.(2.3.16)
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Since |y(θ0)| ≤ 1, 0 < aε < 1, we have

tan θε −
tan θε + aε sec θε

1 + aεy
=

aε
cos θε

· y sin θε − 1
1 + aεy

≤ 0.

Also y′(θ0) ≥ 0, therefore (2.3.16) gives

2 sec2 θε [− sin θε + y] + 2 tan θεy′ ≤ y′′

at x0, which is (2.3.13).

For compact manifolds Mn with Ric ≥ −(n−1)H2, Li-Yau [81] also obtained
the lower bound estimate λ1 ≥ C1(n)

d2M
exp(−C2(n)dMH), see [116, 79].

For noncompact manifolds

2.3.2 Dirichlet and Neumann Eigenvalue Comparison

As another application of Laplacian comparison, one has the following Dirichlet
eigenvalue comparison theorem of Cheng [45].

Theorem 2.3.4 Let M be a complete Riemannian manifold with Ric ≥ (n −
1)H. For any x ∈M,R > 0, if ∂B(x,R) 6=, then

λ1(B(x,R)) ≤ λH1 (R), (2.3.17)

where λH1 (R is the first Dirichlet eigenvalue of R balls in the model space Mn
H .

Equality holds if and only if B(x,R) is isometric to BH(R).

(contradiction to metaphysics?, understand in barrier sense, B(x,R) may not
be a regular domain.)

Before we give the proof, let us look at the eigenvalues of BH(R). Write the
metric of Mn

H in polar coordinates g = dr2 + sn2
H(r)gSn−1 . Then

∆H = sn1−n
H

∂

∂r

(
snn−1
H

∂

∂r

)
+ sn−2

H ∆Sn−1 .

Using separation of variables, one finds that eigenfunctions φ of eigenvalue λ
are of the form φ = T (r)G(θ), with G(θ) eigenfunctions of Sn−1:

∆Sn−1G+ νG = 0,

while T (r) satisfies the ODE

T ′′ + (n− 1)
cnH
snH

T ′ + (λ− ν

sn2
H

)T = 0.

For Dirichlet boundary condition on BH(R), T is also required to satisfy T (R) =
0. There is an additional requirement for T at r = 0 coming out of the smooth-
ness of φ at the origin r = 0.



2.4. ISOPERIMETRIC INEQUALITY 41

For the eigenfunction φ associated with the first eigenvalue λH1 (R), we must
have G ≡ 1 and ν = 0 (since φ does not change sign hence nor can G). Therefore
φ = T (r) with

T ′′ + (n− 1)
cnH
snH

T ′ + λT = 0, λ = λH1 (R). (2.3.18)

We can now turn to the proof of the theorem.
Proof: Consider the test function φ(y) = T (d(x, y)). Obviously it satisfies the
Dirichlet boundary condition on B(x,R). Also, since T > 0, (2.3.18) gives

snn−1
H (r)T ′(r) = −λ

∫ r

0

snn−1
H (s)T (s)ds ≤ 0.

Hence, by the global Laplacian comparison, Theorem 1.2.10,

∆T (r) ≥ ∆HT (r) = −λT (r).

Multiplying this inequality by T (r) and integrating over B(x,R), we obtain

λ1(B(x,R)) ≤ ‖φ‖−2

∫
B(x,R)

|∇φ|2dvol ≤ λ = λH1 (R),

with the equality holds iff we have equality in the Laplacian comparison. Hence
B(x,R) must be isometric to BH(R) in that case.

2.3.3 Heat Kernel Comparison

The volume element comparison (1.4.2) can also be used to prove a heat kernel
comparison [43].

2.4 Isoperimetric Inequality

2.5 Abresch-Gromoll’s Excess Estimate

Abresch-Gromoll’s excess estimate [1] gives the first distance estimate in terms
of a lower Ricci curvature bound, giving a new tool for studying manifolds with
Ricci curvature lower bound. It is in the spirit of splitting theorem, instead of
having a line, one only has a long segment.

Definition 2.5.1 Given p, q ∈M, the excess function associated to p and q is

e(x) = d(p, x) + d(q, x)− d(p, q).

Clearly, e is a nonnegative Lipschitz function with Lipschitz constant ≤ 2.
The key tool is the following estimate for Lipschitz functions whose Laplacian

is bounded from above. It uses the maximal principle and Laplacian comparison.
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Theorem 2.5.2 (Abresch-Gromoll, 1990) If RicM ≥ (n−1)H(H ≤ 0) and
U : B(y,R) ⊂Mn → R is a Lipschitz function with

1. U ≥ 0,

2. Lip (U) ≤ a,

3. U(y0) = 0 for some y0 ∈ B(y,R) and

4. ∆U ≤ b in the barrier sense.

Then U(y) ≤ ac + G(c) for all 0 < c < R, where G(r(x)) is the smallest
function on the model space Mn

H such that:

1. G(r) > 0 for 0 < r < R.

2. G′(r) < 0 for 0 < r < R.

3. G(R) = 0.

4. ∆HG ≡ b.

Proof: For late use we construct G explicitly. Since ∆H = ∂2

∂r2 +mH(r) ∂∂r + ∆̃
(see (1.3.12) and (1.2.6)), we would like to solve the ODE

G′′ +mH(r)G′ = b.

For H = 0, this is

G′′ + (n− 1)G′/r = b,

or G′′r2 + (n− 1)G′r = br2,

which is an Euler type O.D.E. For n ≥ 3, the solutions are G = Gp +Gh, where
Gp = b

2nr
2 and Gh = c1 + c2r

−(n−2).
Now G(R) = 0 gives

b

2n
R2 + c1 + c2R

−(n−2) = 0,

while G′ < 0 gives

b

n
r − (n− 2)c2r−(n−1) < 0

for all 0 < r < R. Thus c2 ≥ b
n(n−2)R

n.

Hence G(r) = b
2n

(
r2 + 2Rn

n−2r
−(n−2) − n

n−2R
2
)
. Note that G > 0 follows

from G(R) = 0 and G′ < 0.
For H < 0,

G(r) = b

∫ R

r

∫ t

r

(
sinh
√
−Ht

sinh
√
−Hs

)n−1

dsdt.
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By the Laplacian comparison (Theorem 1.3.8) we have ∆G ≥ ∆HG = b.
Consider V = G − U. Then ∆V = ∆G − ∆U ≥ 0. Fix 0 < c < R. Apply the
maximal principle to V : A(y, c, R)→ R gives

V (x) ≤ max{V |∂B(R), V |∂B(c)}

for all x ∈ A(y, c, R). By assumption V |∂B(R) ≤ 0 and V (y0) > 0. If y0 ∈
A(y, c, R), then maxV |∂B(c) > 0, so V (y′) > 0 for some y′ ∈ ∂B(y, c). Since

U(y)− U(y′) ≤ ad(y, y′) = ac

and

G(c)− U(y′) = V (y′) > 0,

we have

U(y) ≤ ac+ U(y′) < ac+G(c).

Now if d(y, y0) ≤ c,

U(y) = U(y)− U(y0) ≤ ad(y, y0)
≤ ac ≤ ac+G(c).

This finishes the proof.

By applying this result to e(x) Abresch-Gromoll obtained an estimate for
thin triangles. First we fix some notations. If γ is a minimal geodesic connecting
p and q with γ(0) = p and γ(1) = q, let h(x) = min

0≤t≤1
d(x, γ(t)) be the height.

Then

0 ≤ e(x) ≤ 2h(x).

Let y be the point along γ between p and q with d(x, y) = h(x). Set

s1 = d(p, x), t1 = d(p, y)
s2 = d(q, x), t2 = d(q, y).

DRAW A PICTURE!!!

Example 2.5.3 In Rn,

s1 =
√
h2 + t21 = t1

√
1 + (h/t1)2 ≤ t1(1 + (h/t1)2).

Thus

e(x) = s1 + s2 − t1 − t2
≤ h2/t1 + h2/t2

= h(h/t1 + h/t2)
≤ 2h(h/t),

where t = min{t1, t2}. Thus e(x) is small if h2/t is small.
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If M has nonnegative sectional curvature then the Toponogov comparison
shows that s1 ≤

√
h2 + t21, so the same estimate holds. For manifolds with

nonnegative Ricci curvature obtained an estimate along the same line.

Theorem 2.5.4 (Abresch-Gromoll 1990) If Mn(n ≥ 3) has RicM ≥ 0,
h(x) ≤ s(x)

2 , where s = min{s1, s2}, then

e(x) ≤ 8
(
hn

s

) 1
n−1

. (2.5.19)

Proof: Recall e(x) ≥ 0, Lip e ≤ 2. Let R = h(x). By Laplacian comparison
(Theorem 1.3.8), on B(x,R),

∆e ≤ n− 1
s1 − h

+
n− 1
s2 − h

≤ 4(n− 1)
s(x)

.

Thus by Theorem 2.5.2, with a = 2, b = 4(n−1)
s(x) ,

e(x) ≤ 2c+G(c)

for all 0 < c < h.
The function ac+G(c), 0 < c < h is convex and the infimum is assumed at

the unique c0 ∈ (0, h) with a+G′(c0) = 0 or more explicitly,

cn−1
0 =

b

an
(hn − cn0 ) ≤ b

an
hn.

Therefore

e(x) ≤ 2c0 +G(c0) = 2c0 +
b

2n

(
c20 +

2
n− 2

hnc2−n0 − n

n− 2
h2

)
= 2

n− 1
n− 2

c0 +
b

2n
· n

n− 2
(c20 − h2)

≤ 2
n− 1
n− 2

(
b

an
hn
) 1
n−1

≤ 8
(
hn

s

) 1
n−1

.

Remark There is similar estimate for RicM ≥ (n − 1)H: e(x) ≤ hF (hs ) for
some continuous F satisfying F (0) = 0 [1].

Using the above estimate Abresch-Gromoll proved that

2.6 Almost Splitting Theorem



Chapter 3

Topology of Manifolds with
Ricci Curvature Lower
Bound

3.1 First Betti Number Estimate

For a manifold M , its first Betti number is the dimension of the first cohomology,

b1(M) = dimH1(M,R).

By Hodge theorem H1(M,R) is isomorphic to H1(M), the space of harmonic
1-forms. Using this and Bochner’s formula we can give a quick estimate on
b1(M) for manifolds with nonnegative Ricci curvature [17].

Theorem 3.1.1 If Mn is a compact Riemannian manifold with Ric ≥ 0, then
b1(M) ≤ n, with equality holds iff M isometric to the flat torus Tn.

b1(M) is closely related to the fundamental group π1(M). In factH1(M,Z) =
π1(M)/[π1(M), π1(M)], the abelianization of π1(M). Since H(M,Z) is abelian,
the set of its torsion elements, T , is a normal subgroup. Hence Γ = H1(M,Z)/T
is a free abelian group. Moreover,

b1(M) = rank(Γ) = rank(Γ′),

where Γ′ is any subgroup of Γ with finite index.
Let M̄ = M̃/[π1(M), π1(M)]/T be the covering space of M . Then Γ acts

isometrically as deck transformations on M̄. To estimate b1(M) one needs to
choose a good finite index subgroup of Γ. This is possible when M is compact.

Lemma 3.1.2 (Gromov, 1980) For fixed x ∈ M̄ there is a subgroup Γ′ ≤ Γ,
[Γ : Γ′] finite, such that Γ′ = 〈γ1, . . . , γb1〉, and

45
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1. d(x, γk(x)) ≤ 2diamM

2. For any γ ∈ Γ′ − {e}, d(x, γ(x)) > diamM .

Proof: For each ε ≥ 0 let Γε ≤ Γ be generated by

{γ ∈ Γ : d(x, γ(x)) < 2diamM + ε}.

We will show that diam(M̄/Γε) < 2 diamM + 2ε so M̄/Γε is compact and Γε
has finite index.

Let πε : M̄ → M̄/Γε be the covering projection. If diam(M̄/Γε) ≥ 2diamM+
2ε, we can find z ∈ M̄ such that d(x, z) = d(πε(x), πε(z)) = diamM + ε. Now
there exists γ ∈ Γ such that d(γ(x), z) ≤ diamM . Then

d(πε(x), πε(γ(x))) ≥ d(πε(x), πε(z))− d(πε(z), πε(γ(x))) ≥ ε,
d(x, γ(x)) ≤ d(x, z) + d(z, γ(x)) ≤ 2diamM + ε.

We have γ 6∈ Γε and γ ∈ Γε, a contradiction.
There are at most finite many elements in {γ ∈ Γ : d(x, γ(x)) ≤ 3diamM}.

Hence there is ε small such that

{γ ∈ Γ : d(x, γ(x)) ≤ 2diamM} = {γ ∈ Γ : d(x, γ(x)) ≤ 2diamM + ε}.

Pick such an ε > 0, we have Γε ≤ Γ with finite index, and

Γε = 〈γ1, . . . , γm〉, d(x, γk(x)) ≤ 2 diamM .

Now we modify these generators (by choosing the longer ones) to get Γ′.
First, since rank(Γε) = b1(M), we can pick a subset of linearly independent
generators γ1, . . . , γb1 so that Γ′′ = 〈γ1, . . . , γb1〉 has finite index in Γε.

Let Γ′ = 〈γ̃1, . . . , γ̃b1〉, where γ̃k = `k1γ1 + · · · + `kkγk and the coefficients
`ki are chosen so that `kk is maximal with respect to the constraints:

1. d(x, γ̃k(x)) ≤ 2diamM and

2. span{γ̃1, . . . , γ̃k} ≤ span{γ1, . . . , γk} with finite index

for all k = 1, · · · , b1.
Then Γ′ ≤ Γ′′ has finite index and first property of the Lemma is satisfied.

To verify the second property, suppose there exists γ ∈ Γ′−{e} with d(x, γ(x)) ≤
diamM , write

γ = m1γ̃1 + · · ·+mkγ̃k,

with mk 6= 0. Then d(x, γ2(x)) ≤ 2d(x, γ(x)) ≤ 2diamM , but

γ2 = 2m1γ̃1 + · · ·+ 2mkγ̃k

= (terms involving γi, i < k) + 2mk`kkγk,

which contradicts the maximality of `kk.



3.1. FIRST BETTI NUMBER ESTIMATE 47

Theorem 3.1.3 (Gromov, Gallot) Suppose Mn is a compact manifold with
RicM ≥ (n − 1)H and diamM ≤ D. There is a function C(n,HD2) such that
b1(M) ≤ C(n,HD2) and lim

x→0−
C(n, x) = n and C(n, x) = 0 for x > 0. In

particular, if HD2 is small, b1(M) ≤ n.

Proof: When H > 0, by Myers’ theorem (Theorem 1.2.3), b1(M) = 0. So we
can assume H ≤ 0.

Let Γ′ = 〈γ1, . . . , γb1〉 be as in the lemma. Then, for i 6= j, d(γi(x), γj(x)) =
d(x, γ−1

i γj(x)) > diamM . Thus

B(γi(x),diamM/2) ∩B(γj(x),diamM/2) = ∅

for i 6= j. Also

B(γi(x),diamM/2) ⊂ B(x, 2diamM + diamM/2)

for all i, so that
b1⋃
i=1

B(γi(x),diamM/2) ⊂ B(x, 2diamM + diamM/2).

Hence

b1 ≤
VolB(x, 5diamM/2)
VolB(x, diamM/2)

.

By the relative volume comparison (1.4.7),

VolB(x, 5diamM/2)
VolB(x,diamM/2)

≤ VolHB(5diamM/2)
VolHB(diamM/2)

.

Since diamM ≤ D, when H ≤ 0 we have

VolHB(5diamM/2)
VolHB(diamM/2)

≤ VolHB(5D/2)
VolHB(D/2)

=

 5n, H = 0R 5D
√
−H/2

0 (sinh r)n−1drRD√−H/2
0 (sinh r)n−1dr

, H < 0 .

Therefore b1 ≤ C(n,HD2).
To get a better estimate when HD2 is small, consider

U(s) = {γ ∈ Γ′ : γ = l1γ1 + · · ·+ lb1γb1 , |l1|+ · · ·+ |lb1 | ≤ s}.

Then ⋃
γ∈U(s)

B(γ(x), D/2) ⊂ B(x, 2Ds+D/2),

whence

#U(s) ≤ VolB(x, 2Ds+D/2)
VolB(x,D/2)

≤ VolHB(2Ds+D/2)
VolHB(D/2)

=

 (2s+ 1
2 )n, H = 0R (2s+ 1

2 )D
√
−H

0 (sinh r)n−1drRD√−H/2
0 (sinh r)n−1dr

, H < 0
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If b1 ≥ n + 1, then U(s) ≥
(

2
n+1 (s− n)

)n+1

(see Example 3.2.3). For s =

n+ 1 + 3n(n+ 1)n+1, we can find ε(n) > 0 small such that when HD2 ≥ −ε(n),

∫ (2s+ 1
2 )D
√
−H

0
(sinh r)n−1dr∫D√−H/2

0
(sinh r)n−1dr

≤
2(2s+ 1

2 )n(D
√
−H)n

( 1
2 )n(D

√
−H)n

≤ 2n+1(3s)n.

We get (
2

n+ 1
(s− n)

)n+1

≤ 2n+1(3s)n,

which is impossible when s > n+ 3n(n+ 1)n+1. Therefore we have b1(M) ≤ n
when HD2 ≥ −ε(n).

Gallot proved this using Bochner technique [55].
The celebrated Betti number estimate of Gromov [61] shows that all higher

Betti numbers can be bounded by sectional curvature lower bound and diameter
upper bound. Sha-Yang first constructed examples showing this is not true for
Ricci curvature. They constructed metrics of positive Ricci curvature on the
connected sum of k copies of S2 × S2 for all k ≥ 1 using semi-local surgery
[119]. Recently using Seifert bundles over orbifolds with a Kähler Einstein metric
Kollar showed that there are Einstein metrics with positive Ricci curvature on
the connected sums of arbitrary number of copies of S2 × S3 [76].

For Mn with RicM ≥ (n− 1)H and diamM ≤ D, the number of generators
of π1(M) is uniformly bounded by C(n,H,D).

3.2 Fundamental Groups

In lower dimensions (n ≤ 3) a Ricci curvature lower bound has strong topological
implications. R. Hamilton [70] proved that compact manifolds M3 with positive
Ricci curvature are space forms. Schoen-Yau [115] proved that any complete
open manifold M3 with positive Ricci curvature must be diffeomorphic to R3

using minimal surfaces. In general Ricci curvature lower gives very good control
on the fundamental group.

For manifolds with uniform positive Ricci curvature lower bound, by Myers’
theorem (Theorem 1.2.3), the fundamental group is finite. Any finite group can
be realized as the fundamental group of a compact manifold with positive Ricci
curvature since any finite group is a subgroup of SU(n) (for n sufficiently big)
and SU(n) has a metric with positive Ricci curvature (in fact Einstein).

For manifolds with nonnegative Ricci curvature, the volume comparison and
Cheeger-Gromoll’s splitting theorem give many structures on the fundamental
group.

We first recall a rough measurement on the size of a group introduced by
Milnor [94].
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3.2.1 Growth of Groups

Suppose Γ is a finitely generated group, say Γ = 〈g1, . . . , gk〉. Any g ∈ Γ can
be written as a word g =

∏
i

gniki , where ki ∈ {1, . . . , k}. Define the length of

this word to be
∑
i

|ni|, and let |g| be the mininimum of the lengths of all word

representations of g. Note that | · | depends on the choice of generators.
Fix a set of generators for Γ. The growth function of Γ is

Γ(s) = #{g ∈ Γ : |g| ≤ s}.

Example 3.2.1 If Γ is a finite group then Γ(s) ≤ |Γ|.

Example 3.2.2 If Γ = Z ⊕ Z, then Γ = 〈g1, g2〉, where g1 = (1, 0) and g2 =
(0, 1). Any g ∈ Γ can be written as g = s1g1 + s2g2. To find Γ(s), we need to
count the number of elements with |s1|+ |s2| ≤ s. By counting the numbers with
|s1| = 0, 1, 2, · · · , s we have

Γ(s) = 2s+ 1 +
s∑
t=1

2(2(s− t) + 1)

= 2s2 + 2s+ 1,

a polynomial of degree 2.

Example 3.2.3 Let Γ = Z⊕ · · · ⊕ Z︸ ︷︷ ︸
k≥1

. With respect to the standard generators,

Γ(s) corresponds to the number of elements (s1, · · · , sk) with |s1|+ · · ·+ |sk| ≤ s.

Let i be the number of si’s which are not zero. Then Γ(s) =
k∑
i=0

2i
(
k

i

)(
s

i

)
.

Example 3.2.4 For the free group Γ = Z ∗ · · · ∗ Z︸ ︷︷ ︸
k≥2

, with respect to the standard

generators, the growth function is given by

Γ(s) =
k(2k − 1)s − 1

k − 1
.

Definition 3.2.5 Γ is said to have polynomial growth of degree ≤ n if for each
set of generators the growth function Γ(s) ≤ asn for some a > 0.

Γ is said to have exponential growth if for each set of generators the growth
function Γ(s) ≥ eas for some a > 0.

Note that for each finitely generated group Γ there always exists a > 0 so
that Γ(s) ≤ eas.

Lemma 3.2.6 The type of growth of a group γ is independent of the choice of
generators. If for some set of generators, Γ(s) ≤ asn for some a > 0, then Γ
has polynomial growth of degree ≤ n. If for some set of generators, Γ(s) ≥ eas

for some a > 0, then Γ has exponential growth.
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Proof: If {g1, · · · , gk} and {h1, · · · , hl} are two sets of generators, let Γg(s),Γh(s)
be the corresponding growth functions. Write each generator hi in terms of
g1, · · · , gk and gi in terms of h1, · · · , hl. There are s0, t0 such that all the length
are bounded as follows,

|hi|g ≤ s0, |gi|h ≤ t0.

Therefore Γh(s) ≤ Γg(s0s) and Γg(s) ≤ Γh(t0s), which gives

Γh(
s

s0
) ≤ Γg(s) ≤ Γh(t0s).

The functions have the same type.

From this and Examples 3.2.3 and 3.2.4 we have the abelian group Zk has
polynomial growth of degree k and the free group Z∗Z has exponential growth.

Gromov gives the following beautiful characterization of groups with poly-
nomial growth, they are not too far away from abelian groups [67].

Theorem 3.2.7 (Gromov, 1981) A finitely generated group Γ has polyno-
mial growth iff Γ is almost nilpotent, i.e. it contains a nilpotent subgroup of
finite index.

3.2.2 Fundamental Group of Manifolds with Nonnegative
Ricci Curvature

First as an application of their splitting theorem (Theorem 2.1.5) Cheeger-
Gromoll showed that for a compact manifold M with nonnegative Ricci cur-
vature, π1(M) has an abelian subgroup of finite index [40].

Theorem 3.2.8 (Cheeger-Gromoll 1971) If Mn is compact with Ricm ≥ 0,

then its universal cover M̃
iso' N×Rk, where N is a compact (n−k) dimensional

manifold. Thus there is exact sequence

0→ F → π1(M)→ Bk → 0,

where F is a finite group and Bk is the fundamental group of some compact
k-dimensional flat manifold — Bieberbach group.

This immediately implies Theorem 3.1.1. Also it gives

Corollary 3.2.9 If Mn is compact with RicM ≥ 0 and RicM > 0 at one point,
then π1(M) is finite.

Remark This corollary improves the theorem of Bonnet-Myers. The corollary
can also be proven using the Bochner technique. In fact, Aubin’s deformation
gives another metric that has RicM > 0 everywhere.
Proof of Theorem 3.2.8. By Theorem 2.1.5, M̃ = N ×Rk, where N contains
no line. We show N is compact.
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First note that isometries map lines to lines. Thus, if ψ ∈ Iso (M̃), then
ψ = (ψ1, ψ2), where ψ1 : N → N and ψ2 : Rk → Rk are isometries. Suppose
N is not compact, so N contains a ray γ : [0,∞) → M . Let F̃ ⊂ M̃ be
a fundamental domain of M , so its closure ¯̃F is compact, and let p1 be the
projection M̃ → N . Pick any ti →∞. For each i there is gi ∈ π1(M) such that
gi(γ(ti)) ∈ p1(F̃ ). But p1( ¯̃F ) is compact, so we may assume gi(γ(ti))→ p ∈ N .
Set γi(t) = gi(γ(t+ ti)). Then γi : [−ti,∞)→ N is minimal, and {γi} converges
to a line σ in N . Thus N is compact.

To see the exact sequence, let p2 : π1(M) → Iso(Rk) be the map ψ =
(ψ1, ψ2) 7→ ψ2. Then

0→ ker(p2)→ π1(M)→ Im(p2)→ 0

is exact. Now ker(p2) = {(ψ1, 0)}, while Im(ψ2) = {(0, ψ2)}. Since ker(p2)
gives a properly discontinuous group action on a compact manifold, ker(p2) is
finite. On the other hand, Im(p2) is an isometry group on Rk, so Im(p2) is a
Bieberbach group.

Given a compact Riemannian manifold M , Milnor [94] and Svarc [?] discov-
ered that the growth rate of π1(M) is the same as the volume growth of the
universal cover of M , M̃ . This is conceivable since M̃ is the number of π1(M)
copies of M glued together. Hence control on the volume growth of the univer-
sal cover gives control on the growth of π1(M). M. Anderson generalizes this
relation to give a sharper estimate when M is noncompact [4].

Theorem 3.2.10 (Anderson, 1990) If Mn is a complete Riemannian man-
ifold with RicM ≥ 0 and there is x ∈M,α > 0 such that Vol(B(x, r)) ≥ αrβ for
all r big, where 0 ≤ β ≤ n, then any finitely generated subgroup of π1(M) has
polynomial growth of degree ≤ n− β. Moreover, when β = n (Euclidean volume
growth) π1(M) is finite and |π1(M)| ≤ ωn

α , where ωn is the volume of the unit
ball in Rn.

Any Riemannian manifold satisfies the volume growth condition for β = 0,
so this recovers Milnor’s result.

Theorem 3.2.11 (Milnor, 1968) If Mn is complete with RicM ≥ 0, then any
finitely generated subgroup of π1(M) has polynomial growth of degree ≤ n.

When β = n, Peter Li had proved |π1(M)| ≤ ωn
α using a heat kernel estimate

[78].
Proof of Theorem 3.2.10: Let π : (M̃, x̃)→ (M,x) be the universal cover of
M with the induced metric. Then RicM̃ ≥ 0, and π1(M) acts isometrically on
M̃. In order to take account of the volume of M , one covers M̃ with fundamental
domains. For each g ∈ π1(M), let F̃g = {ỹ ∈ M̃ | d(ỹ, x̃) ≤ d(ỹ, gx̃)}, the half
space closer to x̃ than gx̃. Then F̃ = ∩g∈π1(M)F̃g is a Dirichlet fundamental
domain, so that the translates gF̃ cover M̃ and have pairwise disjoint interiors.
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Let Γ = 〈g1, . . . , gk〉 be a finitely generated subgroup of π1(M). Set l =
max
i
d(gix̃, x̃). If g ∈ Γ satisfies |g| ≤ s, then

g(B(x̃, s) ∩ F̃ ) ⊆ B(x̃, (l + 1)s).

Therefore

Γ(s)Vol(B(x̃, s) ∩ F̃ ) ≤ VolB(x̃, (l + 1)s).

Since RicM̃ ≥ 0, the Bishop volume comparison (1.4.6) gives us that

VolB(x̃, (l + 1)s) ≤ ωn(l + 1)nsn.

Vol(B(x̃, s) ∩ F̃ ) = VolB(x, s) since π : B(x̃, s) ∩ F̃ → B(x, s) is a bijection.
Using the assumption on the volume growth we have

Γ(s) ≤ ωn(l + 1)nsn

αsβ
=
ωn(l + 1)n

α
sn−β

for all s large. Since ωn(l+1)n

α is a positive constant, we have shown that Γ has
polynomial growth of degree at most n− β.

When β = n, let Γ be a finite subgroup of π1(M). Since Γ is finite, there is
l such that d(gx̃, x̃) ≤ l for all g ∈ Γ. Then we have for all g ∈ Γ,

g(B(x̃, s) ∩ F̃ ) ⊆ B(x̃, l + s).

As above we get

|Γ| ≤ VolB(x̃, l + s)
VolB(x, s)

≤ ωn(l + s)n

αsn
.

Let s → ∞, this gives |Γ| ≤ ωn
α . We have the order of all finite subgroup of

π1(M) is uniformly bounded by ωn
α . Hence π1(M) is finite and |π1(M)| ≤ ωn

α .

Example 3.2.12 Let H be the Heisenberg group
 1 x z

0 1 y
0 0 1

 : x, y, x ∈ R

 ,

and let

HZ =


 1 n1 n2

0 1 n3

0 0 1

 : ni ∈ Z

 .

Then H/HZ is a compact 3-manifold with π1(H/HZ) = HZ. The growth of HZ
is polynomial of degree 4, so H/HZ has no metric with Ric ≥ 0.
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If Mn is a complete noncompact manifold with positive sectional curvature,
then Mn is diffeomorphic to Rn [60]. For positive Ricci curvature, the manifold
could have infinite topological type [118]. Sormani [123] found the following
nice property about fundamental groups of noncompact manifolds with positive
Ricci curvature, namely one can see the fundamental group at infinity.

Definition 3.2.13 Suppose Mn is noncompact. Then M is said to have the
geodesic loops to infinity property if for any ray γ in M, any g ∈ π1(M,γ(0))
and any compact K ⊂ M there is a geodesic loop ᾱ at γt0 in M \K such that
(γ|t00 )−1 ◦ ᾱ ◦ γ|t00 is homotopic to a loop α at γ(0) with g = [α].(We say ᾱ is
homotopic to α along γ)

Example 3.2.14 Let M = N × R. If the ray γ is in the splitting direction,
then any g ∈ π1(M,γ(0)) is homotopic to a geodesic loop at infinity along γ.

Theorem 3.2.15 (Sormani, 2001) If Mn is complete and noncompact with
RicM > 0 then M has the geodesic loops to infinity property.

This result follows from Cheeger and Gromoll’s splitting theorem (Theo-
rem 2.1.5) and the following construction of a line.

Theorem 3.2.16 (Line Theorem) If Mn does not have the geodesic loops to
infinity property then there is a line in the universal cover M̃.

Proof: Let γ be a ray, g ∈ π1(M,γ(0)) such that g does not satisfy the geodesic
loops to infinity property. Let α be a representative of g based at γ(0). Then
there is a compact set K such that there is no closed geodesic contain in M \K
which is homotopic to α along γ. Let R0 > 0 such that K ⊂ B(γ(0), R0), and
ri > R0 → ∞. Then any loop based at γ(ri) which is homotopic to α along γ
must pass through K. Let α̃ be a lift of α to the universal cover M̃ connecting
γ̃(0) to gγ̃(0), γ̃ the lift of γ starting at γ̃(0), gγ̃ the lift of γ starting at gγ̃(0), α̃i
a minimal geodesic connecting γ̃(ri) and gγ̃(ri). Since αi = π◦α̃i is homotopic to
α along γ, there is ti such that αi(ti) ∈ K. By triangle inequality ti ≥ ri −R0.
Set li = L(αi), the length of αi. Then li − ti ≥ d(αi(ti), γ(ri)) ≥ ri − R0.
Therefore as i → ∞, the geodesic segments α̃i extend to infinity from both
sides of α̃i(ti). The projections of α̃i(ti) all lie in K, so a subsequence has a
limit. Hence a subsequence of α̃i converges, which gives a line.

GRAPH

Theorem 3.2.15 gives

Corollary 3.2.17 A noncompact manifold with positive Ricci curvature is sim-
ply connected if it is simply connected at infinity.

Using the loops-to-infinity property Shen-Sorman proved that if Mn is non-
compact with RicM > 0 then Hn−1(M,Z) = 0 [120]. See [?] for more applica-
tions of the loops-to-infinity property.
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Combining Theorem 3.2.11 with Theorem 3.2.7, we know that any finitely
generated subgroup of π1(M) of manifolds with nonnegative Ricci curvature is
almost nilpotent.

From the above one naturally wonders if all nilpotent groups occur as the
fundamental group of a complete non-compact manifold with nonnegative Ricci
curvature. Indeed, extending the warping product constructions in [98, 15], Wei
showed [134] that any finitely generated torsion free nilpotent group could oc-
cur as fundamental group of a manifold with positive Ricci curvature. Wilking
[138] extended this to any finitely generated almost nilpotent group. This gives
a very good understanding of the fundamental group of a manifold with non-
negative Ricci curvature except the following long standing problem regarding
the finiteness of generators [94].

Conjecture 3.2.18 (Milnor, 1968) The fundamental group of a manifold with
nonnegative Ricci curvature is finitely generated.

There is some very good progress in this direction. Using short generators
and a uniform cut lemma based on the excess estimate of Abresch and Gromoll
[1] (see (2.5.19) ) Sormani [125] proved that if RicM ≥ 0 and Mn has small
linear diameter growth, then π1(M) is finitely generated. More precisely the
small linear growth condition is:

lim sup
r→∞

diam∂B(p, r)
r

< sn =
n

(n− 1)3n

(
n− 1
n− 2

)n−1

.

The constant sn was improved in [143]. Then in [141] Wylie proved that in
this case π1(M) = G(r) for r big, where G(r) is the image of π1(B(p, r)) in
π1(B(p, 2r)). In an earlier paper [124], Sormani proved that all manifolds with
nonnegative Ricci curvature and linear volume growth have sublinear diamter
growth, so manifolds with linear volume growth are covered by these results.

In a very different direction Wilking [138], using algebraic methods, showed
that if RicM ≥ 0 then π1(M) is finitely generated iff any abelian subgroup of
π1(M) is finitely generated, effectively reducing the Milnor conjecture to the
study of manifolds with abelian fundamental groups.

Kapovitch-Wilking [74] recently announced a proof of the compact analog of
Milnor’s conjecture that the fundamental group of a manifold satisfying (??) has
a presentation with a universally bounded number of generators (as conjectured
by this author), and that a manifold which admits almost nonnegative Ricci
curvature has a virtually nilpotent fundamental group. The second result would
greatly generalize Fukaya-Yamaguchi’s work on almost nonnegative sectional
curvature [54]. See [135, 136] for earlier partial results.

3.2.3 Finiteness of Fundamental Groups

When the volume is also bounded from below, by using a clever covering ar-
gument M. Anderson [5] showed that the number of the short homotopically
nontrivial closed geodesics can be controlled and for the class of manifolds M
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with RicM ≥ (n − 1)H, VolM ≥ V and diamM ≤ D there are only finitely
many isomorphism types of π1(M). Again if the Ricci curvature is replaced by
sectional curvature then much more can be said. Namely there are only finitely
many homeomorphism types of the manifolds with sectional curvature and vol-
ume bounded from below and diameter bounded from above [64, 103]. By [106]
this is not true for Ricci curvature unless the dimension is 3 [149].

Lemma 3.2.19 (Gromov, 1980) For any compact Mn and each x̃ ∈ M̃ there
are generators γ1, . . . , γk of π1(M) such that d(x̃, γix̃) ≤ 2diamM and all rela-
tions of π1(M) are of the form γiγj = γ`.

Proof. Let 0 < ε < injectivty radius. Triangulate M so that the length of
each adjacent edge is less than ε. Let x1, . . . , xk be the vertices of the triangu-
lation, and let eij be minimal geodesics connecting xi and xj .

Connect x to each xi by a minimal geodesic σi, and set σij = σ−1
j eijσi. Then

`(σij) < 2diamM + ε, so d(x̃, σij x̃) < 2diamM + ε.
We claim that {σij} generates π1(M). For any loop at x is homotopic to a 1-

skeleton, while σjkσij = σik as adjacent vertices span a 2-simplex. In addition,
if 1 = σ ∈ π1(M), σ is trivial in some 2-simplex. Thus σ = 1 can be expressed
as a product of the above relations.

Theorem 3.2.20 (Anderson, 1990)) In the class of manifolds M with RicM ≥
(n− 1)H, VolM ≥ V and diamM ≤ D there are only finitely many isomorphism
types of π1(M).

Remark: The volume condition is necessary. For example, S3/Zn has K ≡ 1
and diam = π/2, but π1(S3/Zn) = Zn. In this case, Vol(S3/Zn)→ 0 as n→∞.

Proof of Theorem. Choose generators for π1(M) as in the lemma; it is
sufficient to bound the number of generators.

Let F be a fundamental domain in M̃ that contains x̃. Then
k⋃
i=1

γi(F ) ⊂ B(x̃, 3D).

Also, Vol(F ) = Vol(M), so

k ≤ VolB(x̃, 3D)
VolM

≤ VolBH(3D)
V

.

This is a uniform bound depending on H, D and V.

Theorem 3.2.21 (Anderson, 1990) For the class of manifolds M with RicM ≥
(n − 1)H, VolM ≥ V and diamM ≤ D there are L = L(n,H, V,D) and
N = N(n,H, V,D) such that if Γ ⊂ π1(M) is generated by {γi} with each
`(γi) ≤ L then the order of Γ is at most N.

Proof. Let Γ = 〈γ1, . . . , γk〉 ⊂ π1(M), where each `(γi) ≤ L. Set

U(s) = {γ ∈ Γ : |γ| ≤ s},
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and let F ⊂ M̃ be a fundamental domain of M. Then γi(F )∩γj(F ) has measure
zero for i 6= j. Now⋃

γ∈U(s)

γ(F ) ⊂ B(x̃, sL+D),

so

#U(s) ≤ VolBH(sL+D)
V

.

Note that if U(s) = U(s + 1), then U(s) = Γ. Also, U(1) ≥ 1. Thus, if Γ has
order greater than N, then U(N) ≥ N.

Set L = D/N and s = N. Then

N ≤ U(N) ≤ VolBH(2D)
V

.

Hence |Γ| ≤ N =
VolBH(2D)

V
+ 1, so Γ is finite.

3.3 Volume entropy and simplicial volume

Given a compact Riemannian manifold (Mn, g), let M̃ be its universal cover
and x̃ ∈ M̃ . The volume entropy measure the exponential growth rate of the
volume in the universal cover. It is related to the growth of fundamental group
and the topological entropy.

Definition 3.3.1 The volume entropy of M is

h(M, g) = lim
r→∞

ln VolB(x̃, r)
r

. (3.3.1)

Proposition 3.3.2 (Manning, 1979) [?] The limit in (3.3.1) exists and is
independent of the center x̃ ∈ M̃ .

Proof: Given any two points x̃, ỹ ∈ M̃ , there is deck transformation g ∈ π1(M)
such that d(x̃, gỹ) ≤ d, the diameter of M . Since VolB(ỹ, r) = VolB(gỹ, r), we
have

VolB(x̃, r − d) ≤ VolB(ỹ, r) ≤ VolB(x̃, r + d). (3.3.2)

For any b > 0, let cb = inf z̃∈M̃ VolB(z̃, b/2). Since M is compact, cb > 0. We
may assume VolB(x̃, r) is unbounded, so there is b such that cb ≥ 1. Note that

B(x̃, r + s) ⊂
⋃

ỹ∈B(x̃,r− b2 )

B(ỹ, s+
b

2
) ⊂

⋃
ỹ∈Y

B(ỹ, s+
b

2
+ b),

where Y is a maximal subset of B(x̃, r − b
2 ) whose points are pairwise b apart.

The cardinality of Y , #Y ≤ c−1
b VolB(x̃, r) ≤ VolB(x̃, r). Therefore

VolB(x̃, r + s) ≤ VolB(x̃, r) ·VolB(x̃, s+
3b
2

+ d). (3.3.3)
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Now if ks ≤ r < (k + 1)s, then

VolB(x̃, r) ≤ VolB(x̃, (k + 1)s) ≤ VolB(x̃, ks)VolB(x̃, s+
3b
2

+ d)

≤ VolB(x̃, s)
(

VolB(x̃, s+
3b
2

+ d)
)k

,

r−1 ln VolB(x̃, r) ≤ r−1 ln VolB(x̃, s) + kr−1 ln VolB(x̃, s+
3b
2

+ d)

≤ r−1 ln VolB(x̃, s) + s−1 ln VolB(x̃, s+
3b
2

+ d),

lim sup
r→∞

r−1 ln VolB(x̃, r) ≤ s−1 ln VolB(x̃, s+
3b
2

+ d) for all s

and so

lim sup
r→∞

r−1 ln VolB(x̃, r) ≤ lim inf
s→∞

s−1 ln VolB(x̃, s+
3b
2

+ d)

= lim inf
s→∞

s−1 ln VolB(x̃, s).

This shows the that limr→∞ r−1 ln VolB(x̃, r) exists. By (3.3.2) the limit is
independent of x̃.

3.4 Examples and Questions

Many examples of manifolds with nonnegative Ricci curvature have been con-
structed, which contribute greatly to the study of manifolds with lower Ricci
curvature bound. We only discuss the examples related to the basic methods
here, therefore many specific examples are unfortunately omitted (some are
mentioned in the previous sections). There are mainly three methods: fiber
bundle construction, special surgery, and group quotient, all combined with
warped products. These method are also very useful in constructing Einstein
manifolds. A large class of Einstein manifolds is also provided by Yau’s solution
of Calabi conjecture.

Note that if two compact Riemannian manifolds Mm, Nn(n,m ≥ 2) have
positive Ricci curvature, then their product has positive Ricci curvature, which
is not true for sectional curvature but only needs one factor positive for scalar
curvature. Therefore it is natural to look at the fiber bundle case. Using Rie-
mannian submersions with totally geodesic fibers J. C. Nash [99], W. A. Poor
[113], and Berard-Bergery [14] showed that the compact total space of a fiber
bundle admits a metric of positive Ricci curvature if the base and the fiber
admit metrics with positive Ricci curvature and if the structure group acts by
isometries. Furthermore, any vector bundle of rank ≥ 2 over a compact man-
ifold with Ric > 0 carries a complete metric with positive Ricci curvature. In
[58] Gilkey-Park-Tuschmann showed that a principal bundle P over a compact
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manifold with Ric > 0 and compact connected structure group G admits a G
invariant metric with positive Ricci curvature if and only if π1(P ) is finite. Un-
like the product case, the corresponding statements for Ric ≥ 0 are not true in
all these cases, e.g. the nilmanifold S1 → N3 → T 2 does not admit a metric
with Ric ≥ 0. On the other hand Belegradek-Wei [13] showed that it is true in
the stable sense. Namely, if E is the total space of a bundle over a compact base
with Ric ≥ 0, and either a compact Ric ≥ 0 fiber or vector space as fibers, with
compact structure group acting by isometry, then E × Rp admits a complete
metric with positive Ricci curvature for all sufficiently large p. See [139] for an
estimate of p.

Surgery constructions are very successful in constructing manifolds with
positive scalar curvature, see Rothenberg’s article in this volume. Sha-Yang
[118, 119] showed that this is also a useful method for constructing manifolds
with positive Ricci curvature in special cases. In particular they showed that
if Mm+1 has a complete metric with Ric > 0, and n,m ≥ 2, then Sn−1 ×(
Mm+1 \

∐k
i=0D

m+1
i

)⋃
IdD

n×
∐k
i=0 S

m
i , which is diffeomorphic to

(
Sn−1 ×Mm+1

)
#
(
#k
i=1S

n × Sm
)
,

carries a complete metric with Ric > 0 for all k, showing that the total Betti
number of a compact Riemannian n-manifold (n ≥ 4) with positive Ricci cur-
vature could be arbitrarily large. See also [6], and [140] when the gluing map is
not the identity.

Note that a compact homogeneous space admits an invariant metric with
positive Ricci curvature if and only if the fundamental group is finite [99, Propo-
sition 3.4]. This is extended greatly by Grove-Ziller [66] showing that any coho-
mogeneity one manifold M admits a complete invariant metric with nonnegative
Ricci curvature and if M is compact then it has positive Ricci curvature if and
only if its fundamental group is finite (see also [117]). Therefore, the fundamen-
tal group is the only obstruction to a compact manifold admitting a positive
Ricci curvature metric when there is enough symmetry. It remains open what
the obstructions are to positive Ricci curvature besides the restriction on the
fundamental group and those coming from positive scalar curvature (such as
the Â-genus).

Of course, another interesting class of examples are given by Einstein mani-
folds. For these, besides the “bible” on Einstein manifolds [16], one can refer to
the survey book [77] for the development after [16], and the recent articles [?, 18]
for Sasakian Einstein metrics and compact homogenous Einstein manifolds.

Contrary to a Ricci curvature lower bound, a Ricci curvature upper bound
does not have any topological constraint [85].

Theorem 3.4.1 (Lohkamp, 1994) If n ≥ 3, any manifold, Mn, admits a
complete metric with RicM < 0.

An upper Ricci curvature bound does have geometric implications, e g. the
isometry group of a compact manifold with negative Ricci curvature is finite.
In the presence of a lower bound, an upper bound on Ricci curvature forces
additional regularity of the metric, see Theorem 8.5.13 in Section ?? by Ander-
son. It’s still unknown whether it will give additional topological control. For
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example, the following question is still open.

Question 3.4.2 Does the class of manifolds Mn with |RicM | ≤ H,VolM ≥ V
and diamM ≤ D have finite many homotopy types?

There are infinitely many homotopy types without the Ricci upper bound [106] .
This is the only known topological obstruction to a compact manifold supports a
metric with positive Ricci curvature other than topological obstructions shared
by manifolds with positive scalar curvature.

What can one say if the dimension n is fixed? For example, is the order of
the group modulo an abelian subgroup bounded by the dimension? See [138]
for a partial result.
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Chapter 4

Gromov-Hausdorff
convergence

Gromov-Hausdorff convergence is very useful in studying manfolds with a lower
Ricci bound. The starting point is Gromov’s precompactness theorem. Let’s
first recall the Gromov-Hausdorff distance. See [68, Chapter 3,5],[108, Chap-
ter 10], [23, Chapter 7] for more background material on Gromov-Hausdorff
convergence.

Given a metric space (X, d) and subsets A,B ⊂ X, the Hausdorff distance
is

dH(A,B) = inf{ε > 0 : B ⊂ Tε(A) and A ⊂ Tε(B)},

where Tε(A) = {x ∈ X : d(x,A) < ε}.

Definition 4.0.3 (Gromov, 1981) Given two compact metric spaces X,Y ,
the Gromov-Hausdorff distance is dGH(X,Y ) = inf {dH(X,Y ) : all metrics on
the disjoint union, X

∐
Y , which extend the metrics of X and Y }.

The Gromov-Hausdorff distance defines a metric on the collection of isometry
classes of compact metric spaces. Thus, there is the naturally associated notion
of Gromov-Hausdorff convergence of compact metric spaces. While the Gromov-
Hausdorff distance make sense for non-compact metric spaces, the following
looser definition of convergence is more appropriate. See also [68, Defn 3.14].
These two definitions are equivalent [127, Appendix].

Definition 4.0.4 We say that non-compact metric spaces (Xi, xi) converge in
the pointed Gromov-Hausdorff sense to (Y, y) if for any r > 0, B(xi, r) converges
to B(y, r) in the pointed Gromov-Hausdorff sense.

Applying the relative volume comparison (1.4.7) to manifolds with lower
Ricci bound, we have
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Theorem 4.0.5 (Gromov’s precompactness theorem) The class of closed
manifolds Mn with RicM ≥ (n−1)H and diamM ≤ D is precompact. The class
of pointed complete manifolds Mn with RicM ≥ (n− 1)H is precompact.

By the above, for an open manifold Mn with RicM ≥ 0 any sequence
{(Mn, x, r−2

i g)}, with ri →∞, subconverges in the pointed Gromov-Hausdorff
topology to a length space M∞. In general, M∞ is not unique [105]. Any such
limit is called an asymptotic cone of Mn, or a cone of Mn at infinity .

Gromov-Hausdorff convergence defines a very weak topology. In general one
only knows that Gromov-Hausdorff limit of length spaces is a length space and
diameter is continuous under the Gromov-Hausdorff convergence. When the
limit is a smooth manifold with same dimension Colding showed the remarkable
result that for manifolds with lower Ricci curvature bound the volume also
converges [47] which was conjectured by Anderson-Cheeger. See also [31] for a
proof using mod 2 degree.

Theorem 4.0.6 (Volume Convergence, Colding, 1997) If (Mn
i , xi) has RicMi ≥

(n− 1)H and converges in the pointed Gromov-Hausdorff sense to smooth Rie-
mannian manifold (Mn, x), then for all r > 0

lim
i→∞

Vol(B(xi, r)) = Vol(B(x, r)). (4.0.1)

The volume convergence can be generalized to the noncollapsed singular limit
space (by replacing the Riemannian volume with the n-dimensional Hausdorff
measure Hn) [35, Theorem 5.9], and to the collapsing case with smooth limit
Mk in terms of the k-dimensional Hausdorff content [36, Theorem 1.39].

As an application of Theorem 4.0.6, Colding [47] derived the rigidity result
that if Mn has RicM ≥ 0 and some M∞ is isometric to Rn, then M is isometric
to Rn.

We also have the following wonderful stability result [35] which sharpens an
earlier version in [47].

Theorem 4.0.7 (Cheeger-Colding, 1997) For a closed Riemannian man-
ifold Mn there exists an ε(M) > 0 such that if Nn is a n-manifold with
RicN ≥ −(n− 1) and dGH(M,N) < ε then M and N are diffeomorphic.

Unlike the sectional curvature case, examples show that the result does not hold
if one allows M to have singularities even on the fundamental group level [102,
Remark (2)]. Also the ε here must depend on M [3].

Cheeger-Colding also showed that the eigenvalues and eigenfunctions of the
Laplacian are continuous under measured Gromov-Hausdorff convergence [37].
To state the result we need a definition and some structure result on the limit
space (see Section ?? for more structures). Let Xi be a sequence of metric
spaces converging to X∞ and µi, µ∞ are Radon measures on Xi, X∞.

Definition 4.0.8 We say (Xi, µi) converges in the measured Gromov-Hausdorff
sense to (X∞, µ∞) if for all sequences of continuous functions fi : Xi → R con-
verging to f∞ : X∞ → R, we have∫

Xi

fidµi →
∫
X∞

f∞dµ∞. (4.0.2)
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If (M∞, p) is the pointed Gromov-Hausdorff limit of a sequence of Rieman-
nian manifolds (Mn

i , pi) with RicMi ≥ −(n−1), then there is a natural collection
of measures, µ, on M∞ obtained by taking limits of the normalized Reimannian
measures on Mn

j for a suitable subsequence Mn
j [53], [35, Section 1],

µ = lim
j→∞

Volj(·) = Vol(·)/Vol(B(pj , 1)). (4.0.3)

In particular, for all z ∈ M∞ and 0 < r1 ≤ r2, we have the renormalized limit
measure µ satisfy the following comparison

µ(B(z, r1))
µ(B(z, r2))

≥ Voln,−1 (B(r1))
Voln,−1 (B(r2))

. (4.0.4)

With this, the extension of the segment inequality (1.6.4) to the limit, the gradi-
ent estimate (??), and Bochner’s formula, one can define a canonical self-adjoint
Laplacian ∆∞ on the limit space M∞ by means of limits of the eigenfunctions
and eigenvalues for the sequence of the manifolds. In [29, 37] an intrinsic con-
struction of this operator is also given on a more general metric measure spaces.
Let {λ1,i · · · , }, {λ1,∞, · · · , } denote the eigenvalues for ∆i,∆∞ on Mi,M∞, and
φj,i, φj,∞ the eigenfunctions of the jth eigenvalues λj,i, λj,∞. In [37] Cheeger-
Colding in particular proved the following theorem, establishing Fukaya’s con-
jecture [53].

Theorem 4.0.9 (Spectral Convergence, Cheeger-Colding, 2000) Let (Mn
i , pi,Voli)

with RicMi ≥ −(n−1) converges to (M∞, p, µ) under measured Gromov-Hausdorff
sense and M∞ is compact. Then for each j, λj,i → λj,∞ and φj,i → φj,∞ uni-
formly as i→∞.

As a natural extension, in [52] Ding proved that the heat kernel and Green’s
function also behave nicely under the measured Gromov-Hausdorff convergence.
The natural extension to the p-form Laplacian does not hold, however, there is
still very nice work in this direction by John Lott, see [86, 88].
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Chapter 5

Comparison for Integral
Ricci Curvature

5.1 Integral Curvature: an Overview

What’s integral curvature? A natural integral curvature is the Lp-norm of
the curvature tensor. For a compact Riemannian manifold Mn, x ∈ M , let
σ(x) = maxv,w,∈TxM |K(v, w)|, where K(v, w) is the sectional curvature of the
plane spanned by v, w. The Lp-norm of the curvature tensor is

‖Rm‖p =
(∫

M

σ(x)pdvol
)1/p

.

When the metric g scales by λ2, the sectional curvature scales by λ−2, volume by
λn, so ‖Rm‖p scales by λ

n
p−2. Therefore when p = n

2 , ‖Rm‖p is scale invariant,
while for p < n

2 , one can make ‖Rm‖p small just by choosing λ small, not a
very restrictive condition. Sometime the normalized norm,

‖Rm‖p =
(

1
VolM

∫
M

σ(x)pdvol
)1/p

,

which scales like curvature, is more appropriate. When M is noncompact, one
can define the integral over a ball (see below).

Bounds on these integral curvatures are extensions of two sided pointwise
curvature bounds to integral. What about one sided curvature bound? Or
integral curvature lower bound? Here we specify for Ricci curvature. Given
H ∈ R, we can measure the amount of Ricci curvature lying below (n− 1)H in
Lp norm.

For each x ∈Mn let ρ (x) denote the smallest eigenvalue for the Ricci tensor
Ric : TxM → TxM, and RicH− (x) = ((n− 1)H − ρ(x))+ = max {0, (n− 1)H − ρ(x)},

65



66 CHAPTER 5. COMPARISON FOR INTEGRAL RICCI CURVATURE

amount of Ricci curvature below (n− 1)H. Let

‖RicH−‖p(R) = sup
x∈M

(∫
B(x,R)

(RicH− )p dvol

) 1
p

. (5.1.1)

Then ‖RicH−‖p measures the amount of Ricci curvature lying below (n− 1)H in
the Lp sense. Clearly ‖RicH−‖p(R) = 0 iff RicM ≥ (n− 1)H.

Similarly we can define Ricci curvature integral upper bound, or for sec-
tional curvature integral lower bound ‖KH

− ‖p. When H = 0, we will omit the
superscript, e.g. denote ‖Ric0

−‖p by ‖Ric−‖p.
Why do we study integral curvature? Many geometric problems lead to in-

tegral curvatures, for example, the isospectral problems, geometric variational
problems and extremal metrics, and Chern-Weil’s formula for characteristic
numbers. Integral curvature also makes sense on some singular spaces, e.g.
polyhedral surfaces. Since integral curvature bound is much weaker than point-
wise curvature bound, one naturally asks what geometric and topological results
can be extended to integral curvature.

In general one can not extend results from pointwise curvature bounds to
integral curvature bounds. This can be illustrated by an example by D. Yang
[144].

Recall a very important result in Riemannian geometry is Cheeger’s finite-
ness theorem [28]. Namely the class of manifolds Mn with

|KM | ≤ H, VolM ≥ v, diamM ≤ D

has only finite many diffeomorphism types. A key estimate is Cheeger’s estimate
on the length of the shortest closed geodesics. This is not true if |KM | ≤ H is
replaced by ‖Rm‖p is bounded. In fact we have [144]

Example 5.1.1 (D. Yang 1992) For all p ≥ n
2 there are manifolds Mn

k such
that

‖Rm‖p ≤ H, Vol ≥ v, diam ≤ D

but b2(Mk)→∞ as k →∞.

Hence some smallness is needed. For p ≤ n
2 , this still does not work as Gromov’s

Betti number estimate [61] does not extend [56].

Example 5.1.2 (Gallot 1988) For any ε > 0, D > 0, n ≥ 3, there are Mn
k

such that

diam(Mk) ≤ D, ‖K−‖n2 ≤ ε, ‖K−‖n2 ≤ ε,

but b2(Mk)→∞ as k →∞.

This is not the end of story. Most results extend when the normalized Lp

norm ‖Rm‖p, ‖KH
− ‖p, or ‖RicH−‖p is small for p > n

2 . Namely we need the
error from pointwise curvature bound to be small in Lp for p > n

2 . There is



5.2. MEAN CURVATURE COMPARISON ESTIMATE 67

a gap phenomenon. Some of the basic tools for these extensions are volume
comparison for integral curvature, use Ricci flow to deform the manifolds with
integral curvature bounds to pointwise curvature bound (so called smoothing),
D. Yang and Gallot’s Sobolev estimates [56, 144, 111, 112, 50].

5.2 Mean Curvature Comparison Estimate

Recall the mean curvature comparison theorem (Theorem 1.2.2) states that if
Ric ≥ (n − 1)H, then m ≤ mH . In general, without any curvature bound,
we can estimate mH

+ = (m−mH)+ (set it to zero whenever it is not defined),
amount of mean curvature comparison failed in L2p, in terms of RicH− , amount
of Ricci curvature lying below (n− 1)H in Lp when p > n

2 [111].

Theorem 5.2.1 (Mean Curvature Estimate, Petersen-Wei 1997) For any
p > n

2 , H ∈ R, and when H > 0 assume r ≤ π
2
√
H

, we have

‖mH
+‖2p(r) ≤

(
(n− 1)(2p− 1)

2p− n
‖RicH−‖p(r)

) 1
2

. (5.2.2)

Clearly this generalizes the mean curvature comparison theorem (Theorem 1.2.2).
In fact we prove the following which also gives a pointwise estimate.

Proposition 5.2.2 (Mean Curvature Estimate, Petersen-Wei 1997) For
any p > n

2 , H ∈ R, and when H > 0 assume r ≤ π
2
√
H

, we have∫ r

0

(mH
+ )2pA(t, θ) dt ≤

(
(n− 1)(2p− 1)

2p− n

)p ∫ r

0

(RicH− )pA(t, θ) dt,

(5.2.3)

(mH
+ )2p−1(r, θ)A(r, θ) ≤ (2p− 1)p

(
n− 1
2p− n

)p−1 ∫ r

0

(RicH− )pA dt,

(5.2.4)

where A(t, θ) is the volume element of the volume form d vol = A(t, θ)dt∧dθn−1

in polar coordinate.

Proof: By (1.2.2) and (1.2.4) we have

(m−mH)′ ≤ − (m−mH)(m+mH)
n− 1

+ (n− 1)H − Ric(∇r,∇r). (5.2.5)

On the interval m ≤ mH , we have mH
+ = 0, on the interval where m > mH ,

m−mH = mH
+ , and (n− 1)H − Ric(∇r,∇r) ≤ RicH− . Therefore we have

(mH
+ )′ +

(mH
+ )2

n− 1
+ 2

mH
+ ·mH

n− 1
≤ RicH− . (5.2.6)
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Multiply (5.2.6) by (mH
+ )2p−2A we get

(mH
+ )′(mH

+ )2p−2A+
(mH

+ )2p

n− 1
A+

2(mH
+ )2p−1

n− 1
mHA ≤ RicH− (mH

+ )2p−2A.

To complete the integral of the first term we compute, using (1.4.3) and m −
mH ≤ mH

+ ,

(2p− 1)(mH
+ )′(mH

+ )2p−2A =
(
(mH

+ )2p−1A
)′ − (mH

+ )2p−1A′

=
(
(mH

+ )2p−1A
)′ − (mH

+ )2p−1(m−mH)A− (mH
+ )2p−1mHA

≥
(
(mH

+ )2p−1A
)′ − (mH

+ )2pA− (mH
+ )2p−1mHA.

Therefore we have the ODE(
(mH

+ )2p−1A
)′

+
(

2p− 1
n− 1

− 1
)

(mH
+ )2pA+

(
4p− 2
n− 1

− 1
)

(mH
+ )2p−1mHA

≤ (2p− 1)RicH− (mH
+ )2p−2A. (5.2.7)

When p > n
2 , 2p−1

n−1 − 1 = 2p−n
n−1 > 0. Hence if mH ≥ 0 (which is true under our

assumption), we can throw away the third term in (5.2.7) and integrate from 0
to r to get(

(mH
+ )2p−1A

)
(r) +

2p− n
n− 1

∫ r

0

(mH
+ )2pA dt ≤ (2p− 1)

∫ r

0

RicH− (mH
+ )2p−2A dt.

This gives (
(mH

+ )2p−1A
)

(r) ≤ (2p− 1)
∫ r

0

RicH− (mH
+ )2p−2A dt, (5.2.8)

2p− n
n− 1

∫ r

0

(mH
+ )2pA dt ≤ (2p− 1)

∫ r

0

RicH− (mH
+ )2p−2A dt. (5.2.9)

By Hölder’s inequality∫ r

0

RicH− (mH
+ )2p−2A dt ≤

(∫ r

0

(mH
+ )2pA dt

)1− 1
p
(∫ r

0

(RicH− )pA dt
) 1
p

.

Plug this into (5.2.9) we get (5.2.3). Plug this into (5.2.8) and combine (5.2.3)
we get (5.2.4).

When H > 0 and r > π
2
√
H

, mH is negative so we can not throw away the
third term in (5.2.7). Following the above estimate with an integrating factor
Aubry gets [8]

Proposition 5.2.3 For p > n
2 , H > 0, π

2
√
H
< r < π√

H
, we have

sin4p−n−1(
√
Hr)(mH

+ )2p−1(r, θ)A(r, θ)

≤ (2p− 1)p
(
n− 1
2p− n

)p−1 ∫ r

0

(RicH− )pA dt. (5.2.10)
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Proof: Write (5.2.7) as(
(mH

+ )2p−1A
)′

+
(4p− n− 1)mH

n− 1
(mH

+ )2p−1A

+
(

2p− n
n− 1

)
(mH

+ )2pA ≤ (2p− 1)RicH− (mH
+ )2p−2A.

The integrating factor of the first two terms is e
R (4p−n−1)mH

n−1 = sin4p−n−1(
√
Hr).

Multiply by the integrating factor and integrate from 0 to r we get

0 ≤ sin4p−n−1(
√
Hr)(mH

+ )2p−1(r, θ)A(r, θ) +
2p− n
n− 1

∫ r

0

(mH
+ )2p sin4p−n−1(

√
Hr)A dt

≤ (2p− 1)
∫ r

0

RicH− (mH
+ )2p−2 sin4p−n−1(

√
Hr)A

Using Hólder’s inequality as before we get∫ r

0

(mH
+ )2p sin4p−n−1(

√
Hr)A(t, θ) dt

≤
(

(n− 1)(2p− 1)
2p− n

)p ∫ r

0

(RicH− )p sin4p−n−1(
√
Hr)A(t, θ) dt

and this gives (5.2.10) as before.

All estimates hold for the mean curvature of hypersurfaces.

5.3 Volume Comparison Estimate

From (1.4.3) one naturally expects that the mean curvature comparison esti-
mates in the last section would give volume comparison estimate for integral
Ricci lower bound.

First we give a comparison estimate for the area of geodesics spheres using
the pointwise mean curvature estimate (5.2.4). RecallA(x, r) =

∫
Sn−1 A(r, θ)dθn−1,

the volume of the geodesic sphere S(x, r) = {y ∈ M |d(x, y) = r}, and AH(r)
the volume of the geodesic sphere in the model space.

Theorem 5.3.1 Let x ∈ Mn, H ∈ R and p > n
2 be given, and when H > 0

assume that R ≤ π
2
√
H

. For r ≤ R, we have(
A(x,R)
AH(R)

) 1
2p−1

−
(
A(x, r)
AH(r)

) 1
2p−1

≤ C(n, p,H,R)
(
‖RicH−‖p(R)

) p
2p−1 ,(5.3.11)

where C(n, p,H,R) =
(

n−1
(2p−1)(2p−n)

) p−1
2p−1 ∫ R

0
(AH)−

1
2p−1 dt. Furthermore when

r = 0 we obtain

A(x,R) ≤
(

1 + C (n, p,H,R) ·
(
‖RicH−‖p(R)

) p
2p−1

)2p−1

AH(R). (5.3.12)
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The proof below much simplifies the proof in [51].
Proof: Recall

d

dt

(
A(t, θ)
AH(t)

)
= (m−mH) · A(t, θ)

AH(t)
≤ mH

+ ·
A(t, θ)
AH(t)

.

Hence
d

dt

(
A(x, t)
AH(t)

)
=

1
VolSn−1

∫
Sn−1

d

dt

(
A(t, θ)
AH(t)

)
dθn−1

≤ 1
AH(t)

∫
Sn−1

mH
+A(t, θ)dθn−1.

Using Hölder’s inequality and (5.2.4) yields∫
Sn−1

mH
+A(t, θ)dθn−1

≤
(∫

Sn−1
(mH

+ )2p−1Adθn−1

) 1
2p−1

(A(x, t))1− 1
2p−1

≤ C(n, p)
(
‖RicH−‖p(t)

) p
2p−1 (A(x, t))1− 1

2p−1 ,

where C(n, p) =
(

(2p− 1)p
(
n−1
2p−n

)p−1
) 1

2p−1

. Hence we have

d

dt

(
A(x, t)
AH(t)

)
≤ C(n, p)

(
‖RicH−‖p(t)

) p
2p−1 (AH)−

1
2p−1

(
A(x, t)
AH(t)

)1− 1
2p−1

.(5.3.13)

Separation of variables and integrate from r to R we get(
A(x,R)
AH(R)

) 1
2p−1

−
(
A(x, r)
AH(r)

) 1
2p−1

≤
(

n− 1
(2p− 1)(2p− n)

) p−1
2p−1 (

‖RicH−‖p(R)
) p

2p−1

∫ R

r

(AH)−
1

2p−1 dt.

The integral
∫ R
r

(AH)−
1

2p−1 dt ≤
∫ R

0
(AH)−

1
2p−1 dt converges when p > n

2 . This
gives (5.3.11).

Similarly, using (5.2.10) instead of (5.2.4) and that AH(t) =
(

sin(
√
Ht√
H

)n−1

for H > 0, one has for p > n
2 , H > 0, π

2
√
H
< r ≤ R < π√

H
,(

A(x,R)
AH(R)

) 1
2p−1

−
(
A(x, r)
AH(r)

) 1
2p−1

≤
(

n− 1
(2p− 1)(2p− n)

) p−1
2p−1 (

‖RicH−‖p(R)
) p

2p−1

∫ R

r

(√
H
) n−1

2p−1

sin2(
√
Ht)

dt.

(5.3.14)

Using (5.3.13) we have
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Theorem 5.3.2 (Volume Comparison Estimate, Petersen-Wei 1997) Let
x ∈ Mn, H ∈ R and p > n

2 be given, when H > 0 assume that R ≤ π
2
√
H

. For
r ≤ R we have(

VolB (x,R)
VolH (B(R))

) 1
2p−1

−
(

VolB (x, r)
VolH (B(r))

) 1
2p−1

≤ C (n, p,H,R) ·
(
‖RicH−‖p(R)

) p
2p−1 , (5.3.15)

where C(n, p,H,R) =
(

n−1
(2p−1)(2p−n)

) p−1
2p−1 ∫ R

0
AH(t)

(
t

VolHB(t)

) 2p
2p−1

dt, increas-
ing in R.

Note that when ‖RicH−‖p(R) = 0, this gives the Bishop-Gromov relative
volume comparison.
Proof of Theorem 5.3.2: Since VolB(x,r)

VolH(B(r)) =
R r
0 A(x,t)dtR r
0 AH(t)dt

, we have

d

dr

(
VolB (x, r)
VolHB(r)

)
=
A(x, r)

∫ r
0
AH(t)dt−AH(r)

∫ r
0
A(x, t)dt

(VolHB(r))2 . (5.3.16)

Integrate (5.3.13) from t to r gives

A(x, r)
AH(r)

− A(x, t)
AH(t)

≤ C(n, p)
∫ r

t

(
‖RicH−‖p(s)

) p
2p−1 A(x, s)1− 1

2p−1

AH(s)
ds

≤ C(n, p)

(
‖RicH−‖p(r)

) p
2p−1

AH(t)

∫ r

t

A(x, s)1− 1
2p−1 ds

≤ C(n, p)

(
‖RicH−‖p(r)

) p
2p−1

AH(t)
(r − t)

1
2p−1 (VolB (x, r))1− 1

2p−1 . (5.3.17)

Hence

A(x, r)AH(t)−AH(r)A(x, t)

≤ C(n, p)
(
‖RicH−‖p(r)

) p
2p−1 AH(r)r

1
2p−1 (VolB (x, r))1− 1

2p−1 .

Plug this into (5.3.16) gives

d

dr

(
VolB (x, r)
VolHB(r)

)
≤ C(n, p)

(
‖RicH−‖p(r)

) p
2p−1 AH(r)

(
r

VolHB(r)

) 2p
2p−1

(
VolB (x, r)
VolHB(r)

)1− 1
2p−1

.

Separation of variables and integrate from r to R we get(
VolB(x,R)
VolH(R)

) 1
2p−1

−
(

VolB(x, r)
VolH(r)

) 1
2p−1

≤
(

n− 1
(2p− 1)(2p− n)

) p−1
2p−1 (

‖RicH−‖p(R)
) p

2p−1

∫ R

r

AH(t)
(

t

VolHB(t)

) 2p
2p−1

dt.
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The integral
∫ R
r
AH(t)

(
t

VolHB(t)

) 2p
2p−1

dt ≤
∫ R

0
AH(t)

(
t

VolHB(t)

) 2p
2p−1

dt con-

verges when p > n
2 .

For applications the volume doubling estimate is often more useful. From
(5.3.15)(

VolB (x, r)
VolH (B(r))

) 1
2p−1

≥
(

VolB (x,R)
VolH (B(R))

) 1
2p−1

(
1− C (n, p,H,R) (VolHB(R))

1
2p−1 ·

(
‖RicH−‖p(R)

) p
2p−1

)
,

where

C (n, p,H,R) (VolHB(R))
1

2p−1 ≤ R
2p

2p−1C(n, p, |H|R2).

Hence(
VolB(x, r)

Vol (B(x,R))

) 1
2p−1

≥
(

VolH B (r)
VolH (B(R))

) 1
2p−1

(
1− C

(
n, p, |H|R2

) (
R2‖RicH−‖p(R)

) p
2p−1

)
.

(5.3.18)

Therefore we have

Corollary 5.3.3 (Volume Doubling Estimate) Given α < 1 and p > n
2 ,

there is an ε = ε(n, p, |H|R2, α) > 0 such that if R2‖RicH−‖p(R) < ε, then for
all x ∈Mn and r1 < r2 ≤ R (assume R ≤ π

2
√
H

when H > 0),

VolB(x, r1)
VolB(x, r2)

≥ αVolH(r1)
VolH(r2)

. (5.3.19)

Proof: From above we have(
VolB (x, r1)

Vol (B(x, r2))

) 1
2p−1

≥
(

VolH B (r1)
VolH (B(r2))

) 1
2p−1

(1− η),

where

η = C (n, p,H, r2) (VolHB(r2))
1

2p−1 ·
(
‖RicH−‖p(r2)

) p
2p−1

.

To control η we note that it is almost increasing in r2. In fact, since C(n, p,H,R)
is increasing in R,

η(r2) ≤ η(R) ·
(

VolB (x,R)
Vol (B(x, r2))

) 1
2p−1

·
(

VolH B (r2)
VolH (B(R))

) 1
2p−1

.
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By (5.3.18), when R2‖RicH−‖p(R) is small depends only on n, p, |H|R2,

(
VolB(x,R)

Vol (B(x, r2))

) 1
2p−1

≤ 2
(

VolH (B(R))
VolHB (r2)

) 1
2p−1

.

Hence η(r2) ≤ 2η(R). Now η(R) can be made arbitrary small if R2‖RicH−‖p(R)
is small enough depends on n, p, |H|R2.

We note that to apply the volume doubling, one needs a smallness condition
on ‖RicH−‖p(R), the normalized one, which is a more natural condition than

the smallness of ‖RicH−‖p(R). As R gets bigger, the smallness needed has to be
more stringent.

Definition 5.3.4 We call a set T ⊂ M is a star shaped set at x if for any
y ∈ T , a minimal geodesic connecting x, y also lies in T .

Obviously the ball B(x, r) is a star shaped set at x. By integrating only
along the direction lies in the start shaped set at x, we get the same volume
estimate for any set which is star shaped set at x, with RicH− also only integrate
in T . This will be useful in applications.

5.4 Geometric and Topological Results for Inte-
gral Curvature

Volume comparison is a powerful tool for studying manifolds with lower Ricci
curvature bound and has many applications. As a result of (5.3.15), (5.3.11),
(5.3.3) many results with pointwise Ricci lower bound (i.e. ‖RicH−‖p(r) = 0)

can be extended to the case when ‖RicH−‖p(r)(p > n/2) is very small, although
many times serious extra work is needed. As shown by Examples 5.1.1, 5.1.2
the smallness of ‖RicH−‖p(r) for p ≤ n/2 or general boundedness of ‖RicH−‖p(r)
for any p ≥ 1 does not give any interesting results.

In [56] Gallot obtained lower bound for certain isoperimetric constants when
‖RicH−‖p is small and p > n/2. This gives in a standard way lower eigen-

value bounds and Sobolev constant bounds (for L1,1 ⊂ L
2p

2p−1 ). Using this
and Bochner technique Gallot proved various interesting topological results for
integral curvature [56]. For example,

Theorem 5.4.1 (Gallot 1988) Given p > n/2, D > 0, H ≤ 0 there exist con-
stants ε(p,H,D), C(p,H,D) such that if Mn is a compact Riemannian manifold
with diamM ≤ D, ‖RicH−‖p ≤ ε(p,H.D), then b1(M) ≤ n · C(p,H,D).

This extends Theorem 3.1.3 (for H ≤ 0) to integral Ricci curvature lower bound,
see also [72]. Gallot also obtained bound for all higher Betti numbers. In this
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case the bound depends in addition on ‖Rm‖p. Replacing that by the smallness

of ‖KH
− ‖p would give a true generalization of Gromov’s Betti number estimate.

In [110] using the volume estimate (5.3.15) for tube of hypersurface instead
of balls P. Levy-Gromov’s isoperimetric inequality (Theorem ??) is generalized
to integral Ricci curvature, improving Gallot’s estimate. In particular one gets
a bound for the classical Sobolev constant coming from the embedding L1,1 ⊂
L

n
n−1 .

With (5.3.3) several pinching and compactness results can be extended quickly
[111]. For example Gromov’s precompactness theorem (Theorem 4.0.5) extends
immediately when ‖RicH−‖p is small. In fact ???? [9]. (5.3.3) also gives volume
growth when the volume is bounded from below. Therefore combining with D.
Yang’s compactness [144] one has

Theorem 5.4.2 (Petersen-Wei 1997) Given an integer n ≥ 2 and numbers
p > n/2, H ≤ 0, v > 0, D < ∞,Λ < ∞, one can find ε(n, p,H,D) > 0 such
that the class of closed Riemannian n-manifolds with VolM ≥ v,diamM ≤
D, ‖Rm‖p ≤ Λ, ‖RicH−‖p ≤ ε(n, p,H,D) is precompact in the Cα, α < 2 − n

p ,
topology.

Example 5.1.1 shows the smallness of ‖RicH−‖p is necessary.
In [112] using (5.3.3) and D. Yang’s estimate on Sobolev constants [144]

the basic tools — maximal principle, gradient estimate, excess estimate are
extended to integral Ricci curvature. With these and (5.2.3) some of Colding’s
[46, 47] and Cheeger-Colding’s [35] work (e.g. Theorems 4.0.6, 4.0.7) are also
generalized.

Using (5.3.11) Cheeger-Yau’s lower bound of the heat kernel (Theorem ??)
is extended in [51].

On the other hand, unlike pointwise Ricci curvature lower bound, Ricci cur-
vature bounded from below in Lp does not automatically lift to the covering
spaces. Therefore certain topological implications, such as those on the funda-
mental group, for Ricci curvature bounded from below in Lp does not follow
immediately since we need to apply volume comparison on the covering space.
Aubry [8, 9] showed the mean of the integral Ricci curvature on the geodesic
balls of the covering space can be controlled by the mean of the manifold, allow-
ing several topological extensions of pointwise Ricci curvature to integral Ricci
curvature.

Proposition 5.4.3 (Aubry 2009) Given an integer n ≥ 2 and numbers p >
n/2, H ≤ 0, D < ∞, one can find ε(n, p, |H|D2) > 0 such that if Mn satisfies
diamM ≤ D,D2‖RicH−‖p ≤ ε(n, p, |H|D

2) then for any non-negative function ϕ

on M , any normal covering π : M̄ →M , x̄ ∈ M̄ and R ≥ 2D, we have

1
3n+1e2(n−1)|H|D2

∫
−
M
ϕ ≤

∫
−

B(x̄,R)
ϕ̄ ≤ 3n+1e2(n−1)|H|D2 ∫

−
M
ϕ, (5.4.20)

where ϕ̄ = π∗ϕ and
∫
−M ϕ = 1

VolM

∫
M
ϕ.
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Proof: To relate the integral on B(x̄, R) to the one in the base, it is natural
to cover B(x̄, R) with a subset T̄ ⊂ M̄ which is union of fundamental domains.
Let N = maxy∈M #{π−1(y) ∩ B(x̄, R)}. Since R ≥ D, we have N ≥ 1. Now
for each y ∈ M , choose N distinct points ȳi ∈ π−1(y), i = 1, · · · , N such that
d(x̄, ȳi) ≤ d(x̄, ȳ) for any ȳ ∈ π−1(y) \ {ȳi, i = 1, · · · , N}. Let T̄ be the union
of these ȳi, i = 1, · · · , N for all y ∈ M , i.e. T̄ is the smallest Dirichlet domains
contains B(x̄, R). Hence B(x̄, R) ⊂ T̄ ⊂ B(x̄, R+D) and

∫
−T̄ ϕ̄ =

∫
−M ϕ.

Now we show T̄ is also star shaped at x̄. Given ȳ ∈ T̄ , connect x̄, ȳ with
a minimal geodesic γ. Assume there exists z̄ ∈ γ \ T . Then there are distinct
nontrivial decktranformations σ1, · · · , σN such that each σiz̄ ∈ T . Since ȳ ∈ T ,
there exists 1 ≤ i0 ≤ N such that σi0 ȳ 6∈ T . I.e.

d(x̄, ȳ) ≤ d(x̄, σi0 ȳ), d(x̄, z̄) ≥ d(x̄, σi0 z̄).

Now

d(x̄, ȳ) = d(x̄, z̄) + d(z̄, ȳ)
≥ = d(x̄, σi0 z̄) + d(σi0 z̄, σi0 ȳ
≥ d(x̄, σi0 ȳ).

Combining above we have equalities everywhere. We have a minimal geodesics
connecting x̄, σi0 ȳ which contains σi0 z̄. Hence the geodesic σi0γ contain x̄ and
σi0 x̄ = x̄, a contradiction.

Hence ∫
−

B(x̄,R)
ϕ ≤ VolT

VolB(x̄, R)
∫
−
M
ϕ

and we only need to control VolT
VolB(x̄,R) = Vol(T∩B(x̄,R+D))

Vol(T∩B(x̄,R)) . Apply Corollary 5.3.3
to T , we immediately get (5.4.20) with smallness depends on R. To get smallness
only depends on D, we need to integrate a little more carefully.

Denote AT (x, r) = A(x, r) ∩ T,BT (x, r) = B(x, r) ∩ T . By (5.3.17), for
R−D ≤ t ≤ r ≤ R+D, applying to the start shaped set T , we have

AT (x, r)AH(t)−AH(r)AT (x, t)

≤ C(n, p)
(
‖RicH−‖p(T )

) p
2p−1

AH(r)(2D)
1

2p−1 VolT.

Integrate this with respect to t from R−D to R and r from R to R+D gives

(VolBT (x,R+D)−VolBT (x,R))
∫ R

R−D
AH(t) dt

≤
(

VolBT (x,R) + 2C(n, p)VolT
(
D2‖RicH−‖p(T )

) p
2p−1

)∫ R+D

R

AH(r) dr.

Namely

VolBT (x,R+D)
VolBT (x,R)

(∫ R

R−D
AH − 2C(n, p)

(
D2‖RicH−‖p(T )

) p
2p−1

∫ R+D

R

AH

)

≤
∫ R+D

R−D
AH .
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SinceAH(R) is increasing and snH(R+D)
snH(R−D) is decreasing inR, for anyR ∈ [2D,∞),

we have∫ R+D

R
AH∫ R

R−D AH
≤ 2D

D

(
snH(R+D)
snH(R−D)

)n−1

≤ 2
(
snH(3D)
snH(D)

)n−1

≤ 3ne2(n−1)|H|D2
.

Therefore if D2‖RicH−‖p ≤
(

1
3n+2C(n,p)e2(n−1)|H|D2

) 2p−1
p

then VolBT (x,R+D)
VolBT (x,R) ≤

3n+1e2(n−1)|H|D2
, proving the right part of the inequality in (5.4.20). The left

part of the inequality follows similarly with by constructing T for B(x̄, R−D)
and controlling VolBT (x,R−D)

VolBT (x,R) .

With Proposition 5.4.3, Theorems 3.1.3, 3.2.10, ??, ??, ?? can be easily
extended to the integral curvature, since in these cases one only needs to use
volume comparison on balls of radius comparable to the diameter [8, 72, 9].
One does not have extension of Milnor’s result (Theorem 3.2.11) directly to
integral curvature, even when one assumes the manifold is compact since one
needs to use volume comparison for balls of arbitrary large radius in the cover.
We conjecture it is still true. Namely

Conjecture 5.4.4 For n ∈ N, p > n
2 , there exists a constant ε(n, p) > 0 such

that if a compact Riemannian manifold Mn has DiamM ≤ 1 and ‖Ric0
−‖p(1) ≤

ε(n, p) then the fundamental group of M is almost nilpotent.

This would recover the recent result of Kapovitch-Wilking [74] (Theorem ??).
When H > 0 the mean curvature estimate (5.2.4) only hold for 0 < r ≤ π

2
√
H

.
Therefore the extension of Myers’ theorem (Theorem 1.2.3) to integral curvature
is not immediate at all [110, 8]. Using (5.2.10) and volume comparison on a star
shaped set, Aubry obtained a complete extension [8].

Theorem 5.4.5 (Aubry, 2007) Given p > n/2, there exists an ε = ε(n, p) >
0 such that if Mn is a complete Riemannian manifold with ‖Ricn−1

− ‖
p
≤ ε, then

M is compact with finite fundamental group and

diamM ≤ π
(

1 + C(n, p)ε
1
10

)
.

Here one implicitly assumes the volume of M is finite. This is easily obtained
with the following estimate also by Aubry. For p > n/2,

VolM ≤ VolSn
(
1 + C(n, p)‖Ricn−1

− ‖p
)
. (5.4.21)

Namely the volume is finite whenever ‖Ricn−1
− ‖p is finite. The volume and

diameter estimates are proved together.
Proof: Let {B(xi, 2π)}i∈I be a maximal family of disjoint balls in M . Con-
sider the Dirichlet domains Ti = {y ∈ M |d(y, xi) < d(y, xj),∀j 6= i}. Then
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B(xi, 2π) ⊂ Ti ⊂ B(xi, 4π), Ti is star shaped at xi and M = ∪iTi up to a set of
measure zero.Therefore∫

M

(Ricn−1
− )p =

∑
i∈I

∫
Ti

(Ricn−1
− )p

≥ αp
∑
i∈I

VolTi = αpVolM,

where α = infi∈I ‖Ricn−1
− ‖

p
(Ti). Now the diameter and volume estimate follow

from the following key local diameter estimate.

Lemma 5.4.6 If Mn contains a subset T such that B(x,R0) ⊂ T ⊂ B(x,RT )
with RT ≥ R0 > π, T is star shaped at x, and

ε = R2
T ‖Ricn−1

− ‖
p
(T ) ≤ B(n, p)

(
1− π

R0

)4

,

then diamM ≤ π
(

1 + C(n, p)ε
1
20

)
(and M ⊂ T ).

Proof: First we show for π ≤ r ≤ RT ,

AT (x, r) ≤ C(n, p)
r

ε
p(n−1)
2p−1 VolT. (5.4.22)

(For this estimate we only need ε
p

2p−1 ≤ π
6 .) In order to do comparison for r ≥ π,

we take the model space with constant sectional curvature Hr =
(
π−ε′
r

)2

< 1,

where ε′ = ε
p

2p−1 . From (5.3.14) for star shaped set, we have for t ∈ [ π
2(π−ε′)r, r],(

AT (x, r)
sinn−1(

√
Hrr)

) 1
2p−1

−
(

AT (x, t)
sinn−1(

√
Hrt)

) 1
2p−1

≤
(

n− 1
(2p− 1)(2p− n)

) p−1
2p−1 (

‖Ricn−1
− ‖p(T )

) p
2p−1

∫ r

t

1
sin2(

√
Hrs)

ds.

Since
√
Hrs ∈ (π2 , π),∫ r

t

1
sin2(

√
Hrs)

ds ≤
(π

2

)2
∫ r

t

1
(π −

√
Hrs)2

ds =
π2(r − t)

4(π −
√
Hrt)(π −

√
Hrr)

=
π2(r − t)

4(π −
√
Hrt)ε′

≤ πr

4ε′
.

Here we use the fact that t→ r−t
π−
√
Hrt

is decreasing. Since sin(
√
Hrr) = sin(π−

ε′) = sin(ε′) ≤ ε′, we have

AT (x, r)
1

2p−1 ≤ AT (x, t)
1

2p−1

(
ε′

sin((π − ε′) tr )

) n−1
2p−1

+
π

4

(
n− 1

(2p− 1)(2p− n)

) p−1
2p−1

(
VolT
RT

) 1
2p−1

ε′
n−1
2p−1 .
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For t ∈ [ π
2(π−ε′)r,

5π
6(π−ε′)r], sin((π − ε′) tr ) ≥ sin π

6 = 1
2 . When ε′ ≤ π

6 , one
has 5π

6(π−ε′)r ≤ r. Now using the inequality (a+ b)2p−1 ≤ 22p−2(a2p−1 + b2p−1)
we have

AT (x, r) ≤ 22p+n−3(ε′)n−1AT (x, t) +
π2p−1

4p

(
n− 1

(2p− 1)(2p− n)

)p−1 VolT
RT

(ε′)n−1

for all t ∈ [ π
2(π−ε′)r,

5π
6(π−ε′)r].

By mean value theorem, there exists t0 ∈ [ π
2(π−ε′)r,

5π
6(π−ε′)r] such that

AT (x, t0) =
3(π − ε′)

πr

∫ 5π
6(π−ε′) r

π
2(π−ε′) r

AT (x, t)dt ≤ 3
r

∫ RT

0

AT (x, t)dt =
3
r

VolT.

Hence

AT (x, r) ≤

[
3 · 22p+n−3 +

π2p−1

4p

(
n− 1

(2p− 1)(2p− n)

)p−1
]

VolT
r

ε
p(n−1)
2p−1 ,

which is (5.4.22).
Therefore, for π < R0 ≤ 2π, T = B(x,R0), δ ∈ (0, R0−π

2 ), if y ∈ M with
d(x, y) ≥ π + δ, then B(y, δ) ⊂ B(x, π + 2δ) \B(x, π), and

VolB(y, δ) ≤
∫ π+2δ

π

A(x, r)dr ≤ 2δC(p, n)VolB(x,R0)ε
p(n−1)
2p−1 . (5.4.23)

Next we give a lower bound for VolB(y, δ).
From (5.3.18), for 0 < r ≤ R ≤ R0, we have(

VolB(x, r)
VolB(x,R)

) 1
2p−1

≥
( r
R

) n
2p−1

(
1− C(n, p)ε̄

p
2p−1

)
,

where ε̄ = R2
0‖Ric0

−‖p(R0) ≤ R2
0‖Ricn−1

− ‖
p
(R0) = ε, and for z ∈ B(x,R0) with

0 < r ≤ R ≤ R0 − d(x, z),(
VolB(z, r)
VolB(z,R)

) 1
2p−1

≥
( r
R

) n
2p−1

(
1− C(n, p)

(
R2ε

R2
0

) p
2p−1

)
.

Iterate this estimate with a sequence of balls of increasing size as in Proposi-
tion 1.4.12, but with 1

2 ≤ α = α(p, n) < 1 close to 1 such that α
n

2p−1 ≥ 2
3 and

for n
2 < p ≤ n, (2− α)2p−nαn < 1, for ε ≤ ε(n, p) small, we have

VolB(y, r)
VolB(x,R0)

≥ rn

Rn0

[(
2
3
− C(n, p)ε

p′
2p′−1

)(
r

R0

) 2n
2p′−1

− C(n, p)ε
p′

2p′−1

]2p′−1

,

when p′ = max(n, p). Hence for ε small,

VolB(y, δ) ≥ δn

Rn0

[
1
2

(
δ

R0

) 2n
2p′−1

− C(n, p)ε
p′

2p′−1

]2p′−1

VolB(x,R0).(5.4.24)
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To finish the proof, note that when ε ≤ ε(n, p), VolBT (x,R)
VolT ≥ 1

2
Rn

RnT
for R ≤

RT . Hence ε ≥ ( 1
2 )

1
p
(
RT
R

)2−np R2‖Ricn−1
− ‖

p
(BT (x,R)) ≥ 1

2R
2‖Ricn−1

− ‖
p
(BT (x,R))

and we can assume RT = 2π so π < R0 ≤ 2π. Now from (5.4.23) and (5.4.24),

either
(
δ

2π

) 2n
2p′−1 ≤ 4C(n, p)εβ , where β = 2np(n−1)

(2p−1)(2p′−1)(3n−1) ≤
p′

2p′−1 , or(
δ

2π

)n
εβ(2p′−1) ≤ C(n, p)δε

p(n−1)
2p−1 .

In either case we have δ ≤ C(n, p)ε
p(n−1)

(2p−1)(3n−1) ≤ C(n, p)ε
1
10 , hence M ⊂

B(x,R0). Let z be any point of M . By above B(x,R0 − π − C(n, p)ε
1
10 ) ⊂

B(z,R0). Therefore

VolB(z,R0)
VolB(x,R0)

≥ VolB(x,R0 − π − C(n, p)ε
1
10 )

VolB(x,R0)

≥ 1
2

(
R0 − π − C(n, p)ε

1
10

2π

)n
≥ 1

4

(
R0 − π

2π

)n
and ε ≥ 1

4

(
R0−π

2π

)n
p ‖Ricn−1

− ‖
p
(B(z,R0). Now the same estimate for x applies

to z by replacing ε with 4
(

2π
R0−π

)n
p

ε, this gives the diameter estimate.

5.5 Smoothing

Another method to [50].
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Chapter 6

Comparison Geometry for
Bakry-Emery Ricci Tensor

6.1 N-Bakry-Emery Ricci Tensor

The Bakry-Emery Ricci tensor is a Ricci tensor for smooth metric measure
spaces, which are Riemannian manifold with a measure conformal to the Rie-
mannian measure. Formally a smooth metric measure space is a triple (Mn, g, e−fdvolg),
where M is a complete n-dimensional Riemannian manifold with metric g, f is a
smooth real valued function on M , and dvolg is the Riemannian volume density
on M . This is also sometimes called a manifold with density. physics dilaton,
analytical reasons. These spaces occur naturally as smooth collapsed limits
of manifolds with lower Ricci curvature bound under the measured Gromov-
Hausdorff convergence [53].

Definition 6.1.1 We say (Xi, µi) converges in the measured Gromov-Hausdorff
sense to (X∞, µ∞) if for all sequences of continuous functions fi : Xi → R con-
verging to f∞ : X∞ → R, we have∫

Xi

fidµi →
∫
X∞

f∞dµ∞. (6.1.1)

Example 6.1.2 Let (Mn × FN , gε) be a product manifold with warped product
metric gε = gM + (εe−f )2gF , where f is a function on M , F is compact. Then,
as ε → 0, the Riemannian measure dvolgε goes to zero, but with respect to the
renormalized Riemannian measure d̃volgε = dvolgε/volume of a unit ball ofgε,
(Mn×FN , d̃volgε) converges to (Mn, e−NfdvolgM ) under the measured Gromov-
Hausdorff convergence.

The N -Bakry-Emery Ricci tensor is

RicNf = Ric + Hessf − 1
N
df ⊗ df for N > 0. (6.1.2)

81
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As we will discuss below, N is related to the dimension of the model space. We
allow N to be infinite, in this case we denote Ricf = Ric∞f = Ric + Hessf . Note
that when f is a constant function RicNf = Ric for all N and we can take N = 0
in this case. Moreover, if N1 ≥ N2 then RicN1

f ≥ RicN2
f so that RicNf ≥ λg

implies Ricf ≥ λg.
The Bakry Emery Ricci tensor (for N finite and and infinite) has a natural

extension to non-smooth metric measure spaces [?, ?, 130] and diffusion oper-
ators [10]. Moreover, the equation Ricf = λg for some constant λ is exactly
the gradient Ricci soliton equation, which plays an important role in the theory
of Ricci flow; the equation RicNf = λg, for N positive integer, corresponds to
warped product Einstein metric on M ×

e−
f
N
FN . See [?] for a modification of

the Ricci tensor which is conformally invariant.
We are interested in investigating what geometric and topological results for

the Ricci tensor extend to the Bakry-Emery Ricci tensor. This was studied by
Lichnerowicz [?, ?] almost forty years ago, though this work does not seem to
be widely known. Recently this has been actively investigated and there are
many interesting results in this direction which we will discuss below, see for
example [?, 114, 87, 11, 107, 12, ?, ?, ?, ?, ?, ?]. In this note we first recall
the Bochner formulas for Bakry-Emery Ricci tensors (stated a little differently
from how they have appeared in the literature). The derivation of these from
the classical Bochner formula is elementary, so we present the proof. Then we
quickly derive the first eigenvalue comparison from the Bochner formulas as in
the classical case. In the rest of the paper we focus on mean curvature and
volume comparison theorems and their applications. When N is finite, this
work is mainly from [114, 12], and when N is infinite, it’s mainly from our
recent work [?].

The most well known example is the following soliton, often referred to as
the Gaussian soliton.

Example 6.1.3 Let M = Rn with Euclidean metric g0, f(x) = λ
2 |x|

2. Then
Hessf = λg0 and Ricf = λg0.

This example shows that, unlike the case of Ricci curvature uniformly bounded
from below by a positive constant, the manifold could be noncompact when
Ricf ≥ λg and λ > 0.

Example 6.1.4 Let M = Hn be the hyperbolic space. Fixed any p ∈ M , let
f(x) = (n − 1)r2 = (n − 1)d2(p, x). Now Hess r2 = 2|∇r|2 + 2rHessr ≥ 2I,
therefore Ricf ≥ (n− 1).

This example shows that the Cheeger-Gromoll splitting theorem and Abresch-
Gromoll’s excess estimate do not hold for Ricf ≥ 0, in fact they don’t even
hold for Ricf ≥ λ > 0. Note that the only properties of hyperbolic space
used are that Ric ≥ −(n − 1) and that Hess r2 ≥ 2I. But Hess r2 ≥ 2I for
any Cartan-Hadamard manifold, therefore any Cartan-Hadamard manifold with
Ricci curvature bounded below has a metric with Ricf ≥ 0 on it. On the other
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hand, in these examples Ric < 0. When Ric < 0 (Ric ≤ 0) and Ricf ≥ 0(Ricf >
0), then Hessf > 0 and f is strictly convex. Therefore M has to homeomorphic
to Rn.

Example 6.1.5 Let M = Rn with Euclidean metric, f(x1, · · · , xn) = x1. Since
Hess f = 0, Ricf = Ric = 0. On the other hand Volf (B(0, r)) is of exponential
growth. Along the x1 direction, mf −mH = −1 which does not goes to zero.

6.2 Bochner formulas for the N-Bakry-Emery
Ricci tensor

With respect to the measure e−fdvol the natural self-adjoint f -Laplacian is
∆f = ∆−∇f · ∇. In this case we have

∆f |∇u|2 = ∆|∇u|2 − 2Hessu(∇u,∇f),
〈∇u,∇(∆fu)〉 = 〈∇u,∇(∆u)〉 −Hessu(∇u,∇f)−Hessf(∇u,∇u).

Plugging these into (1.1.1) we immediately get the following Bochner formula
for the N -Bakry-Emery Ricci tensor.

1
2

∆f |∇u|2 = |Hessu|2+〈∇u,∇(∆fu)〉+RicNf (∇u,∇u)+
1
N
|〈∇f,∇u〉|2.(6.2.3)

When N =∞, we have

1
2

∆f |∇u|2 = |Hessu|2 + 〈∇u,∇(∆fu)〉+ Ricf (∇u,∇u). (6.2.4)

This formula is virtually the same as (1.1.1) except for the important fact that
tr(Hessu) = ∆u not ∆f (u). In the case where N is finite, however, we can get
around this difficulty by using the inequality

(∆u)2

n
+

1
N
|〈∇f,∇u〉|2 ≥ (∆f (u))2

N + n
(6.2.5)

which implies

1
2

∆f |∇u|2 ≥
(∆f (u))2

N + n
+ 〈∇u,∇(∆fu)〉+ RicNf (∇u,∇u). (6.2.6)

In other words, a Bochner formula holds for RicNf that looks like the Bochner
formula for the Ricci tensor of an n+N dimensional manifold. Note that (6.2.5)
is an equality if and only if ∆u = n

N 〈∇f,∇u〉, so equality in (6.2.6) is seldom
achieved when f is nontrivial. When f is constant, we can take N = 0 so (6.2.6)
recovers (1.1.5).
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6.3 Eigenvalue and Mean Curvature Compari-
son

From the Bochner formulas we can now prove eigenvalue and mean curvature
comparisons which generalize the classical ones. First we consider the eigenvalue
comparison.

Let Mn be a complete Riemannian manifold with RicNf ≥ (n − 1)H > 0.
Applying (6.2.6) to the first eigenfunction u of ∆f , ∆fu = −λ1u, and integrating
with respect to the measure e−fdvol, we have

0 ≥
∫
M

(
(λ1u)2

N + n
− λ1|∇u|2 + (n− 1)H|∇u|2

)
e−fdvol.

Since
∫
M
|∇u|2e−fdvol = λ1

∫
M
u2e−fdvol, we deduce the eigenvalue estimate

[?]

λ1 ≥ (n− 1)H
(

1 +
1

N + n− 1

)
. (6.3.1)

When f is constant, taking N = 0 gives the classical Lichnerowicz’s first eigen-
value estimate λ1 ≥ nH [82]. When N =∞, we have [10]

λ1 ≥ (n− 1)H. (6.3.2)

This also can be derived from (6.2.4) directly. One may expect that the estimate
(6.3.2) is weaker than the classical one. In fact (6.3.2) is optimal as the following
example shows.

Example 6.3.1 Let M = R1 × S2 with standard product metric g0, f(x, y) =
1
2x

2. Then Hessf( ∂
∂x ,

∂
∂x ) = 1 and zero on all other directions. We have Ricf =

1g0. Now for the linear function u(x, y) = x, ∆fu = −x. So λ1 = 1.

On the other hand (6.3.2) is never optimal for compact manifolds since equality
in (6.3.2) implies Hessu = 0. Note that Ricf ≥ (n − 1)H > 0 on a compact
manifold implies RicNf ≥ (n − 1)H ′ > 0 for some N big, hence one can use
estimate (6.3.1).

Now we turn to the mean curvature (or Laplacian) comparison. Recall that
the mean curvature measures the relative rate of change of the volume element.
Therefore, for the measure e−fdvol, the associated mean curvature is mf =
m − ∂rf, where m is the mean curvature of the geodesic sphere with inward
pointing normal vector. Also mf = ∆f (r), where r is the distance function.

Let mk
H be the mean curvature of the geodesic sphere in the model space

Mk
H , the complete simply connected k-manifold of constant curvature H. When

we drop the superscript k and write mH we mean the mean curvature from the
model space whose dimension matches the dimension of the manifold. Since
Hess r is zero along the radial direction, applying the Bochner formula (6.2.3)
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to the distance function r, the Schwarz inequality |Hessr|2 ≥ (∆r)2

n−1 and (6.2.5)
gives

m′f ≤ −
(mf )2

n+N − 1
− RicNf (∂r, ∂r). (6.3.3)

Thus, using the standard Sturm-Liouville comparison argument, one has the
mean curvature comparison [12].

Theorem 6.3.2 (Mean curvature comparison for N-Bakry-Emery) If RicNf ≥
(n+N − 1)H, then

mf (r) ≤ mn+N
H (r). (6.3.4)

Namely the mean curvature is less or equal to the one of the model with dimen-
sion n+N . This does not give any information when N is infinite.

In fact, such a strong, uniform estimate is not possible when N is infinite.
To see this note that, when H > 0, the model space Mn+N

H is a round sphere
so that mn+N

H (r) goes to −∞ as r goes to π√
H

. Thus (6.3.4) implies that if

N is finite and RicNf ≥ λ > 0 then M is compact (See Theorem 6.4.5 in the
next section for the diameter bound). On the other hand, this is not true when
N =∞ as the following example shows.

Thus, when N is infinite, one can not expect such a strong mean curvature
comparison to be true. However, we can show a weaker, nonuniform estimate
and also give some uniform estimates if we make additional assumptions on f
such as f being bounded or ∂rf bounded from below. In these cases we have the
following mean curvature comparisons [?] which generalizes the classical one.

Theorem 6.3.3 (Mean Curvature Comparison for ∞-Bakry-Emery) Let
p ∈Mn. Assume Ricf (∂r, ∂r) ≥ (n− 1)H,
a) given any minimal geodesic segment and r0 > 0,

mf (r) ≤ mf (r0)− (n− 1)H(r − r0) for r ≥ r0. (6.3.5)

b) if ∂rf ≥ −a along a minimal geodesic segment from p (when H > 0 assume
r ≤ π/2

√
H) then

mf (r)−mH(r) ≤ a (6.3.6)

along that minimal geodesic segment from p. Equality holds if and only if the
radial sectional curvatures are equal to H and f(t) = f(p)− at for all t < r.
c) if |f | ≤ k along a minimal geodesic segment from p (when H > 0 assume
r ≤ π/4

√
H) then

mf (r) ≤ mn+4k
H (r) (6.3.7)

along that minimal geodesic segment from p. In particular when H = 0 we have

mf (r) ≤ n+ 4k − 1
r

(6.3.8)
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Proof:

m′f ≤ −
m2

n− 1
− Ricf (∂r, ∂r). (6.3.9)

If Ricf ≥ (n− 1)H, we have

m′f ≤ −(n− 1)H.

This immediately gives the inequality (6.3.5).
From the Riccati inequality (1.2.2), equality (1.2.4), and assumption on Ricf ,

we have

(m−mH)′ ≤ −m
2 −m2

H

n− 1
+ Hess f(∂r, ∂r). (6.3.10)

As in the third proof of the mean curvature comparison theorem (Theorem ??),
we compute(

sn2
H(m−mH)

)′
= 2sn′HsnH(m−mH) + sn2

H(m−mH)′

≤ sn2
H

(
2mH

n− 1
(m−mH)− m2 −m2

H

n− 1
+ Hess f(∂r, ∂r)

)
= sn2

H

(
− (m−mH)2

n− 1
+ Hess f(∂r, ∂r)

)
≤ sn2

HHess f(∂r, ∂r). (6.3.11)

Here in the 2nd line we have used (6.3.10) and (1.2.6).
Integrating (6.3.11) from 0 to r yields

sn2
H(r)m(r) ≤ sn2

H(r)mH(r) +
∫ r

0

sn2
H(t)∂t∂tf(t)dt. (6.3.12)

When f is constant (the classical case) this gives the usual mean curvature
comparison.

Proof or Part b. Using integration by parts on the last term we have

sn2
H(r)mf (r) ≤ sn2

H(r)mH(r)−
∫ r

0

(sn2
H(t))′∂tf(t)dt. (6.3.13)

Under our assumptions (sn2
H(t))′ = 2sn′H(t)snH(t) ≥ 0 so if ∂tf(t) ≥ −a we

have

sn2
H(r)mf (r) ≤ sn2

H(r)mH(r) + a

∫ r

0

(sn2
H(t))′dt = sn2

H(r) (mH(r) + a) .

This proves the inequality (6.3.6).
To see the rigidity statement suppose that ∂tf ≥ −a and mf (r) = mH(r)+a

for some r. Then from (6.3.13) we see

asn2
H ≤

∫ r

0

(sn2
H(t))′∂tf(t)dt ≤ asn2

H . (6.3.14)
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So that ∂tf ≡ −a. But then m(r) = mf−a = mH(r) so that the rigidity follows
from the rigidity for the usual mean curvature comparison.

Proof of Part c. Integrate (6.3.13) by parts again

sn2
H(r)mf (r) ≤ sn2

H(r)mH(r)−f(r)(sn2
H(r))′+

∫ r

0

f(t)(sn2
H)′′(t)dt.(6.3.15)

Now if |f | ≤ k and r ∈ (0, π
4
√
H

] when H > 0, then (sn2
H)′′(t) ≥ 0 and we have

sn2
H(r)mf (r) ≤ sn2

H(r)mH(r) + 2k(sn2
H(r))′. (6.3.16)

From (1.2.6) we can see that

(sn2
H(r))′ = 2sn′HsnH =

2
n− 1

mHsn2
H .

so we have

mf (r) ≤
(

1 +
4k
n− 1

)
mH(r) = mn+4k

H (r). (6.3.17)

Now when H > 0 and r ∈ [ π
4
√
H
, π

2
√
H

],

∫ r

0

f(t)(sn2
H)′′(t)dt ≤ k

(∫ π
4
√
H

0

(sn2
H)′′(t)dt−

∫ r

π
4
√
H

(sn2
H)′′(t)dt

)

= k

(
2√
H
− snH(2r)

)
.

Hence

mf (r) ≤
(

1 +
4k
n− 1

· 1
sin(2

√
Hr)

)
mH(r). (6.3.18)

This estimate will be used later to prove the Myers’ theorem in Section ??.

In the case H = 0, we have snH(r) = r so (6.3.15) gives the estimate in [?]
that

mf (r) ≤ n− 1
r
− 2
r
f(r) +

2
r2

∫ r

0

f(t)dt. (6.3.19)

These mean curvature comparisons can be used to prove some Myers’ type
theorems for Ricf , and is related to volume comparison theorems, both of which
we discuss in the next section.



88CHAPTER 6. COMPARISON GEOMETRY FOR BAKRY-EMERY RICCI TENSOR

6.4 Volume Comparison and Myers’ Theorems

For p ∈ Mn, we use exponential polar coordinates around p and write the
volume element d vol = A(r, θ)dr ∧ dθn−1, where dθn−1 is the standard volume
element on the unit sphere Sn−1(1). Let Af (r, θ) = e−fA(r, θ). Using (1.4.3)
we have

A′f
Af

(r, θ) = (ln(Af (r, θ)))′ = mf (r, θ). (6.4.1)

And for r ≥ r0 > 0

Af (r, θ)
Af (r0, θ)

= e
R r
r0
mf (r,θ)

. (6.4.2)

Combining this equation with the mean curvature comparisons we obtain vol-
ume comparisons. Let Volf (B(p, r)) =

∫
B(p,r)

e−fdvolg, the weighted (or f -

)volume, VolkH(r) be the volume of the radius r-ball in the model space Mk
H .

Theorem 6.4.1 (Volume comparison for N-Bakry-Emery) [114] If RicNf ≥
(n+N − 1)H, then Volf (B(p,R))

Voln+N
H (R)

is nonincreasing in R.

In [87] Lott shows that if M is compact (or just |∇f | is bounded) with
RicNf ≥ λ for some positive integer 2 ≤ N <∞, then, in fact, there is a family
of warped product metrics on M × SN with Ricci curvature bounded below by
λ, recovering the comparison theorems for RicNf .

When N =∞ we have the following volume comparison results which gen-
eralize the classical one. Part a) is originally due to Morgan [?] where it follows
from a hypersurface volume estimate(also see [?]). For the proofs of parts b)
and c) see [?].

Theorem 6.4.2 (Volume Comparison for ∞-Bakry-Emery) Let (Mn, g, e−fdvolg)
be complete smooth metric measure space with Ricf ≥ (n− 1)H. Fix p ∈Mn.
a) If H > 0, then Volf (M) is finite.
b) If ∂rf ≥ −a along all minimal geodesic segments from p then for R ≥ r > 0
(assume R ≤ π/2

√
H if H > 0) ,

Volf (B(p,R))
Volf (B(p, r))

≤ eaRVolnH(R)
VolnH(r)

. (6.4.3)

Moreover, equality holds if and only if the radial sectional curvatures are equal to
H and ∂rf ≡ −a. In particular if ∂rf ≥ 0 and Ricf ≥ 0 then M has f -volume
growth of degree at most n.
c) If |f(x)| ≤ k then for R ≥ r > 0 (assume R ≤ π/4

√
H if H > 0),

Volf (B(p,R))
Volf (B(p, r))

≤ Voln+4k
H (R)

Voln+4k
H (r)

. (6.4.4)

In particular, if f is bounded and Ricf ≥ 0 then M has polynomial f -volume
growth.
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For Part a) we compare with a model space, however, we modify the mea-
sure according to a. Namely, the model space will be the pointed metric mea-
sure space Mn

H,a = (Mn
H , gH , e

−hdvol, O) where (Mn
H , gH) is the n-dimensional

simply connected space with constant sectional curvature H, O ∈ Mn
H , and

h(x) = −a · d(x,O). We make the model a pointed space because the space
only has Ricf (∂r, ∂r) ≥ (n − 1)H in the radial directions from O and we only
compare volumes of balls centered at O.

Let AaH be the h-volume element in Mn
H,a. Then AaH(r) = earAH(r) where

AH is the Riemannian volume element in Mn
H . By the mean curvature compar-

ison we have (ln(Af (r, θ))′ ≤ a+mH = (ln(AaH))′ so for r < R,

Af (R, θ)
Af (r, θ)

≤ A
a
H(R, θ)
AaH(r, θ)

. (6.4.5)

Namely Af (r,θ)
AaH(r,θ) is nonincreasing in r. Using Lemma 3.2 in [150], we get for

0 < r1 < r, 0 < R1 < R, r1 ≤ R1, r ≤ R,∫ R
R1
Af (t, θ)dt∫ r

r1
Af (t, θ)dt

≤
∫ R
R1
AaH(t, θ)dt∫ r

r1
AaH(t, θ)dt

. (6.4.6)

Integrating along the sphere direction gives

Volf (A(p,R1, R))
Volf (A(p, r1, r))

≤ VolaH(R1, R)
VolaH(r1, r)

. (6.4.7)

Where VolaH(r1, r) is the h-volume of the annulus B(O, r) \ B(O, r1) ⊂ Mn
H .

Since VolH(r1, r) ≤ VolaH(r1, r) ≤ earVolH(r1, r) this gives (6.4.3) when r1 =
R1 = 0 and proves Part b).

In the model space the radial function h is not smooth at the origin. How-
ever, clearly one can smooth the function to a function with ∂rh ≥ −a and
∂2
rh ≥ 0 such that the h-volume taken with the smoothed h is arbitrary close

to that of the model. Therefore, the inequality (6.4.7) is optimal. Moreover,
one can see from the equality case of the mean curvature comparison that if the
annular volume is equal to the volume in the model then all the radial sectional
curvatures are H and f is exactly a linear function.

Proof of Part b): In this case let An+4k
H be the volume element in the simply

connected model space with constant curvature H and dimension n+ 4k.
Then from the mean curvature comparison we have ln(Af (r, θ))′ ≤ ln(An+4k

H (r))′.
So again applying Lemma 3.2 in [150] we obtain

Volf (A(p,R1, R))
Volf (A(p, r1, r))

≤
V oln+4k

H (R1, R)
V oln+4k

H (r1, r)
. (6.4.8)

With r1 = R1 = 0 this implies the relative volume comparison for balls

Volf (B(p,R))
Volf (B(p, r))

≤
V oln+4k

H (R)
V oln+4k

H (r)
. (6.4.9)
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Equivalently

Volf (B(p,R))
V n+4k
H (R)

≤ Volf (B(p, r))
V n+4k
H (r)

. (6.4.10)

Since n + 4k > n we note that the right hand side blows up as r → 0 so one
does not obtain a uniform upper bound on Volf (B(p,R)). Indeed, it is not
possible to do so since one can always add a constant to f and not effect the
Bakry-Emery tensor.

By taking r = 1 we do obtain a volume growth estimate for R > 1

Volf (B(p,R)) ≤ Volf (B(p, 1))V oln+4k
H (R). (6.4.11)

Note that, from Part a) Volf (B(p, 1)) ≤ e−f(p)eaωn if ∂rf ≥ −a on B(p, 1).

Part a) should be viewed as a weak Myers’ theorem for Ricf . Namely if
Ricf > λ > 0 then the manifold may not be compact but the measure must
be finite. In particular the lifted measure on the universal cover is finite. Since
this measure is invariant under the deck transformations, this weaker Myers’
theorem is enough to recover the main topological corollary of the classical
Myers’ theorem.

Corollary 6.4.3 If M is complete and Ricf ≥ λ > 0 then M has finite funda-
mental group.

Using a different approach the second author has proven that the fundamen-
tal group is, in fact, finite for spaces satisfying Ric + LXg ≥ λ > 0 for some
vector field X [?]. This had earlier been shown under the additional assumption
that the Ricci curvature is bounded by Zhang [?]. See also [?]. When M is com-
pact the finiteness of fundamental group was first shown by X. Li [?, Corollary
3] using a probabilistic method.

On the other hand, the volume comparison Theorem 6.4.1 and Theorem 6.4.2
Part c) also give the following generalization of Calabi-Yau’s theorem [147].

Theorem 6.4.4 If M is a noncompact, complete manifold with RicNf ≥ 0,
assume f is bounded when N is infinite, then M has at least linear f -volume
growth.

Theorem 6.4.2 Part a) and Theorem 6.4.4 then together show that any man-
ifold with RicNf ≥ λ > 0 and f bounded if N is infinite must be compact. In
fact, from the mean curvature estimates one can prove this directly and obtain
an upper bound on the diameter. For finite N this is due to Qian [114], for Part
b) see [?].

Theorem 6.4.5 (Myers’ Theorem) Let M be a complete Riemannian man-
ifold with RicNf ≥ (n− 1)H > 0,

a) when N is finite, then M is compact and diamM ≤
√

n+N−1
n−1

π√
H

.
b) when N is infinite and |f | ≤ k then M is compact and diamM ≤ π√

H
+

4k
(n−1)

√
H

.
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For some other Myers’ Theorems for manifolds with measure see [?] and
[?]. The relative volume comparison Theorem 6.4.2 also implies the following
extensions of theorems of Gromov [68] and Anderson [5].

Theorem 6.4.6 For the class of manifolds Mn with Ricf ≥ (n−1)H, diamM ≤
D and |f | ≤ k (|∇f | ≤ a), the first Betti number b1 ≤ C(n+4k,HD2) (C(n,HD2, aD)).

Theorem 6.4.7 For the class of manifolds Mn with Ricf ≥ (n− 1)H, Volf ≥
V , diamM ≤ D and |f | ≤ k (|∇f | ≤ a) there are only finitely many isomorphism
types of π1(M).

Question 6.4.8 If Mn has a complete metric and measure such that Ricf ≥ 0
and f is bounded, does Mn has a metric with Ric ≥ 0?
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Chapter 7

Comparison Geometry in
Ricci Flow

Perelman’s reduced volume monotonicity [107], a basic and powerful tool in his
work on Thurston’s geometrization conjecture, is a generalization of Bishop-
Gromov’s volume comparison to Ricci flow.

7.1 Reduced Volume Monotonicity

7.2 Heuristic Argument

This little note presents explicit curvature formulas in §6.1 of Perelman’s paper
[?]. In particular it verifies (mod N−1) the geometric interpretation of Hamil-
ton’s matrix (trace) Harnarck quadratic and that the Ricci tensor of the warped
metric are equal to zero. The mod N−1 computation of the curvatures is also
done in [?] using Christoffel symbols. Here we do the computation using Gauss
equation and Koszul’s formula.

Recall that M̃ = M × SN × R+ with the metric:

g̃ij = gij , g̃αβ = τgαβ , g̃00 =
N

2τ
+R, g̃iα = g̃i0 = g̃α0 = 0, (7.2.1)

where i, j denote coordinate indices on the M factor, α, β denote those on the
SN factor, and the coordinate τ on R+ had index 0; gij evolves with τ by the
backward Ricci flow (gij)τ = 2Rij , gαβ is the metric on SN of constant curvature

1
2N .

We first compute the curvatures of M̃ without τ -direction using Gauss equa-
tion by viewing M × SN as isometrically embedded submanifold of M̃ . Let
n = ( N2τ + R)−1/2 ∂

∂τ be its unit normal vector. Denote {Xi} local coordinate
fields of M and {Uα} local coordinate fields of SN . Then the second fundamental
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form

〈B(Xi, Xj), n〉 = 〈∇̃XiXj , n〉 = −1
2
n〈Xi, Xj〉

= −1
2

(
N

2τ
+R)−1/2(gij)τ = −(

N

2τ
+R)−1/2Rij .

So

B(Xi, Xj) = −(
N

2τ
+R)−1/2Rijn. (7.2.2)

Similarly

B(Uα, Uβ) = −1
2

(
N

2τ
+R)−1/2gαβn, B(Uα, Xi) = 0. (7.2.3)

By Gauss equation

〈R̃(Xi, Xj)Xk, Xl〉 = 〈R(Xi, Xj)Xk, Xl〉 − 〈B(Xi, Xl), B(Xj , Xk)〉+ 〈B(Xj , Xl), B(Xi, Xk)〉

= 〈R(Xi, Xj)Xk, Xl〉 − (
N

2τ
+R)−1 [RilRjk −RjlRik] , (7.2.4)

〈R̃(Xi, Uα)Uβ , Xj〉 = 0− 1
2

(
N

2τ
+R)−1Rijgαβ , (7.2.5)

〈R̃(Uα, Uβ)Uγ , Uθ〉 = 〈R(Uα, Uβ)Uγ , Uθ〉 −
1
4

(
N

2τ
+R)−1 [gαθgβγ − gαγgβθ] (7.2.6)

=
1

2Nτ
[g̃αθ g̃βγ − g̃αγ g̃βθ]−

1
4

(
N

2τ
+R)−1 [gαθgβγ − gαγgβθ]

= (
N

2τ
+R)−1 τR

2N
[gαθgβγ − gαγgβθ] (7.2.7)

〈R̃(Xi, Xj)Xk, Uα〉 = 0 (7.2.8)

〈R̃(Xi, Uβ)Uγ , Uθ〉 = 0. (7.2.9)

For curvatures involve normal direction, note that

[Uα, n] = 0, [n,Xi] =
1
2

(
N

2τ
+R)−1(XiR)n.

By Koszul’s formula we have

∇̃UαXi = 0,

∇̃nn = −1
2

(
N

2τ
+R)−1

∑
l,k

(XlR)glkXk,

∇̃Uαn =
1
2τ

(
N

2τ
+R)−1/2Uα,

∇̃Xin = (
N

2τ
+R)−1/2

∑
l,k

Rilg
lkXk.
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Therefore

〈R̃(Uα, n)n,Xi〉 = 0, (7.2.10)
〈R̃(Uα, n)n,Uβ〉 = −〈∇̃n∇̃Uαn,Uβ〉

= −(
N

2τ
+R)−1/2 d

dτ

[
(
N

2τ
+R)−1/2 1

2τ

]
τgαβ −

1
4τ2

(
N

2τ
+R)−1τgαβ

=
1
4

(
N

2τ
+R)−2(Rτ +

R

τ
)gαβ . (7.2.11)

By (7.2.2)

∇̃XiXj = −(
N

2τ
+R)−1/2Rijn+∇XiXj . (7.2.12)

So

〈∇̃Xi∇̃nn,Xj〉 = −1
2
Xi[(

N

2τ
+R)−1

∑
l,k

(XlR)glk]gkj −
1
2

(
N

2τ
+R)−1

∑
l,k

(XlR)glk〈∇XiXk, Xj〉

=
1
2

(
N

2τ
+R)−2(XiR)(XjR)− 1

2
(
N

2τ
+R)−1Hess(R)(Xi, Xj),

−〈∇̃n∇̃Xin,Xj〉 = −(
N

2τ
+R)−1/2

∑
l,k

d

dτ

[
(
N

2τ
+R)−1/2Rilg

lk

]
gkj − (

N

2τ
+R)−1

∑
l,k

Rilg
lkRkj

=
1
2

(
N

2τ
+R)−2

(
− N

2τ2
+Rτ

)
Rij + (

N

2τ
+R)−1

∑
l,k

Rilg
lkRkj − (Rij)τ

 ,
−〈∇̃[Xi,n]n,Xj〉 = −1

4
(
N

2τ
+R)−2(XiR)(XjR).

Thus

〈R̃(Xi, n)n,Xj〉 =
1
2

(
N

2τ
+R)−2

[(
− N

2τ2
+Rτ

)
Rij +

1
2

(XiR)(XjR)
]

+(
N

2τ
+R)−1

∑
l,k

Rilg
lkRkj −

1
2
Hess(R)(Xi, Xj)− (Rij)τ

 .(7.2.13)

Last we need to look at the normal component of the curvature tensor. By
(7.2.3) we have

∇̃UαUβ = −1
2

(
N

2τ
+R)−1/2gαβn+∇UαUβ . (7.2.14)

Therefore

〈R̃(Xi, Xj)Xk, n〉 = 〈∇̃Xi∇̃XjXk − ∇̃Xj ∇̃XiXk, n〉

=
1
2

(
N

2τ
+R)−

3
2 [(XiR)Rjk − (XjR)Rik]

−(
N

2τ
+R)−

1
2 [(∇XiRic)(Xj , Xk)− (∇XjRic)(Xi, Xk)]
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〈R̃(Uα, Uβ)Uγ , n〉 = 0

〈R̃(Xi, Uα)Uβ , n〉 =
1
4

(
N

2τ
+R)−

3
2 (XiR)gαβ

〈R̃(Uα, Xi)Xj , n〉 = 0.

From above, mod N−1, all curvature tensors of M̃ are zero except

〈R̃(Xi, Xj)Xk, Xl〉 = 〈R(Xi, Xj)Xk, Xl〉

〈R̃(Xi,
∂

∂τ
)
∂

∂τ
,Xj〉 = − 1

2τ
Rij +

∑
l,k

Rilg
lkRkj −

1
2
Hess(R)(Xi, Xj)− (Rij)τ

= − 1
2τ
Rij + ∆Rij + 2RikjlRkl −

∑
l,k

Rilg
lkRkj −

1
2
Hess(R)(Xi, Xj)

〈R̃(Xi, Xj)Xk,
∂

∂τ
〉 = −(∇XiRic)(Xj , Xk) + (∇XjRic)(Xi, Xk).

These are exactly the coefficients Rijkl,Mij , Pijk of Hamilton’s Harnack
quadratic.

Any two form ω on M̃ can be written as

ω = UijX
∗
i ∧X∗j +Widτ ∧X∗i + two form with sphere components.

Then mod N−1, the curvature operator R̃ acts on ω is

〈R̃(ω), ω〉 = 〈R̃(Xi, Xj)Xk, Xl〉UijUkl + 2〈R̃(Xi, Xj)Xk,
∂

∂τ
〉UijWk + 〈R̃(Xi,

∂

∂τ
)
∂

∂τ
,Xj〉WiWj ,

which is exactly Hamilton’s matrix Harnack quadratic. Therefore Hamilton’s
matrix Harnack inequality can be interpreted as the curvature operator R̃ is
nonnegative (mod N−1). This is suggested to me by John Lott.

By taking trace in the manifold directions we get the trace Harnack quadratic.
Namely let

ωk = e∗k ∧ (dτ +X∗),

where {ek} is an orthonormal basis of TM and X is a vector field on M . Then∑
k

〈R̃(ωk), ωk〉 =
∑
k

〈R̃(X, ek)ek, X〉+ 2
∑
k

〈R̃(X, ek)ek,
∂

∂τ
〉+

∑
k

〈R̃(ek,
∂

∂τ
)
∂

∂τ
, ek〉

= Ric(X,X)− 〈∇R,X〉 − 1
2τ
R− 1

2
Rτ mod N−1,

which is exactly Hamilton’s trace Harnack quadratic. Note that this is not
R̃ic( ∂

∂τ +X, ∂∂τ +X), since we need to take trace in all directions for R̃ic.
For Ricci curvatures we take trace of the curvature tensors and get

R̃ic(Xi, Xj) = 〈R̃(Xi, n)n,Xj〉+Rij − (
N

2τ
+R)−1

∑
k,l

[RijRkl −RkjRil] gkl −
N

2τ
(
N

2τ
+R)−1Rij

=
1
2

(
N

2τ
+R)−2

[(
− N

2τ2
+Rτ

)
Rij +

1
2

(XiR)(XjR)
]
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+(
N

2τ
+R)−1

2
∑
l,k

Rilg
lkRkj − (Rij)τ −

1
2
Hess(R)(Xi, Xj)

 (7.2.15)

R̃ic(Xi, Uα) = 0 (7.2.16)

R̃ic(Uα, Uβ) = 〈R̃(Uα, n)n,Uβ〉 −
1
2

(
N

2τ
+R)−1

∑
ij

Rijg
ij − N − 1

N
R

 gαβ

=
1
4

(
N

2τ
+R)−2(Rτ −

2R2

N
)gαβ (7.2.17)

R̃ic(n, n) =
1
4

(
N

2τ
+R)−2‖∇R‖2 (7.2.18)

R̃ic(Xi, n) = −1
2

(
N

2τ
+R)−3/2[

∑
j,k

(XjR)Rikgjk] (7.2.19)

R̃ic(Uα, n) = 0. (7.2.20)

So R̃ic = 0 mod N−1.
The scalar curvature of M̃ is

R̃ =
1
2

(
N

2τ
+R)−2‖∇R‖2 − 1

2
(
N

2τ
+R)−1(∆R+

R

τ
+Rτ )

=
1
2

(
N

2τ
+R)−2‖∇R‖2 + (

N

2τ
+R)−1(‖Ric‖2 − R

2τ
)

=
1
2

(
N

2τ
+R)−2‖∇R‖2 + (

N

2τ
+R)−1[‖Rico‖2 +

R

n
(R− n

2τ
)].

So the scalar curvature is positive when R < 0 or R > n
2τ .

∆̃ = ∂
∂τ + ∆ (mod N−1).

Consider a metric ball in (M̃, g̃) centered at some point p where τ = 0. The
shortest geodesic between p and an arbitrary point q is always orthogonal to
the SN fiber. The length of such curve γ(τ) is

l(γ(τ)) =
∫ τ(q)

0

√
N

2τ
+R+ |γ̇M (τ)|2dτ

=
∫ τ(q)

0

√
N

2τ

√
1 +

2τ(R+ |γ̇M (τ)|2)
N

dτ

=
√

2Nτ(q) +
1√
2N

∫ τ(q)

0

√
τ(R+ |γ̇M (τ)|2)dτ +O(N−

3
2 ).

The shortest geodesic should minimize

L(γ) =
∫ τ(q)

0

√
τ(R+ |γ̇M (τ)|2)dτ.

The metric sphere S(p,
√

2Nτ(q)) ⊂ M̃ is O(N−1)-close to the hypersurface
τ = τ(q). modN−1,

A((0, p),
√

2Nτ(q))
A(N + n+ 1, 0,

√
2Nτ)

=

∫
(M,g(τ))

(2Nτ(x))N/2Vol(SN )dvolM

(
√

2Nτ)N+nVol(SN+n)
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=
(2N)N/2Vol(SN )

∫
(M,g(τ))

(√
τ(q)− 1

2NL(x) +O(N−2)
)N

dx

(
√

2Nτ)N+nVol(SN+n)

=
Vol(SN )

Vol(SN+n)(2N)n/2

∫
M

τ−
n
2

(
1− L

2
√
τ

1
N

)N
dx+O(N−1).

As N → ∞,
(

1− L
2
√
τ

1
N

)N
→ e

− L
2
√
τ . In fact Perelman gave a heuristic argu-

ment that volume comparison on an infinite dimensional space (incorporating
the Ricci flow) gives the reduced volume monotonicity.

7.3 Laplacian Comparison for Ricci Flow



Chapter 8

Ricci Curvature for Metric
Measure Spaces

8.1 Metric Space and Optimal Transportation

Ricci curvature lower bound of a metric measure space is closely related to the
convexity of an entropy functional on the space of probability measures. In
this section we state the basic definition and properties of metric spaces, length
spaces, and optimal transport problem and the space of probability measures.
These materials can be found at [23, 68, 131, 132].

8.1.1 Metric and Length Spaces

Some good references of this subsection are [23, 68], we refer to these for proofs
and more details.

Given a metric space (X, d), γ : [a, b]→ X a continuous curve, the length of
γ is defined by

L(γ) = sup
k∈N

sup
a=y0≤y1≤···≤yk=b

k∑
i=1

d(γ(yi−1), γ(yi)).

γ is called rectifiable if it has finite length. A curve is called a geodesic if it is
locally a distance minimizer and has a constant speed.

Definition 8.1.1 A metric space (X, d) is called a length space if d(x, y) =
infγ(length(γ)) for all x, y ∈ X, where the infimum runs over all continuous
curve γ connecting x, y. (X, d) is called a geodesic space if for all x, y ∈ X,
there exists continuous curve γ connecting x, y such that d(x, y) = L(γ).

For a geodesic space (length space), there is a (an ε-) midpoint point between
every two points. For complete metric space, the converse is also true.
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Proposition 8.1.2 Let (X, d) be a complete metric space. (X, d) is a geodesic
space (length space) if and only if for every x, y ∈ X there exits a (an ε-)
midpoint.

Proof: We will show the equivalence in the case of geodesic space. The other
case is similar.
⇒: If (X, d) is a geodesic space, for every two points x, y, there is curve

γ : [a, b]→ X with γ(a) = x, γ(b) = y, L(γ) = d(x, y). Let L(t) = L(γ[a,t]. Since
L(t) is continuous in t, there exists c ∈ [a, b] such that L(c) = 1

2L(γ). Choose
z = γ(c), we have d(x, z) = d(y, z) = 1

2d(x, y). So z is a midpoint of x, y. Here
we did not use the completeness assumption.
⇐: Given x, y ∈ X, we need to construct γ : [0, 1] → X such that γ(0) =

x, γ(1) = y and L(γ) = d(x, y). Assign γ( 1
2 ) to be a midpoint of x, y, γ( 1

4 ) to
be a midpoint of x = γ(0) and γ( 1

2 ), and γ( 3
4 ) to be a midpoint of γ( 1

2 ) and
y = γ(1). Proceeding this way, we define γ for all dyadic rationals between 0
and 1. From the construction, for every two dyadic rational ti, tj

d(γ(ti), γ(tj)) = |ti − tj | · d(x, y).

So the map γ defined on the set of dyadic rationals is Lipschitz. Since X
is complete and the set of dyadic rational is dense in [0, 1], this map can be
extended to a continuous map on the entire interval [0, 1]. Thus we obtained
γ : [0, 1]→ X connecting x and y with L(γ) = d(x, y).

X is locally compact if every point has a compact neighborhood. These
spaces enjoy the following nice property [23, Theorem 2.5.23].

Proposition 8.1.3 If (X, d) is a complete, locally compact length space, then
every closed metric ball in X is compact and (X, d) is a geodesic space.

8.1.2 Optimal Transportation

If f : X → Y is measurable, µ a measure on X, the push forward of µ under f
is (f∗µ)(B) = µ(f−1(B)) for all measurable subsets B of Y .

Let (X,µ) and (Y, ν) be probability spaces. A probability measure π on
X × Y is a transference plan between µ and ν if

(ProjX)∗π = µ, (ProjY )∗π = ν, (8.1.1)

where ProjX and ProjY are projections of X ×Y onto X and Y respectively. If
π satisfies (8.1.1) we say π has marginal µ on X and marginal ν on Y . In this
case, π is also called a coupling of µ and ν. Intuitively, π(x, y) represents the
amount of mass transported from x to y. The equation (8.1.1) means

π(A× Y ) = µ(A), π(X ×B) = ν(B)

for all measurable subsets A of X and B of Y , which is equivalent to∫
X×Y

(ϕ(x) + ψ(y))dπ(x, y) =
∫
X

ϕdµ+
∫
Y

ψ dν
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for all measurable functions (ϕ,ψ) ∈ L1(dµ)× L1(dν).
A Polish space X is a separable (i.e. it contains a countable dense subset),

complete metric space. Denote by P (X) the space of Borel probability measures
on X. We equip P (X) with the weak topology, namely µk ∈ P (X) converges
weakly to µ if for all ϕ ∈ Cb(X) (i.e. ϕ is bounded and continuous),

∫
ϕdµk

converges to
∫
ϕdµ as k →∞.

Define Π(µ, ν) to be the set of all Borel probability measures π on X × Y
with marginals µ on X and ν on Y . It is a convex set, which is also nonempty
since the product measure µ× ν ∈ Π(µ, ν). Given two Polish spaces X,Y , µ ∈
P (X), ν ∈ P (Y ), and c a nonnegative measurable function (the cost function)
on X × Y , the Kantorovich’s (an Nobel Laureate in Economics, 1975) mass
transportation problem is to minimize the linear functional (the total cost)

π →
∫
X×Y

c(x, y)dπ(x, y)

on Π(µ, ν).
Originally arising from economics, the mass transportation problem has

turns out to be actually very useful in physics, PDE, geometry etc..

Example 8.1.4 (The discrete case) Suppose X = {x1, · · · , xk}, Y = {y1, · · · , yk}
are discrete spaces where all points have the same mass:

µ =
1
k

k∑
i=1

δxi , ν =
1
k

k∑
j=1

δyj .

Any measure in Π(µ, ν) is represented by a k × k matrix π = (πij), where
πij ≥ 0,

∑
i πij = 1

k for all j, and
∑
j πij = 1

k for all i. The solution of
Kantorovich’s minimizing problem is given by a permutation matrix divided by
k [?, Page 5]. (distance and cost function?)

A fundamental property of Polish space is the following characterization of
precompactness of probability measures which underlies the proofs of several
basic facts in optimal transportation problem.

Theorem 8.1.5 (Prokhorov’s theorem) If X is a Polish space, then a sub-
set P of the probability measures of X is precompact for the weal topology iff it
is tight, i.e. for any ε > 0, there is a compact set Kε such that µ(X \Kε) ≤ ε
for all µ ∈ P. (reference?)

By Ulam’s lemma, a probability measure on a Polish space is automatically
tight (i.e., the set of single probability measure is tight). Also note that a Borel
probability measure on a Polish space is automatically regular. See [?] for the
proofs of these results.

Using these one can readily prove the existence of a minimizer of Kan-
torovich’s mass transportation problem.
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Theorem 8.1.6 (Existence of a minimizer) Let X,Y be two Polish spaces,
µ ∈ P (X), ν ∈ P (Y ), and let c : X × Y → [a,+∞] be a lower semi-continuous
cost function with a ∈ R. Then there is a coupling of (µ, ν) which minimizes
the total cost C(π) =

∫
X×Y c(x, y)dπ(x, y) on Π(µ, ν).

Proof: Since X,Y are Polish spaces, we have µ, ν are tight. Namely for any
ε > 0, there are compact sets Kε ⊂ X and Lε ⊂ Y such that µ(X \Kε) ≤ ε/2
and ν(Y \ Lε) ≤ ε/2. Since X × Y \Kε × Lε = X × (Y \ Lε) ∪ (X \Kε) × Y ,
for any coupling π ∈ Π(µ, ν), we have

π(X × Y \Kε × Lε) ≤ µ(X \Kε) + ν(Y \ Lε) ≤ ε.

Hence Π(µ, ν) is tight. By Prokhorov’s theorem, Π(µ, ν) is precompact. The
equations (8.1.1) for the marginals pass to the limit, so Π(µ, ν) is also closed.
Therefore Π(µ, ν) is compact. Let {πk} ∈ Π(µ, ν) be a sequence such that
the total cost C(πk) converges to the infimum. We have {πk} (a subsequence
if necessary) converges to some π ∈ Π(µ, ν). Since c ≥ a and is lower semi-
continuous, we can write c = liml→∞ cl, where cl is a nondecreasing sequence
of continuous functions with a ≤ cl ≤ c. By monotone convergence,∫

c dπ = lim
l→∞

∫
cl dπ = lim

l→∞
lim
k→∞

∫
cl dπk ≤ lim

k→∞

∫
c dπk.

Thus π is an minimizer.

We refer the reader to [132, Theorem 4.1] for a more general case. Any
minimizer π is called an optimal transference plan.

WhenX = Y , the optimal transport cost C(µ, ν) = infπ∈Π(µ,ν)

∫
X×Y c(x, y)dπ(x, y)

defines a distance on P (X) when the cost function c is a distance of X. So we
can use P (X) to study X.

8.1.3 The Monge transport

As we discussed above, given two Polish spaces X,Y , two probability measures
µ ∈ P (X), ν ∈ P (Y ), and a cost function c : X × Y → R, the mass transporta-
tion problem seeks a Borel probability measure π on X × Y that couples µ and
ν, and minimizes the functional∫

X×Y
c(x, y)dπ(x, y)

on Π(µ, ν). Such minimizers always exist when the cost function c(x, y) is lower
semicontinuous and bounded from below. A minimizer π will be called an
optimal transport from µ to ν.

In applications, a special type of optimal transport, formulated by Monge
(hence the name), plays an important role. A Monge transport is a transference
plan that comes from a map F : X → Y such that

F∗(µ) = ν. (8.1.2)
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In this case, the transference plan π = (Id× F )∗(µ). It is called optimal if the
transference plan π is optimal.

When X = Y and we consider measures that are absolutely continuous with
respect to a fixed measure, a Monge transport satisfies the so-called Monge-
Amperé equation. Fix µ ∈ P (X). Consider µ0 = ρ0(x)µ ∈ P (X) and µ1 =
ρ1(x)µ ∈ P (X). When F : X → X is differentiable almost everywhere (such
as Lipschitz) and gives rise to a Monge transport from µ0 to µ1, (8.1.2) (with
µ replaced by µ0 and ν by µ1) is equivalent to the Monge-Amperé equation

ρ1(F (x)) detDF (x) = ρ0(x), µ0-a.e.. (8.1.3)

Here the determinant of Jacobian factor detDF (x) is associated with the
measure µ. That is

detDF (x) = lim
ε→0

µ(F (Bε(x)))
µ(Bε(x))

. (8.1.4)

When the cost function is given by the square of the distance, there is an
important case when an optimal transport is given by a Monge transport. More-
over, there are more structures and regularities there. It was first proved in the
Euclidean space with its usual distance by Brenier [?] and later generalized to
general Riemannian manifolds by McCann [?].

Theorem 8.1.7 (Brenier-McCann Theorem) Let (X, d) = (M, g) be a com-
plete connected Riemannian manifold and c(x, y) = d2(x, y) where d is the Rie-
mannian distance. If probability measures µ0 = ρ0(x)dVolg, µ1 = ρ1(x)dVolg are
absolutely continuous with respect to the Riemannian measure and both ρ0, ρ1

are compactly supported, then there exists a convex function f : M → R such
that

F (x) = expx(∇f(x)) : M →M

defines an optimal Monge transport between µ0 and µ1. Moreover, it is the
unique optimal transport between µ0 and µ1.

8.1.4 Topology and Geometry of P (X)

Given a Polish space X, the space of Borel probability measures P (X) inherits
several topological and geometric structures of X.

Definition 8.1.8 (Wasserstein distances) Let (X, d) be a Polish metric space.
For p ≥ 1, µ, ν ∈ P (X), the (p-)Wassenstein distance is

Wp(µ, ν) = inf
π∈Π(µ,ν)

(∫
X×X

d(x, y)pdπ(x, y)
)1/p

. (8.1.5)

If π is an optimal transport from µ to ν with respect to the cost function
c(x, y) = dp(x, y), then

Wp(µ, ν) =
(∫

X×X
d(x, y)pdπ(x, y)

)1/p

.
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In particular, when π = (Id×F )∗(µ) is given by a Monge transport F : X → X,

Wp(µ, ν) =
(∫

X

d(x, F (x))pdµ(x)
)1/p

. (8.1.6)

Proposition 8.1.9 Wp defines a metric on

Pp(X) =
{
µ ∈ P (X)|

∫
d(x0, x)pdµ(x) < +∞ for some x0 ∈ X

}
.

Proof: It is clear that Wp is finite, symmetric, nonnegative and Wp(µ, µ) = 0. If
Wp(µ, ν) = 0, let π be an optimal transportation plan, then dπ(x, y) is supported
on the diagonal (y = x). Thus for all ϕ ∈ Cb(X),

∫
ϕdµ =

∫
ϕ(x) dπ(x, y) =∫

ϕ(y) dπ(x, y) =
∫
ϕdν, which implies µ = ν.

To show the triangle inequality, we need the following gluing lemma [131,
Lemma 7.6].

Lemma 8.1.10 Given Polish spaces X1, X2, X3, µi ∈ P (Xi), and π12 ∈ Π(µ1, µ2),
π23 ∈ Π(µ2, µ3), then there exists π ∈ P (x1 ×X2 ×X3) with marginals π12 on
X1 ×X2 and π23 on X2 ×X3.

Now consider µ1, µ2, µ3 ∈ Pp(X), and optimal transference plans π12 be-
tween µ1, µ2, and π23 between µ2, µ3. Denote Xi the support of µi. Let π be as
in the gluing lemma and π13 the marginal of π onX1×X3. Then π13 ∈ Π(µ1, µ3).
We have, using the triangle inequality, the Minkowski inequality and the defi-
nition of coupling,

Wp(µ1, µ3) ≤
(∫

X1×X3

d(x1, x3)pdπ13(x1, x3)
)1/p

=
(∫

X1×X2×X3

d(x1, x3)pdπ(x1, x2, x3)
)1/p

≤
(∫

X1×X2×X3

[d(x1, x2) + d(x2, x3)]p dπ(x1, x2, x3)
)1/p

≤
(∫

X1×X2×X3

d(x1, x2)pdπ(x1, x2, x3)
)1/p

+
(∫

X1×X2×X3

d(x2, x3)pdπ(x1, x2, x3)
)1/p

=
(∫

X1×X2

d(x1, x2)pdπ(x1, x2)
)1/p

+
(∫

X2×X3

d(x2, x3)pdπ(x2, x3)
)1/p

= Wp(µ1, µ2) +Wp(µ2, µ3).
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Since Wp(δx, δy) = d(x, y), the map x→ δx gives an isometric imbedding of
X → Pp(X). Note also, by the Hölder inequality, Wp ≤Wq when 1 ≤ p ≤ q, so
W1 is the weakest of all.

Proposition 8.1.11 (Wp metrizes Pp) Let (X, d) be a Polish space. Then
the Wasserstein distance Wp metrizes the weak convergence in Pp(X). Namely
WP (µk, µ)→ 0 iff µk converges weakly to µ.

For a proof, see [132, Theorem 6.8]. A quick corollary of this is

Corollary 8.1.12 (Metrizability of the weak topology) Let (X, d) be a Pol-
ish space. If d̃ = d

1+d (or any bounded distance inducing the same topology as
d), then Wp of d̃ metrizes the weak topology of P (X).

Proposition 8.1.13 (Topological properties of Pp(X)) Let (X, d) be a Pol-
ish space. Then

a) The set of all normalized configurations 1
k

∑k
i=1 δxi with k ∈ N and

x1, · · · , xk ∈ X is dense in (Pp(X),Wp).
b) Pp(X) is a Polish space.
c) (Pp(X),Wp) is a compact space or a length space if and only if (X, d) is

so.
d) (P2(X),W2) has nonnegative Alexandrov curvature if and only if (X, d)

does.

Proof: a) Let D be a dense sequence in X, P be the space of probability mea-
sures that can be written as

∑
aiδxi , where the ai ≥ 0 are rational coefficients,

and the xi are finitely many elements in D. By choosing k to be the common
denominators of ai and repeating some xi,

∑
aiδxi = 1

k

∑k
i=1 δxi . From the

proof of Theorem 6.16 in [?], P is dense in Pp(X). Therefore 1
k

∑k
i=1 δxi is

dense in Pp(X).

b) See the proof of Theorem 6.16 in [132].

c) Since X isometrically imbeds in Pp(X), one direction (⇒) is clear. Also
diam(Pp(X)) = diam(X).
⇐: When X is compact, by Prokhorov’s theorem (Theorem 8.1.5) Pp(X) is

compact in weak topology, by Proposition 8.1.11, it also compact in Wp.
Assume that (X, d) is a length space and let ε > 0 and µ, ν ∈ Pp(X) be

given. By Proposition 8.1.2 it is enough to construct an ε-midpoint η of µ, ν.
From b) and Example 8.1.4 there are µ̄ = 1

k

∑k
i=1 δxi , ν̄ = 1

k

∑k
i=1 δyi such that

Wp(µ, µ̄) ≤ ε/3,Wp(ν, ν̄) ≤ ε/3 and

Wp(µ̄, ν̄) =

(
1
k

k∑
i=1

d(xi, yi)p
)1/p

.
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For each i = 1, · · · , k let zi be an ε/3 midpoints of xi and yi and put η =
1
k

∑k
i=1 δzi . Then

Wp(µ̄, η) ≤

(
1
k

k∑
i=1

d(xi, zi)p
)1/p

≤

(
1
k

k∑
i=1

[
1
2
d(xi, yi) +

ε

3

]p)1/p

≤ 1
2

(
1
k

k∑
i=1

d(xi, yi)p
)1/p

+
ε

3
=

1
2
Wp(µ̄, ν̄) +

ε

3
.

Hence Wp(µ, η) ≤ 1
2Wp(µ, ν) + ε. Similarly Wp(ν, η) ≤ 1

2Wp(µ, ν) + ε. We have
that η is an ε-midpoint of µ, ν.

d) See [129, Prop. 2.10 (iv)] for a proof .

Minimizing geodesics in Pp(X) are also related to minimal geodesics in X.
Given a length space (X, d), let Γ(X) be the set of minimal geodesics equipped
with the topology of uniform convergence:

Γ(X) = {γ | γ : [0, 1]→ X with d(γ(0), γ(1)) = L(γ)}.
For each t ∈ [0, 1], et : Γ(X) → X with et(γ) = γ(t) is the evaluation map.
E : Γ(X)→ X ×X with E(γ) = (γ(0), γ(1)) is the “endpoints” map.

A dynamical transference plan consists of a transference plan π and a Borel
measure Π on Γ(X) such that E∗Π = π. It is optimal if π is optimal. If Π is an
optimal dynamical transference plan, then for t ∈ [0, 1], put µt = (et)∗Π. The
family {µt}t∈[0,1] is called a displacement interpolation.

Proposition 8.1.14 (Geodesics of Pp(X)) Let (X, d) be a complete, separa-
ble, locally compact length space. Assume p > 1. Given any two µ0, µ1 ∈ Pp(X),
and a continuous curve {µt}0≤t≤1 in Pp(X), the followings are equivalent:

a) {µt}0≤t≤1 is a minimizing geodesic in Pp(X);
b) {µt}0≤t≤1 is a displacement interpolation.

Moreover, Pp(X) is a geodesic space.

Proof: b) ⇒ a): Let Π be a dynamical optimal transference plan such that
(et)∗Π = µt. Given 0 ≤ t ≤ t′ ≤ 1, (et, et′)∗Π is a particular coupling of
(µt, µt′), so

Wp(µt, µt′) ≤
(∫

X×X
d(x0, x1)p d((et, et′)∗Π)(x0, x1)

)1/p

=

(∫
Γ(X)

d(γ(t), γ(t′))p dΠ(γ)

)1/p

= (t′ − t)
(∫

Γ

L(γ)p dΠ(γ)
)1/p

= (t′ − t)Wp(µ0, µ1).

Let c : [0, 1] → P (X) with c(t) = µt. Then L(c) ≤ Wp(µ0, µ1), so L(c) =
Wp(µ0, µ1) and {µt}0≤t≤1 is a minimal geodesic.
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Now we will show the existence of minimal geodesics (and hence Pp(X) is a
geodesic space).

By Proposition 8.1.3X is a geodesic space, so the endpoints map E : Γ(X)→
X×X is Borel and surjective. Given (x0, x1) ∈ X×X, E−1(x0, x1) is compact.
It follows that there is a Borel map S : X ×X → Γ(X) so that E ◦ S =IdX×X
[]. Given µ0, µ1 ∈ Pp(X), let π be an optimal transference plan between µ0 and
µ1 and put Π = S∗(π). The corresponding displacement interpolation joins µ0

and µ1. By above this is a minimal geodesic connecting µ0 and µ1.

a) ⇒ b): We can assume that for all t, t′ ∈ [0, 1],

Wp(µt, µt′) = |t− t′|Wp(µ0, µ1). (8.1.7)

Let π(0)
(0,1) be an optimal coupling of (µ0, µ1), π(1)

(0, 12 )
an optimal coupling of

(µ0, µ 1
2
), and π

(1)

( 1
2 ,1)

an optimal coupling of (µ 1
2
, µ1). By the gluing lemma

(Lemma 8.1.10), we have a probability measure π(1)

(0, 12 ,1)
on X × X × X with

marginals π(1)

(0, 12 )
on the product of the first two Xs and π

(1)

( 1
2 ,1)

on the product

of the last two Xs. Let π(1)
(0,1) be the marginal of π(1)

(0, 12 ,1)
on the product of the

first and last Xs. Since π(1)

(0, 12 )
and π

(1)

( 1
2 ,1)

are optimal couplings, we have(∫
X×X

d(x0, x1)p dπ(1)
(0,1)

)1/p

≤
(∫

X×X×X

[
d(x0, x 1

2
) + d(x 1

2
, x1)

]p
dπ

(1)

(0, 12 ,1)

)1/p

≤
(∫

X×X
d(x0, x 1

2
)p dπ(1)

(0, 12 )

)1/p

+
(∫

X×X
d(x 1

2
, x1)p dπ(1)

( 1
2 ,1)

)1/p

= Wp(µ1, µ 1
2
) +Wp(µ 1

2
, µ1) = Wp(µ0, µ1),

using (8.1.7). Thus π(1)
(0,1) is an optimal coupling of (µ0, µ1) and equality holds

everywhere in the above. It follows that the measure π(1)

(0, 12 ,1)
is supported on

B(1) where

B(1) =
{

(x0, x 1
2
, x1) ∈ X ×X ×X : d(x0, x 1

2
) = d(x 1

2
, x1) =

1
2
d(x0, x1)

}
.

For t ∈ {0, 1
2 , 1}, define et : B(1) → X by et(x0, x 1

2
, x1) = xt. Then (et)∗π

(1)

(0, 12 ,1)
=

µt.
Proceeding in the same manner, for each k ≥ 1, we obtain a probability

measure Π(k) = π
(k)

(0, 1
2k
, 2
2k
, 3
2k
,···,1)

on X2k+1 such that its marginals π(k)

(i2−k,j2−k)

are optimal couplings for all 0 ≤ i, j ≤ 2k. Π(k) is supported on

B(k) =
{

(x0, x 1
2k
, x 2

2k
, · · · , x1) ∈ X2k+1 :
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d(x0, x 1
2k

) = d(x 1
2k
, x 2

2k
) = · · · = d(x 2k−1

2k
, x1) = 2−kd(x0, x1)

}
.

For t = i
2k
, 0 ≤ i ≤ 2k, define et : B(k) → X by et(x0, · · · , x1) = xt, then

(et)∗Π(k) = µt.
Given (x0, · · · , x1) ∈ B(k), one extends it to a continuous curve γ(k) : [0, 1]→

X by using the map S above (in the proof of the existence of geodesics). Namely
for t ∈ ( i

2k
, i+1

2k
), define γ(k)(t) = et(S(x i

2k
, x i+1

2k
)). L(γ(k)) = d(x0, x1) so it is

a minimal geodesic. Now extend Π(k) for t ∈ ( i
2k
, i+1

2k
) by Π(k) = S∗(π

(k)

( i

2k
, i+1

2k
)
).

So we have a family of probability measure Π(k) ∈ P (Γ(X)) which satisfy
(et)∗Π(k) = µt for all t = i/2k. To be able to pass to limit, we shall check
the tightness of the sequence. For any ε > 0, since µ0, µ1 are tight, there are
compact sets K0,K1 such that µ0(X \K0) ≤ ε, µ1(X \K1) ≤ ε. The set Γ0,1

K0→K1

of minimal geodesics joining K0 to K1 is compact. Now

Π(k)(Γ \ Γ0,1
K0→K1

) ≤ µ0(X \K0) + µ1(X \K1) ≤ 2ε.

Hence the family {Π(k)} is tight. There is a subsequence converges weakly
to some probability measure Π. Γ(X) is closed, so Π is still supported in Γ.
Moreover for all dyadic time t = i/2l in [0, 1], we have, if k is larger than l,
(et)∗Π(k) = µt, and by passing to the limit, we have (et)∗Π = µt also. (et)∗Π is
weak-∗ continuous in t. It follows that (et)∗Π = µt for all t ∈ [0, 1].

8.2 N-Ricci Lower Bound for Measured Length
Spaces

In this section we discuss various notions of Ricci curvature lower bound for
measured length spaces.

8.2.1 Via Localized Bishop-Gromov

In this subsection a metric measure space is a triple (X, d, µ), where (X, d) is a
complete separable metric space and µ is a Borel measure on X which is locally
finite, positive and has full support, i.e. 0 < µ(B(x, r)) <∞ for all x ∈ X and
r > 0. If µ do not have full support, one can just work on supp[µ].

From Proposition 1.6.1, one can define Ricci curvature lower bound for met-
ric measure spaces using (1.4.8). However, there is serious difficulty defining
the set Bt in (1.4.8), especially for general metric spaces where one has to deal
with the issue of branching. Following [101] we will define Bt using optimal
transportation. Denote (see (1.2.5) for the definition of snH)

ζ
(t)
H,N (r) =

(
snH(tr)
snH(r)

)N−1

.
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Definition 8.2.1 Given H ∈ R, N ∈ [1,∞), we say a metric measure space
(X, d, µ) satisfies the (H,N)-Localized Bishop-Gromov property, LBG(H,N),
if for µ-a.e. x ∈ X, every measurable set A ⊂ X (A ⊂ B(x, π/

√
H) if H > 0),

there exists a displacement interpolation {µt}0≤t≤1 ⊂ P2(X) such that µ0 = δx,
µ1 = µ(A)−1 · µ|A, and

dµ ≥ (et)∗
(
t ζ

(t)
H,N (d(x, γ(1)))µ(A) dΠ(γ)

)
(8.2.1)

holds as measures on X, where Π is an optimal dynamical transference plan
associated to {µt}0≤t≤1.

This notion is from [101], where it is called the measure contraction property;
for a very similar version see [?], also [] for other versions.

To see the relation with (1.4.8), assume that there exists a measurable map
Φ : A → Γ satisfying e0 ◦ Φ ≡ x, e1 ◦ Φ = idA, and Π = Φ∗µ1. Then the
inequality (8.2.1) can be rewritten as

dµ ≥ (et ◦ Φ)∗
(
t ζ

(t)
H,N (d(x, y))χA(y) dµ(y)

)
, (8.2.2)

where χA is the characteristic function of A.
The geometric meaning of the map Φ is that for each point of A it assigns,

in a measurable way, a minimal geodesic from x to the given point. This is the
case, when for almost all y ∈ A, there exists exactly one geodesic connecting
x to y, e.g. complete Riemannian manifolds or more generally, non-branching
metric spaces.

Now set Ψt = et ◦ Φ and for any measurable subset B ⊂ A, Bt = Ψt(B).
Then integrating (8.2.2) yields

µ(Bt) ≥
∫
B

t ζ
(t)
H,N (d(x, y)) dµ(y), (8.2.3)

which is exactly (1.4.8)
Thus, (8.2.1) is slightly stronger than (1.4.8). In certain sense, (8.2.1) is

an infinitesimal version of Bishop-Gromov rather than just localized, but the
difference is minimal and we will not differentiate. Instead, we note that a
complete Riemannian manifold Mn with RicM ≥ (n−1)H satisfies LBG(H,n).
Another class of examples is Alexandrov spaces with lower curvature bound.
Namely if (X, d) is an n-dimensional complete locally compact length space
with curvature ≥ K in the sense of Alexandrov, and Hn is the n-dimensional
Hausdorff measure on X, then (X, d,Hn) satisfies LBG(K,n) [?, 101].

As a function of H, r, ζ(t)
H,N (r) depends only on Hr2, so if (X, d, µ) satisfies

LBG(H,N), then the scaled metric space (X,αd, βµ) with α, β > 0 satisfies
LBG(H/α2, N), as in the case of usual curvature bounds. Since ζ

(t)
H,N (r) is

increasing in H when H ≤ 0 or H > 0 and r ≤ π
2
√
H

, for 0 ≤ t ≤ 1, 0 ≤ snH(tr)
snH(r) ≤

1, (X, d, µ) satisfies LBG(H,N) implies (X, d, µ) satisfies LBG(H ′, N ′) for all
H ′ ≤ H,N ′ ≥ N .
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For metric measure spaces satisfying LBG(H,N) the Bishop-Gromov rela-
tive volume comparison theorem also holds. Let A(x, r,R) = B(x,R) \ B(x, r)
be an annulus and A(x, r) = lim supδ→0

1
δ µ(A(x, r, r + δ)).

Theorem 8.2.2 (Bishop-Gromov Volume Comparison) Let (X, d, µ) be a
metric measure space satisfying LBG(H,N) for real numbers H ∈ R, N > 1.
Then for any x ∈ X, the functions

A(x, r)
snN−1
H (r)

and
µ(B(x, r))∫ r

0

snN−1
H (t)dt

are non-increasing in r, (8.2.4)

where r < π√
H

if H > 0. In particular, if H = 0 then

A(x, r)
A(x,R)

≥
( r
R

)N−1

,
µ(B(x, r))
µ(B(x,R))

≥
( r
R

)N
.

The latter also holds if N = 1 and H ≤ 0.

Proof: Given 0 < r < R, δ > 0, apply LBG(H,N) for x = x,A = A(x,R, (1 +
δ)R), t = r/R and integrate both sides of (8.2.1) on A(x, r, (1 + δ)r) yields

µ(A(x, r, (1 + δ)r)) ≥ r

R
µ(A(x,R, (1 + δ)R)) inf

1≤λ≤1+δ
ζ

(r/R)
H,N (λR)·

((er/R)∗Π)(A(x, r, (1 + δ)r)).

Now

((er/R)∗Π)(A(x, r, (1 + δ)r)) = Π((er/R)−1[A(x, r, (1 + δ)r)])

≥ Π((e1)−1[A(x,R, (1 + δ)R)]) = 1

for we have (e1)−1[A(x,R, (1 + δ)R)] ∩ suppΠ ⊂ (er/R)−1[A(x, r, (1 + δ)r)] by
the condition that (e0)∗Π = δx. Hence

µ(A(x, r, (1 + δ)r)) ≥ µ(A(x,R, (1 + δ)R))
r

R
inf

1≤λ≤1+δ
ζ

(r/R)
H,N (λR). (8.2.5)

Similarly we have

µ(A(x, (1− δ)r), r) ≥ µ(A(x, (1− δ)R,R))
r

R
inf

1−δ≤λ≤1
ζ

(r/R)
H,N (λR). (8.2.6)

By construction µ(B(x, r)) is nondecreasing, so it has at most countably many
discontinuities. Hence given any r > 0, there is 0 < r0 < r such that µ(B(x, r))
is continuous at r0. But µ(B(x, (1 + δ)r))−µ(B(x, r)) = µ(A(x, r, (1 + δ)r)), so
from (8.2.5) and (8.2.6), the fact that µ(B(x, r)) is continues at r0 > 0 implies
that it is continuous for all r > r0 ( r < π√

H
if H > 0). Therefore µ(B(x, r)) is

continuous on R+. In particular we have µ(∂B(x, r)) = 0 for all r > 0.
Inequality (8.2.5) can be rewritten as

1
δr
µ(A(x, r, (1 + δ)r)) ≥ 1

δR
µ(A(x,R, (1 + δ)R)) inf

1≤λ≤1+δ
ζ

(r/R)
H,N (λR).
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Similarly for (8.2.6). Since µ(B(x, r)) is monotonic, it is differentiable almost
everywhere. Therefore the above inequality shows that µ(B(x, r)) is in fact
differentiable everywhere on R+. Thus A(x, r) is well-defined and finite and
equals the derivative of µ(B(x, r)). Letting δ → 0 gives

A(x, r) ≥ A(x,R)
(

snH(r)
snH(R)

)N−1

,

which is the first part of (8.2.4).
By Lemma 1.4.10 the ratio of the integrals

R r
0 A(x,t)dtR r

0 snN−1
H (t)dt

is also non-increasing.

Since µ(B(x, r)) =
∫ r

0
A(x, t)dt, this completes the proof.

Corollary 8.2.3 (Doubling) If (X, d, µ) satisfies LBG(H,N) for real num-
bers H ∈ R, N ≥ 1, the doubling property holds on every bounded subset
X ′ ⊂ X. In particular, every bounded closed subset X ′ ⊂ X is compact.

Proof: If H ≥ 0 or N = 1, the doubling constant is ≤ 2N . If H < 0 and N > 1,
by (8.2.4),

µ(B(x, 2r))
µ(B(x, r))

≤
2
∫ r

0
sinh(2

√
−Ht)N−1dt∫ r

0
sinh(

√
−Ht)N−1dt

≤ 2N cosh(
√
−Hr)N−1.

The doubling condition implies that every bounded closed ball in X is totally
bounded, therefore compact.

Corollary 8.2.4 (Hausdorff dimension) If (X, d, µ) satisfies LBG(H,N) for
real numbers H ∈ R, N ≥ 1, then X has Hausdorff dimension ≤ N .

Proof: By (8.2.4), the function f(x) = lim supr→0 r
Nµ(B(x, r))−1 on X is

locally bounded. Thus the N -dimensional Hausdorff measure HN on X is also
locally bounded and the Hausdorff dimension of X is ≤ N .

Corollary 8.2.5 (Bonnet-Myers theorem) If a complete metric measure space
(X, d, µ) satisfies LBG(H,N) for real numbers H > 0 and N > 1, then X is
compact and has diameter ≤ π/

√
H.

Proof: By (8.2.4) and Lemma 1.4.10, we have for any x ∈ X, s, t ∈ [0, π
2
√
H

]
with s < t,

µ(A(x, s, t))∫ t
s
(snH(r))N−1dr

≥
µ(A(x, π√

H
− t, π√

H
− s))∫ π√

H
−s

π√
H
−t (snH(r))N−1dr

.

I.e.,

µ(A(x, s, t)) ≥ µ(A(x,
π√
H
− t, π√

H
− s)). (8.2.7)
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If there are x0, x1 ∈ X with d(x0, x1) ≥ π√
H

+ ε for some ε > 0 (WLOG we
choose ε < π

4
√
H

) , connect x0, x1 with a minimal geodesic γ : [0, π√
H

+ ε]→ X

with γ(0) = x0, γ( π√
H

+ ε) = x1. With δ ∈ (0, ε), apply LBG(H,N) for x =

γ(ε + 2δ), A = B(x1, δ) and t = π/
√
H−ε−2δ

π/
√
H−δ and integrate both sides of (8.2.1)

on At = et(supp Π) to obtain

µ(At) ≥ t µ(B(x1, δ)) inf
y∈A

(
snH(td(x, y))
snH(d(x, y))

)N−1

((et)∗Π)(At)

≥
(

1− ε+ δ

π/
√
H − δ

)
µ(B(x1, δ))

(
snH( π√

H
− ε− 2δ)

snH( π√
H
− 3δ)

)N−1

=
(

1− ε+ δ

π/
√
H − δ

)
µ(B(x1, δ))

(
snH(ε+ 2δ)

snH(3δ)

)N−1

.

On one hand,

At ⊂ B(x, t(d(x, x1) + δ)) ⊂ B(x0, π/
√
H).

On the other hand,

At ⊂ X \B(x0, d(x0, x) + t(d(x, x1)− δ)) ⊂ X \B(x0, π/
√
H − 2δ).

Thus we have, by (8.2.7),

µ(At) ≤ µ(A(x0, π/
√
H − 2δ, π/

√
H) ≤ µ(B(x0, 2δ)) ≤ 2Nµ(B(x0, δ)).

Therefore we obtain, since N > 1,

µ(B(x0, δ))
µ(B(x1, δ))

≥ 2−N
(

1− ε+ δ

π/
√
H − δ

)(
snH(ε+ 2δ)

snH(3δ)

)N−1

→∞

as δ → 0. This is a contradiction since we can reverse the roles of x0, x1.

While the definition of Ricci lower bound using the localized Bishop-Gromov
comparison is very geometric and enjoys very nice geometric consequence, the
following example shows it not ideal.

Example 8.2.6 If M is a compact Riemannian manifold with RicM ≥ 0,dimM ≤
N − 1(N > 1) and diamM ≤ L, then M satisfies LBG(H,N) for some H > 0.

Proof: For r small, snH(tr)
snH(r) has the Taylor expansion t + t

6 (1 − t2)|H|r2 + · · ·.
Hence for t ∈ [0, 1] and r ∈ [0, L], there exists 0 < cN ≤ 1 such that ζ(t)

H,N (r) ≤
tN−1

(
1 + (N − 1)(1− t2)Hr

2

2

)
for all 0 ≤ Hr2 ≤ cN . Choose cN ≤ 1

N−1 , then
we also have

tN−2 ≥ tN−1

(
1 + (N − 1)(1− t2)

Hr2

2

)
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Since M satisfies LBG(0, N − 1), we have M satisfies LBG(H,N) for 0 < H ≤
cN/L

2.

Hence an n-torus will satisfy LBG(H,N) for some H > 0 and N = n + 1,
which cannot happen in the classical sense. Also a small convex subset of RN−1

satisfies LBG(H,N) with H > 0 and thus the property LBG(H,N) is not local.

8.2.2 Entropy And Ricci Curvature

Given a metric measure space (X, d, µ), let P2(X,µ) be the subspace of all
ν ∈ P2(X) which are absolutely continuous with respect to µ, i.e.

P2(X,µ) = {ν ∈ P2(X) | ν = ρµ},

where ρ : X → [0,∞) is a Borel measurable function satisfying
∫
X
ρ(x)dµ(x) = 1

and
∫
X
d2(x0, x)ρ(x)dµ(x) <∞ for some x0 ∈ X.

The relative (Shannon) entropy of ν ∈ P2(X) with respect to µ is defined
by

Hµ(ν) =
{

limε→0

∫
ρ>ε

ρ log ρ dµ if ν ∈ P2(X,µ)
+∞ otherwsie

. (8.2.8)

Given a real number N ≥ 1, the Rényi entropy functional HN,µ : P2(X)→
[0,∞] with respect to µ is

HN,µ(ν) = −
∫
X

ρ−1/Ndν, (8.2.9)

where ρ denotes the density of absolutely continuous part νc in the Lebesgue
decomposition ν = vc + vs = ρµ+ vs of ν ∈ P2(X).

Lemma 8.2.7 Hµ and HN,µ(N > 1) are lower semicontinuous on P2(X) and
satisfy

lim
N→∞

N [1 +HN,µ(ν)] = Hµ(ν).

Furthermore, −µ(X)1/N ≤ HN,µ ≤ 0 and − log(µ(X)) ≤ Hµ.

Proof: The lower semicontinuity follows essentially from definition. To see the
relationship between the two entropy functions, note that

N [1 +HN,µ(ν)] =
∫
X

UN (ρ)dν,

where UN (r) = Nr(1− r−1/N ). Since limN→∞ UN (r) = r log r (by L’Hopstal),
the desired equation follows from the Lebesgue monotone convergence theorem
(strictly speaking, one applies it to the region {0 < ρ < 1} and {1 ≥ ρ}).

Clearly HN,µ ≤ 0. On the other hand

HN,µ(ν) = −
∫

supp ν
(ρ−1)1/Ndν ≥ −

(∫
supp ν

ρ−1dν

)1/N

= −µ(supp ν)1/N ≥ −µ(X)1/N , (8.2.10)
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where we have used Jensen’s inequality.
Similarly,

Hµ(ν) = −
∫

supp ν
log(ρ−1) dν ≥ − log

(∫
supp ν

ρ−1dν

)
= − log(µ(supp ν)) ≥ − log(µ(X)). (8.2.11)

Some remark is in order. For any subset A ⊂ X, the uniform distribution
measure (with respect to µ) on A is

νA =
χA
µ(A)

µ,

where χA is the characteristic function of A. Note that HN,µ(νA) = −µ(A)1/N

(and Hµ(νA) = − log(µ(A))). Hence (8.2.10) ((8.2.11) resp.) expresses the intu-
itive idea that the uniform distribution measure on supp ν achieves the minimal
entropy (among probability measures with support contained in supp ν).

Originally arising from thermodynamics and statistical mechanics, the no-
tions of entropy have played fundamental roles in information theory. The rele-
vance to the Ricci curvature lower bound comes from the following observation
which relates Ricci curvature lower bound to certain convexity of the entropies.

Recall that P2(X,µ) is a length (geodesic) space. Given a length space (X, d)
and a real number k ∈ R, a function F : X → R is called k-convex if for each
geodesic γ : [0, 1]→ X,

F (γ(t)) ≤ tF (γ(1)) + (1− t)F (γ(0))− k

2
t(1− t)d2(γ(0), γ(1)), (8.2.12)

for all t ∈ [0, 1]. In case that (X, d) = (M, g) is a Riemannian manifold and
F ∈ C2(M), (8.2.12) is equivalent to HessF ≥ kg. The k-convex functions on
P2(X,µ) are also called displacement k-convex.

Theorem 8.2.8 For a Riemannian manifold (M, g), the followings are equiv-
alent:
1). The Ricci curvature of (M, g) is bounded from below by k, RicM ≥ k;
2). The Shannon entropy Hµ(ν) (or the Rényi entropy HN,µ(ν)) is displacement
k-convex on P2(M) (for N ≥ n, resp.).

Proof: 1) ⇒ 2): Given RicM ≥ k, we need to derive the inequality

H(µt) ≤ tH(µ1) + (1− t)H(µ0)− k

2
t(1− t)(W2(µ0, µ1))2, (8.2.13)

for each geodesic µt in (P (M),W2). By Theorem 8.1.7, µt = (Ft)∗(µ0), where
Ft(x) = expx(−t∇ϕ(x)) for a convex function ϕ and Ft gives rise to Monge
transports. Write µt = ρtdvol. Then the Monge-Amperé equation (8.1.3) yields

ρt(Ft(x))Jt(x) = ρ0(x), a.e.
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where Jt = det(dFt(x)) is the determinant of Jacobian.
Thus,

H(µt) =
∫
M

ρt(x) log ρt(x)dvolx

=
∫
M

ρt(Ft(y)) log ρt(Ft(y))Jt(y)dvoly

=
∫
M

ρ0(y) log[ρ0(y)J−1
t (y)dvoly

= H(µ0)−
∫
M

log Jt(y)dµ0(y),

using the Monge-Amperé equation. Consequently,

−H(µt) + tH(µ1) + (1− t)H(µ0)

= −H(µ0) +
∫
M

log Jtdµ0 + t[H(µ0)−
∫
M

log J1dµ0] + (1− t)H(µ0)

=
∫
M

log Jtdµ0 − t
∫
M

log J1dµ0. (8.2.14)

On the other hand, yt = log Jt satisfies the differential inequality

y′′t +
1
n

(y′t)
2 + Ric(F ′t , F

′
t ) ≤ 0.

Hence,
y′′t + k|F ′t |2 ≤ 0

using RicM ≥ k. Note that, since Ft(x) = expx(−t∇ϕ(x)) is a geodesic (for
fixed x), for t ∈ [0, 1],

|F ′t (x)| = d(x, F1(x)) (8.2.15)

is independent of t. Thus,

yt(x) ≥ ty1(x) +
t(1− t)

2
k|F ′t |2.

Plus this back into (8.2.14), we obtain

−H(µt)+tH(µ1)+(1−t)H(µ0) ≥ t(1− t)
2

k

∫
M

|F ′t |2dµ0 =
t(1− t)

2
k(W2(µ0, µ1))2.

using (8.1.6) and (8.2.15).
2) ⇒ 1):
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8.2.3 The Case of Smooth Metric Measure Spaces

Recall that a smooth metric measure space is a metric measure space (Mn, g, µ)
where M is an n dimensional smooth manifold, g is the Riemannian metric
which gives rise to the distance function, and the measure µ = e−fdvolg, where
f is a smooth real valued function on M and dvolg is the Riemannian measure.
There is well-defined notion of Ricci curvature for smooth metric measure spaces,
via the N -Bakry-Emery Ricci curvature RicNf . Besides interests of its own in
diffusion process, Ricci flow etc., the class of smooth metric measure spaces
gives us a good collection of examples which interpolates between the smooth
manifolds and the general metric measure spaces.

For t ∈ [0, 1], N > n, and K ∈ R, set H = K
N−1 and define

β
(t)
K,N (r) =

(
snH(rt)
t snH(r)

)N−1

=
ζ

(t)
H,N (r)
tN−1

. (8.2.16)

Theorem 8.2.9 For a smooth metric measure space (Mn, g, µ), µ = e−fdvolg,
the followings are equivalent:
1). The Bakry-Emery Ricci curvature of (M, g, µ) is bounded from below by K,
Ricf ≥ K;
2). The Shannon entropy Hµ(ν) is displacement K-convex on P2(M).
Furthermore, the followings are equivalent:
1)N . The N -Bakry-Emery Ricci curvature of (M, g, µ) is bounded from below
by K, RicNf ≥ K;
2)N . The Rényi entropy HN,µ(ν) satisfies the following (convexity) inequality:
for any µ0 = ρ0µ, µ1 = ρ1µ ∈ P ac(M), if F : M → M is the optimal Monge
transport and µt is the geodesic from µ0 to µ1 in P ac(M), then

HN,µ(µt) ≤ −(1− t)
∫
M

β
(1−t)
K,N (d(x, F (x)))

1
N ρ0(x)−

1
N dµ0(x)

−t
∫
M

β
(t)
K,N (d(x, F (x)))

1
N ρ1(F (x))−

1
N dµ0(x) (8.2.17)

for all t ∈ [0, 1].

Remark For K = 0, β(t)
K,N ≡ 1 and the entropy inequality simplifies to the

usual convexity inequality

HN,µ(µt) ≤ (1− t)HN,µ(µ0) + tHN,µ(µ1).

Remark The entropy inequality can be reformulated using the optimal trans-
port π = (Id× F )∗(µ0) as follows.

HN,µ(µt) ≤ −(1− t)
∫
M×M

β
(1−t)
K,N (d(x, y))

1
N ρ0(x)−

1
N dπ(x, y)

−t
∫
M×M

β
(t)
K,N (d(x, y))

1
N ρ1(y)−

1
N dπ(x, y) (8.2.18)
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for all t ∈ [0, 1].
The reason that (8.2.17) and (8.2.18) are convexity type inequalities can be

found in the following lemma (using (8.2.16)), which also plays a basic role in
our proof of Theorem 8.2.9.

Lemma 8.2.10 A C2 function Φ(x) on [0, 1] satisfies the differential inequality

Φ′′ ≤ −kΦ (8.2.19)

for k < π2 iff for all x0, x1 ∈ [0, 1] and t ∈ [0, 1],

Φ((1− t)x0 + tx1) ≥ δ(1−t)
k (|x1 − x0|)Φ(x0) + δ

(t)
k (|x1 − x0|)Φ(x1).(8.2.20)

Here

δ
(t)
k (r) = (ζ(t)

k,N (r))
1

N−1 =
snk(rt)
snk(r)

. (8.2.21)

If k = π2 and Φ is nonnegative, then (8.2.19) implies (and hence is equivalent
to) Φ(x) = c sinπx, c ≥ 0, while for k > π2 and Φ is nonnegative, (8.2.19)
implies (and hence is equivalent to) Φ(x) = 0.

Proof: =⇒: Without loss of generality, we assume that x0 = 0, x1 = 1. Let

Φ0(t) = δ
(1−t)
k (1)Φ(0) + δ

(t)
k (1)Φ(1) =

snk(1− t)
snk(1)

Φ(0) +
snk(t)
snk(1)

Φ(1).

Then
Φ′′0 = −kΦ0, Φ0(0) = Φ(0), Φ0(1) = Φ(1).

Hence by using the maximal principle, one obtain Φ(t) ≥ Φ0(t). (For k < 0,
the maximal principle applied to Ψ = Φ−Φ0 yields right away that Ψ ≥ 0. For
k = 0, the statement is the usual convexity. For k > 0, we refer to [?].)
⇐=: For any x ∈ (0, 1), apply (8.2.20) to x0 = x− ε, x1 = x+ ε and t = 1

2
for ε > 0 sufficiently small. From the Taylor expansions,

Φ(x0) = Φ(x)− Φ′(x)ε+
1
2

Φ′′(x)ε2 +O(ε3),

Φ(x1) = Φ(x) + Φ′(x)ε+
1
2

Φ′′(x)ε2 +O(ε3),

δ
( 1
2 )

k (2ε) =
1
2

(1 +
k

2
ε2) +O(ε3),

we derive (8.2.19).

We now give the proof of Theorem 8.2.9.
Proof: We show 1)N ⇐⇒ 2)N ; the other case being similar (and also to the
proof of Theorem 8.2.8).
1)N =⇒ 2)N : For µ0 = ρ0µ, µ1 = ρ1µ ∈ P ac(M), by the Brennier-McCann
Theorem, there is a convex function ϕ : M → R such that

Ft(x) = expx t∇ϕ(x)
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provides the unique minimal geodesic µt = (Ft)∗(µ0) = ρtµ from µ0 to µ1.
Taking into account of the weight e−f in our measure µ, we introduce the

Jacobian determinant

Jft (x) = ef(x)−f(Ft(x)) detDFt(x) = ef(x)−f(Ft(x))J . (8.2.22)

Indeed, Jft (x) is simply the ratio of change of the infinitesimal measure of µ
under Ft, and the Monge-Amperé equation (8.1.3) becomes

ρ0(x) = ρt(Ft(x))Jft (x).

Claim:

(Jft (x))
1
N ≥ (1−t)β(1−t)

K,N (d(x, F (x)))
1
N +tβ(t)

K,N (d(x, F (x)))
1
N (Jf1 (x))

1
N (8.2.23)

for all t ∈ [0, 1] (note that (Jf0 (x))
1
N ≡ 1).

Granted, we have

HN,µ(µt) = −
∫
M

ρ
1− 1

N
t dµ = −

∫
M

ρt(Ft)1− 1
N Jft (x)dµ

= −
∫
M

ρ0ρt(Ft)−
1
N dµ = −

∫
M

(
Jft
ρ0

) 1
N

dµ0

using the change of variable formula and the Monge-Ampère equation. The
desired inequality (8.2.17) then follows by plugging in the claim.

To show the claim, set

Φµ(t) = (Jft (x))
1
N = e

f(x)−f(Ft(x))
N J 1

N . (8.2.24)

Using that t→ Ft(x) is a geodesic, we compute

Φ′′µ =
Φµ
N

[
−Hessf(Ḟt, Ḟt) +

df(Ḟt)2

N
− 2df(Ḟt)

N

J̇
J

+
1−N
N

(
J̇
J

)2

+
J̈
J


=

Φµ
N

−Hessf(Ḟt, Ḟt) +
df(Ḟt)2

N
+
J̈
J
− (1− 1

n
)

(
J̇
J

)2

− N − n
nN

(
J̇
J

+
n

N − n
df(Ḟt)

)2


≤ −
RicNf (Ḟt)

N
Φµ ≤ −

K|Ḟt|2

N
Φµ.

Here we have made use of (1.5.5).
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Since t→ Ft(x) is a geodesic, |Ḟt(x)| ≡ d(x, F (x) is independent of t. Hence

Φ′′µ ≤ −
Kd(x, F (x))2

N
Φµ.

At this point one is tempted to appeal to Lemma 8.2.10 to derive the Claim.
However, one runs into a discrepancy of power N

N−1 . This is remedied by sepa-
rating out the direction of motion as detailed in §1.5. Indeed, using the notations
there, we set

Φµ,11(t) = J11(t), Φµ,⊥(t) =
(
ef(x)−f(Ft(x))J⊥

) 1
N−1

.

Then Φµ = Φ
1
N
µ,11Φ

N−1
N

µ,⊥ . By (1.5.8) Φµ,11(t) is concave:

Φµ,11(t) ≥ (1− t) + tΦµ,11(1).

On the other hand, the same computation as above, but using (1.5.11) instead,
yields

Φ′′µ,⊥ ≤ −
Kd(x, F (x))2

N − 1
Φµ,⊥.

Hence Lemma 8.2.10 gives, for k = Kd(x,F (x))2

N−1 ,

Φµ,⊥(t) ≥ δ(1−t)
k (1) + δ

(t)
k (1)Φµ,⊥(1).

Combining these using the Hölder inequality, we arrive at

Φµ(t) ≥ ((1− t) + tΦµ,11(1))
1
N

(
δ

(1−t)
k (1) + δ

(t)
k (1)Φµ,⊥(1)

)N−1
N

≥ (1− t) 1
N (δ(1−t)

k (1))
N−1
N + t

1
N (δ(t)

k (1))
N−1
N Φµ(1),

which is precisely the Claim.

8.2.4 Via Entropy Convexity

The discussion on the Ricci curvature lower bound in the case of smooth met-
ric measure spaces leads directly to the following generalization of the Ricci
curvature lower bound for general metric measure spaces, introduced first by
Lott-Villani [] and Sturm [] independently. The entropy convexity condition
characterized a metric measure space satisfying a Ricci curvature lower bound
and a dimensional upper bound, hence named the curvature dimension condi-
tion.

Definition: Let (X, d, µ) be a metric measure space satisfying

0 < µ(B(x, r)) <∞, ∀x ∈ X, r ∈ (0,∞).
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For K ∈ R, N ∈ (1,∞), we say that (X, d, µ) satisfies the curvature dimension
condition CD(K,N) if for any µ0 = ρ0µ, µ1 = ρ1µ ∈ P ac(X), there exists a
minimal geodesic µt from µ0 to µ1 such that

HN,µ(µt) ≤ −(1− t)
∫
X×X

β
(1−t)
K,N (d(x, y))

1
N ρ0(x)−

1
N dπ(x, y)

−t
∫
X×X

β
(t)
K,N (d(x, y))

1
N ρ1(y)−

1
N dπ(x, y) (8.2.25)

for all t ∈ [0, 1]. Here π is the optimal transport from µ0 to µ1. If N = ∞,
we say that (X, d, µ) satisfies the curvature dimension condition CD(K,∞) if
Hµ(ν) is displacement K-convex.

As mentioned, the curvature dimension condition CD(K,N) for a metric
measure space expresses the idea that some kind of Ricci curvature of the space
is bounded from below by K and some kind of dimension of the space is bounded
from above by N .

An immediate consequence of the definition is the scaling property: if (X, d, µ)
satisfies CD(K,N), then (X, c d, c′µ) (c, c′ positive constants) satisfies CD(K/c2, N).
Also, note that β(t)

K,N is increasing in K and decreasing in N . Hence, if (X, d, µ)
satisfies CD(K,N), then (X, d, µ) also satisfies CD(K ′, N ′) for anyK ′ ≤ K,N ′ ≥
N . Finally we remark that in the definition above, we would have needed to
impose the condition

µ(X \B(x, π

√
N − 1
K

)) = 0, ∀x ∈ X

if K > 0 and N < ∞ in order to stay inside the domain of β(t)
K,N (r). However,

as we will see from the generalized Bonnet-Myers Theorem ??, this is always
the case.
Remark In the definition of Lott-Villani [], the condition CD(K,N) is defined in
terms of entropy functional associated to certain class of convex functions (the so
called displacement convexity class) for which the entropy used here is a special
example. Moreover, they allow probability measures that are singular with
respect to µ. For a large class of metric measure spaces, that is, nonbranching
and proper, these two definitions turn out to be equivalent.

An important consequence of the condition CD(K,N) is obtained by special-
izing to delta measures and uniform distribution measures. This is the so called
generalized Brunn-Minkowski inequality, which expresses the effect of Ricci cur-
vature lower bound on the shape of the space in terms of the motions of the
geodesics. Before stating the result, let us introduce the generalized Minkowski
sum.

From now on, we assume that (X, d) is a complete, locally compact, separable
length (or geodesic) space. For subsets A,B ⊂ X and t ∈ (0, 1), define

Zt(A,B) = {γ(t) | γ : [0, 1]→ X is a minimal geodesic, γ(0) ∈ A, γ(1) ∈ B}.(8.2.26)
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In other words, Zt(A,B) is the set of time t locations of all minimal geodesics
starting from A and ending at B. For example, Zt({x}, B(x, r)) = B(x, tr). We
also introduce the notation

βA,B(t,K,N) = inf
x∈A,y∈B

β
(t)
K,N (d(x, y))

1
N . (8.2.27)

Theorem 8.2.11 (Generalized Brunn-Minkowski) If a metric measure space
(X, d, µ) satisfies CD(K,N), and A,B are measurable subsets of X, then,
1). for N ∈ (1,∞), we have, for any t ∈ (0, 1),

µ(Zt(A,B))
1
N ≥ (1− t)βA,B(1− t,K,N)µ(A)

1
N + tβA,B(t,K,N)µ(B)

1
N ;

2). for N =∞, and 0 < µ(A), µ(B) <∞, we have

logµ(Zt(A,B)) ≥ (1− t) logµ(A) + t logµ(B) +
K

2
(1− t)tW2(

χA
µ(A)

µ,
χB
µ(B)

µ)2

for any t ∈ (0, 1).

Remark In general the Minkowski sum of two measurable sets may not be
measurable. In that case, we take the upper measure (?) of the set.
Proof: We show the case when N ∈ (0, 1), the other being similar. First of all,
one can reduce to the case when both A,B are bounded; otherwise, one applies
the bounded case to A∩B(x,R), B∩B(x,R) and take the limit R→∞. Now if
both µ(A), µ(B) = 0, the statement is trivial. Assume that µ(A) = 0, µ(B) > 0.
Fix a point x ∈ A and consider

µ0 = δx, µ1 =
χB
µ(B)

µ.

Then the minimal geodesic µt from µ0 to µ1 has suppµt ⊂ Zt(A,B) (Cf. Propo-
sition 8.1.14). Now CD(K,N) becomes

HN,µ(µt) ≤ −t
∫
X×B

β
(t)
K,N (d(x, y))

1
N µ(B)

1
N dπ(x, y)

for the optimal transport π from µ0 to µ1. Since suppπ ⊂ A×B, we obtain

HN,µ(µt) ≤ −tβA,B(t,K,N)µ(B)
1
N .

On the other hand, Lemma 8.2.7 gives us

HN,µ(µt) ≥ −µ(suppµt) ≥ −µ(Zt(A,B))
1
N .

Combining the two gives us the generalized Brunn-Minkowski inequality in the
case when µ(A) = 0.

Now assume that both A,B are bounded and of positive measure. Set

µ0 =
χA
µ(A)

µ, µ1 =
χB
µ(B)

µ
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in CD(K,N) yields

HN,µ(µt) ≤ −(1− t)βA,B(1− t,K,N)µ(A)
1
N − tβA,B(t,K,N)µ(B)

1
N .

Again, using Lemma 8.2.7 and suppµt ⊂ Zt(A,B), we arrive at the desired
inequality.

8.3 Stability of N-Ricci Lower Bound under Con-
vergence

A prime feature of the curvature dimension condition is its stability under the
measured Gromov-Hausdorff convergence. The usefulness of this comes partly
from the following precompactness.

Theorem 8.3.1 Let (Mi, gi, volgi , xi) be a sequence of (pointed) complete Rie-
mannian manifolds with Ricgi ≥ K, dimMi ≤ N for some K ∈ R, N ∈
N. Then a subsequence converges to a pointed proper metric measure space
(X, d, µ, x) in the sense of measured (pointed) Gromov-Hausdorff convergence.

The stability of the curvature dimension condition is proved in [].

Theorem 8.3.2 Let (Mi, gi, volgi , xi) be a sequence of pointed proper metric
measure spaces satisfying CD(K,N) for some K ∈ R, N ∈ (1,∞] and converges
to a pointed proper metric measure space (X, d, µ, x) in the sense of measured
(pointed) Gromov-Hausdorff convergence. If 0 < µ(B(x, r)) <∞, ∀x ∈ X, r ∈
(0,∞), then (X, d, µ, x) satisfies CD(K,N).

8.4 Geometric and Analytical Consequences

As we have seen, an immediate consequence of the curvature dimension con-
dition is the generalized Brunn-Minkowski inequality. In this section we de-
velop geometric and analytic consequence of the curvature dimension condition,
mainly from the generalized Brunn-Minkowski inequality.

First, the generalized Bishop-Gromov volume comparison theorem.

Theorem 8.4.1 (Generalized Bishop-Gromov) If a metric measure space
(X, d, µ) satisfies CD(K,N), then

µ(B(x,R))
µ(B(x, r))

≤
∫ R

0
snk(t)N−1dt∫ r

0
snk(t)N−1dt

with k = K
N−1 , for all x ∈ X and 0 < r < R (and R ≤ π/

√
k if K > 0).
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Proof: Let A(x; r1, r2) = B(x, r2) \ B(x, r1) denote the annulus with radius
r2 > r1. Then for any t ∈ [0, 1], Zt({x}, A(x; r1, r2)) ⊂ A(x; tr1, tr2). Hence by
the generalized Brunn-Minkowski inequality,

µ(A(x; tr1, tr2)) ≥ tNβt µ(A(x; r1, r2)),

where

βt = inf
y∈A(x;r1,r2)

β
(t)
K,N (d(x, y)) = inf

d∈[r1,r2]

(
snk(td)
t snk(d)

)N−1

.

Hence

µ(A(x; tr1, tr2)) ≥ t
infd∈[r1,r2] h(td)
supd∈[r1,r2] h(d)

µ(A(x; r1, r2)), (8.4.1)

where we have denoted h(t) = snk(t)N−1.
Choose an integer L sufficiently large so that tL = (r/R)1/L < 1. Then by

(8.4.1),

µ(B(x, r) \ {x}) =
∞∑
l=1

µ(A(x; tlLr, t
l−1
L r))

≥
∞∑
l=1

tl−1
L

infd∈[tLr,r] h(tl−1
L d)

supd∈[tLr,r] h(d)
µ(A(x; tLr, r)). (8.4.2)

On the other hand,

µ(A(x; r,R)) =
L∑
l=1

µ(A(x; tl−LL r, tl−L−1
L r))

≤
L∑
l=1

tl−L−1
L

supd∈[tl−LL r,tl−L−1
L r] h(d)

infd∈[tl−LL r,tl−L−1
L r] h(tL+1−l

L d)
µ(A(x; tLr, r))

=
R

r

∑L
l=1 t

l−1
L supd∈[tLR,R] h(tl−1

L d)
infd∈[tLr,r] h(d)

µ(A(x; tLr, r))(8.4.3)

again by (8.4.1).
Combining (8.4.2) with (8.4.3) gives us

µ(B(x, r)\{x}) ≥ r

R

infd∈[tLr,r] h(d)
supd∈[tLr,r] h(d)

∑∞
l=1 t

l−1
L infd∈[tLr,r] h(tl−1

L d)∑L
l=1 t

l−1
L supd∈[tLR,R] h(tl−1

L d)
µ(A(x; r,R)).

Thus,

µ(B(x, r) \ {x})
L∑
l=1

(tl−1
L − tlL)R sup

d∈[tlLR,t
l−1
L R]

h(d)

= (1− tL)Rµ(B(x, r) \ {x})
L∑
l=1

tl−1
L sup

d∈[tLR,R]

h(tl−1
L d)
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≥ (1− tL)r
infd∈[tLr,r] h(d)
supd∈[tLr,r] h(d)

µ(A(x; r,R))
∞∑
l=1

tl−1
L inf

d∈[tLr,r]
h(tl−1

L d)

= µ(A(x; r,R))
infd∈[tLr,r] h(d)
supd∈[tLr,r] h(d)

∞∑
l=1

(tl−1
L − tlL)r inf

d∈[tlLr,t
l−1
L r]

h(d).

Taking L −→∞, we arrive at

µ(B(x, r) \ {x})
∫ R

r

snk(t)N−1dt ≥ µ(A(x; r,R))
∫ r

0

snk(t)N−1dt.

Or equivalently,

µ(A(x; r,R)) ≤
∫ R
r

snk(t)N−1dt∫ r
0

snk(t)N−1dt
µ(B(x, r) \ {x}).

Letting R −→ r+, we deduce that µ(∂B(x, r)) = 0. In particular, µ({y}) = 0
for all y 6= x.

This implies that if µ({x}) 6= 0, then X = {x} is a single point. Otherwise,
µ({x}) = 0, and µ(B(x, r)) = µ(B(x, r) \ {x}). Plug this back into the above
inequality we have an inequality that is equivalent to the generalized Bishop-
Gromov volume comparison.

An immediate consequence here is that the volume doubling constant

sup
x∈X,r≤R

µ(B(x, 2r))
µ(B(x, r))

(8.4.4)

is bounded for each R ∈ (0,∞). Thus X must be proper.

Corollary 8.4.2 If a metric measure space (X, d, µ) satisfies CD(K,N), then
X is proper.

The second major consequence of the curvature dimension condition is the
generalized Bonnet-Myers Theorem.

Theorem 8.4.3 (Generalzied Bonnet-Myers) If a metric measure space (X, d, µ)
satisfies CD(K,N) with K > 0 and 1 < N <∞, then

diam(X) ≤ π
√
N − 1
K

.

Furthermore, each x ∈ X has at most one point of distance π
√

N−1
K from x.

Proof: By rescaling we can assume that K = N − 1. For the first part of
the statement, suppose that there exist x, y ∈ X such that d(x, y) > π. Set
δ = d(x, y)− π > 0 and take a minimal geodesic γ : [0, π + δ] −→ X from x to
y.Without loss of generality, we can assume that δ < π/2.
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For any ε ∈ (0, δ), let t = (π−δ−ε)/π. Then 0 < t < 1. Now the generalized
Brunn-Minkowski inequality yields

µ(Zt({γ(δ + ε)}, B(y, ε))
µ(B(y, ε))

≥ tN inf
r∈(π−2ε,π)

(
sin(t r)
t sin r

)N−1

= t

(
sin(t(π − 2ε))

sin(π − 2ε)

)N−1

≥ π − δ − ε
π

(
sin(δ + ε)

sin(2ε)

)N−1

,

where we have used that t(π − 2ε) < tπ = π − δ − ε. This implies that

lim
ε→0

µ(Zt({γ(δ + ε)}, B(y, ε))
µ(B(y, ε))

=∞.

On the other hand, for any x′ ∈ Zt({γ(δ + ε)}, B(y, ε)), x′ = η(t) for a
minimal geodesic η : [0, 1] −→ X such that η(0) = γ(δ+ ε), η(1) = z ∈ B(y, ε).
Then

d(γ(δ + ε), η(t)) = t d(γ(δ + ε), z) < t[d(γ(δ + ε), y) + ε] = π − δ − ε.

d(x, η(t)) ≥ d(x, z)− d(z, η(t)) > π + δ − ε− (1− t)d(γ(δ + ε), z)
> π + δ − ε− (1− t)π = π − 2ε.

This means that

Zt({γ(δ+ ε)}, B(y, ε)) ⊂ B(γ(δ+ ε), π− δ− ε) \B(x, π− 2ε) ⊂ A(x : π− 2ε, π).

Now the generalized Bishop-Gromov volume comparison applied repeatedly
gives us that

µ(Zt({γ(δ + ε)}, B(y, ε)) ≤ µ(A(x : π − 2ε, π))

≤
∫ π
π−2ε

sinN−1 rdr∫ π−2ε

0
sinN−1 rdr

µ(B(x, π − 2ε))

=

∫ 2ε

0
sinN−1 rdr∫ π−2ε

0
sinN−1 rdr

µ(B(x, π − 2ε))

≤ µ(B(x, 2ε))
≤ 2Nµ(B(x, ε)).

Here, in the last step we have applied the generalized Bishop-Gromov with
K = 0. It follows then that

lim
ε→0

µ(B(x, ε))
µ(B(y, ε))

=∞,

which is clearly a contradiction as we can switch x and y.
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For the second part of the theorem, assume otherwise and let y 6= z ∈ X
such that d(x, y) = d(x, z) = π. Then, for any r ∈ (0, π/2),

µ(B(x, r)) ≥
∫ r

0
sinN−1 rdr∫ π−r

0
sinN−1 rdr

µ(B(x, π − r))

=

∫ π
π−r sinN−1 rdr∫ π−r
0

sinN−1 rdr
µ(B(x, π − r))

≥ µ(A(x;π − r, π)).

On the other hand, B(y, r) ⊂ X \ B(x, π − r) and X = B(x, π) ∪ ∂B(x, π)
(by the first part). Hence µ(B(y, r)) ≤ µ(A(x;π − r, π)) since µ(∂B(x, π)) = 0.
Therefore, we deduce that

µ(B(x, r)) ≥ µ(B(y, r)).

Exchanging x and y (and applying the same argument to x, z), we obtain that,
for any 0 < r < π/2,

µ(B(x, r)) = µ(B(y, r)) = µ(B(z, r)) = µ(A(x;π − r, π)).

Now take ε < 1
2d(y, z) (≤ π/2). Then

2µ(B(x, ε)) = µ(B(y, ε)) + µ(B(z, ε)) = µ(B(y, ε) ∪B(z, ε))
≤ µ(A(x;π − ε, π)) = µ(B(x, ε))

which is a contradiction.

There is also a weak version of the Cheng’s Maximal Diameter Theorem.
Recall that a metric space (X, d) is non-branching if for any z, x0, x1, x2 ∈ X
with d(x0, x1) = d(x0, x2) = 2d(z, x1) = 2d(z, x2) we have x1 = x2.

The following result is shown in [].

Theorem 8.4.4 Assume that the metric measure space (X, d, µ) is non-branching
and satisfies CD(N − 1, N) with 1 < N <∞. If further diam(X) = π, then X
is homeomorphic to a (spherical) suspension of a metric space.

Remark While the spherical suspension cannot be improved in the presence of
singularity, it is an open question whether the homeomorphism can be improved
to an isometry.
Proof: Fix xN , xS ∈ X with d(xN , xS) = π. Then the previous proof gives

µ(B(xN , r)) + µ(B(xS , π − r)) = µ(X), (8.4.5)

for all r ∈ (0, π).
Claim: For any z ∈ X, there is a unique minimal geodesic from xN to xS

passing through z.
Granted, we define

Y = { γ | γ unit speed minimal geodesic from xN to xS },
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and
dY (γ1, γ2) = sup

0≤t≤π
dX(γ1(t), γ2(t)).

Then one readily verifies that

Ψ : ΣY −→ X

(γ, t) −→ γ(t)

is a homeomorphism.
Thus it remains to prove the claim. First of all, note that the non-branching

condition implies that if z ∈ X with d(xN , z) + d(xS , z) = π, then there is a
unique minimal geodesic from xN to xS passing through z. Now for any z ∈ X
with r = d(xN , z) > 0, let γ(t) be a minimal geodesic from z to xS . Let z′ be
the last point on γ lying inside B(xN , r). Then d(xN , z′) = r.

On the other hand, we must have d(xS , z′) = π − r. If not, one would find
a point on γ which lies outside both B(xN , r) and B(xS , π − r). Since a small
ball always carries positive measure, this would contradict to (8.4.5).

Therefore γ(t) passes through xN if z′ 6= z by the first observation. But this
contradicts to the condition that diam(X) = π.

8.5 Cheeger-Colding

From comparison theorems, various quantities like the volume, the diameter, the
first Betti number, and the first eigenvalue are bounded by the corresponding
quantity of the model. When equality occurs one has the rigid case. In Section 5
we discuss many rigidity and stability results for nonnegative and positive Ricci
curvature. The Ricci curvature lower bound gives very good control on the
fundamental group and the first Betti number of the manifold; this is covered
in Section 6 (see also the very recent survey article by Shen-Sormani [121] for
more elaborate discussion).

Many of the results in this article are covered in the very nice survey articles
[150, 31], where complete proofs are presented. We benefit greatly from these
two articles. Some materials here are adapted directly from [31] and we are very
grateful to Jeff Cheeger for his permission. We also benefit from [59, 32] and
the lecture notes [137] of a topics course I taught at UCSB. I would also like
to thank Jeff Cheeger, Xianzhe Dai, Karsten Grove, Peter Petersen, Christina
Sormani, and William Wylie for reading earlier versions of this article and for
their helpful suggestions.

From comparison theorems, various quantities are bounded by that of the
model. When equality occurs one has the rigid case. In this section we con-
centrate on the rigidity and stability results for nonnegative and positive Ricci
curvature. See Section 4 for rigidity and stability under Gromov-Hausdorff con-
vergence and a general lower bound.

The simplest rigidity is the maximal volume. From the equality of volume
comparison (1.4.6), we deduce that if Mn has RicM ≥ n − 1 and VolM =
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Vol(Sn), then Mn is isometric to Sn. Similarly if Mn has RicM ≥ 0 and
limr→∞

VolB(p,r)
ωnrn

= 1, where p ∈M and ωn is the volume of the unit ball in Rn,
then Mn is isometric to Rn.

From the equality of the area of geodesic ball (the first quantity in (1.4.5))
we get another volume rigidity: volume annulus implies metric annulus. This
is first observed in [34, Section 4], see also [32, Theorem 2.6]. For the case of
nonnegative Ricci curvature, this result says that if RicMn ≥ 0 on the annulus
A(p, r1, r2), and

Vol(∂B(p, r1))
Vol(∂B(p, r2))

=
rn−1
1

r2
n−1

,

then the metric on A(p, r1, r2) is of the form, dr2 + r2g̃, for some smooth Rie-
mannian metric g̃ on ∂B(p, r1).

By Myers’ theorem (see Theorem 1.2.3) when Ricci curvature has a positive
lower bound the diameter is bounded by the diameter of the model. In the
maximal case, using an eigenvalue comparison (see below) Cheng [45] proved
that if Mn has RicM ≥ n−1 and diamM = π, then Mn is isometric to Sn. This
result can also be directly proven using volume comparison [122, 150].

Applying the Bochner formula (1.1.1) to the first eigenfunction Lichnerowicz
showed that if Mn has RicM ≥ n− 1, then the first eigenvalue λ1(M) ≥ n [82].
Obata showed that if λ1(M) then Mn is isometric to Sn [100].

From these rigidity results (the equal case), we naturally ask what happens
in the almost equal case. Many results are known in this case. For volume we
have the following beautiful stability results for positive and nonnegative Ricci
curvatures [35].

Theorem 8.5.1 (Volume Stability, Cheeger-Colding, 1997) There exists
ε(n) > 0 such that
(i) if a complete Riemannian manifold Mn has RicM ≥ n − 1 and VolM ≥
(1− ε(n))Vol(Sn), then Mn is diffeomorphic to Sn;
(ii) if a complete Riemannian manifold Mn has RicM ≥ 0 and for some p ∈M ,
VolB(p, r) ≥ (1− ε(n))ωnrn for all r > 0, then Mn is diffeomorphic to Rn.

This was first proved by Perelman [104] with the weaker conclusion that Mn is
homeomorphic to Sn (contractible resp.).

The analogous stability result is not true for diameter. In fact, there are
manifolds with Ric ≥ n − 1 and diameter arbitrarily close to π which are not
homotopic to sphere [3, 102]. This should be contrasted with the sectional
curvature case, where we have the beautiful Grove-Shiohama diameter sphere
theorem [65], that if Mn has sectional curvature KM ≥ 1 and diamM > π/2
then M is homeomorphic to Sn. Anderson showed that the stability for the
splitting theorem (Theorem 2.1.5) does not hold either [6].

By work of Cheng and Croke [45, 49], if RicM ≥ n− 1 then diamM is close
to π if and only if λ1(M) is close to n. So the naive version of the stability for
λ1(M) does not hold either. However from the work of [46, 35, 109] we have
the following modified version.
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Theorem 8.5.2 (Colding, Cheeger-Colding, Petersen) There exists ε(n) >
0 such that if a complete Riemannian manifold Mn has RicM ≥ n−1, and radius
≥ π − ε(n) or λn+1(M) ≤ n+ ε(n), then Mn is diffeomorphic to Sn.

Here λn+1(M) is the (n+ 1)−th eigenvalue of the Laplacian. The above condi-
tion is natural in the sense that for Sn the radius is π and the first eigenvalue is
n with multiplicity n+ 1. Extending Cheng and Croke’s work Petersen showed
that if RicM ≥ n−1 then the radius is close to π if and only if λn+1(M) is close
to n.

The stability for the first Betti number, conjectured by Gromov, was proved
by Cheeger-Colding in [35]. Namely there exists ε(n) > 0 such that if a com-
plete Riemannian manifold Mn has RicM (diamM )2 ≥ −ε(n) and b1, then M is
diffeomorphic to Tn. The homeomorphic version was first proved in [47].

Although the direct stability for diameter does not hold, Cheeger-Colding’s
breakthrough work [34] gives quantitative generalizations of the diameter rigid-
ity results, see Section ??.

Although the analogous stability results for maximal diameter in the case of
positive/nonnegative Ricci curvature do not hold, Cheeger-Colding’s significant
work [34] provides quantitative generalizations of Cheng’s maximal diameter
theorem, Cheeger-Gromoll’s splitting theorem (Theorem 2.1.5), and the volume
annulus implies metric annulus theorem in terms of Gromov-Hausdroff distance.
These results have important applications in extending rigidity results to the
limit space.

The following version (not assuming E(p) = 0, but without the sharp esti-
mate) is from [31, Theorem 9.1].

Theorem 8.5.3 (Excess Estimate, Abresch-Gromoll, 1990) If Mn has RicM ≥
−(n− 1)δ, and for p ∈ M , s(p) ≥ L and E(p) ≤ ε, then on B(p,R), E ≤ Ψ =
Ψ(δ, L−1, ε|n,R), where Ψ is a nonnegative constant such that for fixed n and
R Ψ goes to zero as δ, ε→ 0 and L→∞.

This can be interpreted as a weak almost splitting theorem. Cheeger-Colding
generalized this result tremendously by proving the following almost splitting
theorem [34], see also [31].

Theorem 8.5.4 (Almost Splitting, Cheeger-Colding, 1996) With the same
assumptions as Theorem 8.5.3, there is a length space X such that for some ball,
B((0, x), 1

4R) ⊂ R×X, with the product metric, we have

dGH

(
B(p,

1
4
R), B((0, x),

1
4
R)
)
≤ Ψ.

Note that X here may not be smooth, and the Hausdorff dimension could be
smaller than n − 1. Examples also show that the ball B(p, 1

4R) may not have
the topology of a product, no matter how small δ, ε, and L−1 are [6, 92].

The proof is quite involved. Using the Laplacian comparison, the maximum
principle, and Theorem 8.5.3 one shows that the distance function bi = d(x, yi)−
d(p, yi) associated to p and yi is uniformly close to bi, the harmonic function
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with same values on ∂B(p,R). From this, together with the lower bound for the
smallest eigenvalue of the Dirichlet problem on B(p,R) (see Theorem 1.6.2) one
shows that ∇bi,∇bi are close in the L2 sense. In particular ∇bi is close to 1 in
the L2 sense. Then applying the Bochner formula to bi multiplied with a cut-
off function with bounded Laplacian one shows that |Hessbi| is small in the L2

sense in a smaller ball. Finally, in the most significant step, by using the segment
inequality (1.6.4), the gradient estimate (2.2.5) and the information established
above one derives a quantitative version of the Pythagorean theorem, showing
that the ball is close in the Gromov-Hausdorff sense to a ball in some product
space; see [34, 31].

An immediate application of the almost splitting theorem is the extension
of the splitting theorem to the limit space.

Theorem 8.5.5 (Cheeger-Colding, 1996) If Mn
i has RicMi

≥ −(n − 1)δi
with δi → 0 as i→∞, converges to Y in the pointed Gromov-Hausdorff sense,
and Y contains a line, then Y is isometric to R×X for some length space X.

Similarly, one has almost rigidity in the presence of finite diameter (with
simpler a proof) [34, Theorem 5.12]. As a special consequence, we have that if
Mn
i has RicMi ≥ (n − 1), diamMi → π as i → ∞, and converges to Y in the

Gromov-Hausdorff sense, then Y is isometric to the spherical metric suspension
of some length space X with diam(X) ≤ π. This is a kind of stability for
diameter.

Along the same lines (with more complicated technical details) Cheeger and
Colding [34] have an almost rigidity version for the volume annulus implies
metric annulus theorem (see Section 5). As a very nice application to the
asymptotic cone, they showed that if Mn has RicM ≥ 0 and has Euclidean
volume growth, then every asymptotic cone of M is a metric cone.

As we have seen, understanding the structure of the limit space of manifolds
with lower Ricci curvature bound often helps in understanding the structure
of the sequence. Cheeger-Colding made significant progress in understand the
regularity and geometric structure of the limit spaces [35, 36, 37]. On the
other hand Menguy constructed examples showing that the limit space could
have infinite topology in an arbitrarily small neighborhood [92]. In [126, 127]
Sormani-Wei showed that the limit space has a universal cover.

Let (Y m, y) (Hausdorff dimension m) be the pointed Gromov-Hausdorff limit
of a sequence of Riemannian manifolds (Mn

i , pi) with RicMi ≥ −(n− 1). Then
m ≤ n and Y m is locally compact. Moreover Cheeger-Colding [35] showed that
if m = dimY < n, then m ≤ n− 1.

The basic notion for studying the infinitesimal structure of the limit space
Y is that of a tangent cone.

Definition 8.5.6 A tangent cone, Yy, at y ∈ (Y m, d) is the pointed Gromov-
Hausdorff limit of a sequence of the rescaled spaces (Y m, rid, y), where ri →∞
as i→∞.

By Gromov’s precompactness theorem (Theorem 4.0.5), every such sequence
has a converging subsequence. So tangent cones exist for all y ∈ Y m, but might
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depend on the choice of convergent sequence. Clearly if Mn is a Riemannian
manifold, then the tangent cone at any point is isometric to Rn. Motivated by
this one defines [35]

Definition 8.5.7 A point, y ∈ Y , is called k-regular if for some k, every tan-
gent cone at y is isometric to Rk. Let Rk denote the set of k-regular points and
R = ∪kRk, the regular set. The singular set, Y \ R, is denoted S.

Let µ be a renormalized limit measure on Y as in (4.0.3). Cheeger-Colding
showed that the regular points have full measure [35].

Theorem 8.5.8 (Cheeger-Colding, 1997) For any renormalized limit mea-
sure µ, µ(S) = 0, in particular, the regular points are dense.

Furthermore, up to a set of measure zero, Y is a countable union of sets,
each of which is bi-Lipschitz equivalent to a subset of Euclidean space [37].

Definition 8.5.9 A metric measure space, (X,µ), is called µ-rectifiable if 0 <
µ(X) < ∞, and there exists N < ∞ and a countable collection of subsets, Aj,
with µ(X \ ∪jAj) = 0, such that each Aj is bi-Lipschitz equivalent to a subset
of Rl(j), for some 1 ≤ l(j) ≤ N and in addtion, on the sets Aj, the measures µ
and and the Hausdorff measure Hl(j) are mutually absolutely continous.

Theorem 8.5.10 (Cheeger-Colding, 2000) Bounded subsets of Y are µ-rectifiable
with respect to any renormalized limit measure µ.

At the singular points, the structure could be very complicated. Follow-
ing a related earlier construction of Perelman [106], Menguy constructed 4-
dimensional examples of (noncollapsed) limit spaces with, RicMn

i
> 1, for which

there exists point so that any neighborhood of the point has infinite second
Betti number [92]. See [35, 91, 93] for examples of collapsed limit space with
interesting properties.

Although we have very good regularity results, not much topological struc-
ture is known for the limit spaces in general. E.g., is Y locally simply connected?
Although this is unknown, using the renormalized limit measure and the exis-
tence of regular points, together with δ-covers, Sormani-Wei [126, 127] showed
that the universal cover of Y exists. Moreover when Y is compact, the fun-
damental group of Mi has a surjective homomorphism onto the group of deck
transforms of Y for all i sufficiently large.

When the sequence has the additional assumption that

Vol(B(pi, 1)) ≥ v > 0, (8.5.1)

the limit space Y is called noncollapsed. This is equivalent to m. In this case,
more structure is known.

Definition 8.5.11 Given ε > 0, the ε-regular set, Rε, consists of those points
y such that for all sufficiently small r,

dGH(B(y, r), B(0, r)) ≤ εr,

where 0 ∈ Rn.
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Clearly R = ∩εRε. Let
◦
Rε denote the interior of Rε.

Theorem 8.5.12 (Cheeger-Colding 1997, 2000) There exists ε(n) > 0 such
that if Y is a noncollapsed limit space of the sequence Mn

i with RicMi
≥ −(n−1),

then for 0 < ε < ε(n), the set
◦
Rε is α(ε)-bi-Hölder equivalent to a smooth con-

nected Riemannian manifold, where α(ε)→ 1 as ε→ 0. Moreover,

dim(Y \
◦
Rε) ≤ n− 2. (8.5.2)

In addition, for all y ∈ Y , every tangent cone Yy at y is a metric cone and the
isometry group of Y is a Lie group.

This is proved in [35, 36].
If, in addition, Ricci curvature is bounded from two sides, we have stronger

regularity [2].

Theorem 8.5.13 (Anderson, 1990) There exists ε(n) > 0 such that if Y is
a noncollapsed limit space of the sequence Mn

i with |RicMi | ≤ n − 1, then for
0 < ε < ε(n), Rε = R. In particular the singular set is closed. Moreover, R is
a C1,α Riemannian manifold, for all α < 1. If the metrics on Mn

i are Einstein,
RicMn

i
= (n− 1)Hgi, then the metric on R is actually C∞.

Many more regularity results are obtained when the sequence is Einstein,
Kähler, has special holonomy, or has bounded Lp-norm of the full curvature
tensor, see [7, 33, 38, 41], especially [32] which gives an excellent survey in
this direction. See the recent work [42] for Einstein 4-manifolds with possible
collapsing.
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