240B HW 5 Winter 2013

Due: Wednesday, 03/13.

1. Let (M, g) be Riemannian manifold and ∇ its Levi-Civita connection. Let $p \in M$. Fix an orthonormal basis e_{1}, \cdots, e_{n} of $T_{p} M$. Recall that $\exp _{p}$ is a diffeomorphism from $B_{r}(0) \subset T_{p} M$ onto $B_{r}(p) \subset M$ for $r>0$ sufficiently small. Fix such an r. Now for each e_{i}, define a vector field E_{i} on $B_{r}(p)$ by $\left.E_{i}\right|_{\exp _{p} v}=$ the parallel transport of e_{i} along the geodesic $\gamma(t)=\exp _{p}(t v)$. Show that E_{1}, \cdots, E_{n} is an orthonormal basis of $T_{q} M$ for $q \in B_{r}(p)$ and $\left(\nabla_{X} E_{i}\right)(p)=0$ for all vector fields X. In particular, $\left(\nabla_{E_{i}} E_{j}\right)(p)=0$. Such a (nice) basis is called a geodesic frame at p.
2. Continue from 1. Show that for any smooth function f,

$$
(\nabla f)(p)=\sum_{i=1}^{n}\left(E_{i} f\right)(p) E_{i}(p), \quad(\Delta f)(p)=\sum_{i=1}^{n}\left(E_{i}\left(E_{i} f\right)\right)(p)
$$

Deduce that for any smooth function g,

$$
\Delta(f g)=f \Delta g+g \Delta f+2\langle\nabla f, \nabla g\rangle .
$$

3. do Carmo p106: 7.
4. do Carmo p119: 1 or p152: 2.
