240B HW $2 \quad$ Winter 2013

Due: Friday, 1/25.

1. do Carmo, p46, 7.
2. do Carmo, p56, 2 (assume that the connection is affine, instead of Riemannian).
3. do Carmo, p57, 3 (again, deal with affine connections only).
4. Let $\left(M^{n}, g\right)$ be a Riemannian manifold and f a smooth function on M. Define the gradient ∇f of f to be the vector field such that

$$
\langle\nabla f, X\rangle=X f(=d f(X))
$$

for any vector field X on M. Let $x=\left(x_{1}, \cdots, x_{n}\right)$ be a local coordinate system on M and $g=g_{i j} d x_{i} d x_{j}$. Define $g^{i j}$ to be the entries of the inverse of the matrix $\left(g_{i j}\right)$:

$$
\left(g^{i j}\right)=\left(g_{i j}\right)^{-1} .
$$

Show that

$$
\nabla f=\left(g^{i j} \frac{\partial f}{\partial x_{i}}\right) \frac{\partial}{\partial x_{j}} .
$$

Hence it agrees with the usual gradient in the Euclidean space.

