
(4.6) Clearly the patch σ covers the graph of f . Since f is smooth, σ is smooth.
We then calculate σu × σv = (−∂f

∂u ,−∂f
∂v , 1), which is never zero, and so σ is in

fact regular.

(4.7) Recall that the maps σx
± : U → S2 are defined by

σx
±(u, v) = (±

√
1− u2 − v2, u, v),

where U = {(u, v) : u2 + v2 < 1, and similar definitions are given for σy
± and σz

±.
We will show that σx

+ is regular, as the proof for the other coordinate patches is
identical. We can compute

(σx
+)u × (σx

+)v =
(

1,
u√

1− u2 − v2
,

v√
1− u2 − v2

)
,

which is certainly never zero. Since we restrict to u2 + v2 < 1, σx
+ is smooth, and

so is in fact regular.
To find the transition maps, first note that the images of σx

+ and σx
− do not

overlap, so there is no transition map between those two charts. Similarly there
are no transition maps between σy

+ and σy
− and between σz

+ and σz
−. Now, the

transition map from σx
+ to σy

± is the function Φ± defined by Φ± = (σx
+)−1 ◦ σy

±.
This tells us that the domain of Φ± must be the set U ′ = {(u, v) ∈ U : u > 0},
as these are the values for which σy

± gives a positive x value, and hence lie in the
image of σx

+. Denoting (ũ, ṽ) = Φ±(u, v), this means that σx
+(ũ, ṽ) = σy

±(u, v).
Hence we see that ũ = ±

√
1− u2 − v2 and ṽ = v. As u2 + v2 < 1, the formulas for

ũ and ṽ, and hence Φ±, are smooth.
Similarly, one could compute the other transition functions as:

σx
− → σy

± : Φ±(u, v) = (±
√

1− u2 − v2, v), u < 0

σx
+ → σz

± : Φ±(u, v) = (v,±
√

1− u2 − v2), u > 0

σx
− → σz

± : Φ±(u, v) = (v,±
√

1− u2 − v2), u < 0

σy
+ → σz

± : Φ±(u, v) = (u,±
√

1− u2 − v2), v > 0

σy
− → σz

± : Φ±(u, v) = (u,±
√

1− u2 − v2), v < 0.

To get the final maps, just take the inverse of the appropriate transition map above.

(4.8) Restrict to the region R = {(r, θ) ∈ (0,∞) × R} so that σ is injective and
defined on an open region (this is because r2 is not injective in general). It is easy
to then check that σ maps onto the part of the hyperbolic cylinder with z > 0.
Another possible parametrization we could have used is σ̃(u, v) = (u, v, u2 − v2)
defined on the region {(u, v) : u2−v2 > 0}, coming from the setup from Exercise 4.6.
Setting r =

√
u2 − v2 and θ = cosh−1( u√

u2−v2 ), and noting that since u2 − v2 > 0,
the expressions for r and θ are well-defined and in fact smooth in u and v, we see
that σ̃ is a reparametrization of σ.

To parametrize the region z < 0, we can use the two analogous parametrizations

σ(r, θ) = (r sinh θ, r cosh θ,−r2)

σ̃(u, v) = (u, v, u2 − v2)



on the regions {(r, θ) ∈ (−∞, 0)×R} and {(u, v) : u2−v2 < 0}. The reparametriza-
tion is then given by r =

√
v2 − u2 and θ = cosh−1( v√

v2−u2 ).

(4.12) Let Σ be a smooth surface and let σ be a regular surface patch. Let a
be a vector and A be an invertible linear transformation, and define σ1 = σ + a,
σ2 = A ◦σ. Since translations and linear transformations are both smooth, σi are
both smooth. We then calculate (σ1)u = σu, (σ1)v = σv, (σ2)u = A ◦ σu, and
(σ2)v = A ◦σv. As A is invertible, these shows that σ1 and σ2 are regular. Doing
this for the atlas of Σ then shows us that we get an atlas for the surfaces Σ1 and
Σ2 coming from translation by a and the linear transformation A, respectively.

(4.13) (i) −2x + 2y + z = 0.
(ii) −2x− 2y + z = 0.

(4.14) Each point of the propellor will sweep out a helix, and we’ve already seen
that a helix with radius v is parametrized by u (→ (v cos u, v sinu, λu) for some con-
stant λ. Hence letting v vary, we get the given parametrization of the helicoid. Next,
we calculate the standard unit normal of σ as N = (λ2+v2)−1/2(−λ sinu, λ cos u, v).
The angle this makes with the z-axis is θ, where θ is given by cos θ = v

(λ2+v2)1/2 .
Hence cot θ = ± v

λ . But the distance from the z-axis is given by v, so cot θ is
proportional to the distance from the z-axis.

(4.15) Let σ̃(ũ, ṽ) = σ(u, v) be a reparametrization of σ. Then we calculate

σ̃eu =
∂u

∂ũ
σu +

∂v

∂ũ
σv

σ̃ev =
∂u

∂ṽ
σu +

∂v

∂ṽ
σv.

Thus σ̃eu and σ̃ev are in the span of σu and σv, and so too are linear combinations
of σ̃eu and σ̃ev.

(4.16) Let γ(t) = (x(t), y(t), z(t)) be a curve in S. Then f(γ(t)) = 0, and differen-
tiating, we see that

0 = ∇f · γ′.

Hence ∇f is perpendicular to the tangent of γ. Since the tangent space of S is the
collection of all tangent vectors to curves, this shows that ∇f is perpendicular to
every tangent plane of S.

Now, note that since ∇f is never zero, we can define N = ‖∇f‖−1∇f , which
is a smooth choice of a normal vector over the whole of S. Thus we need to show
that this implies that S is orientable (the book states this as a fact, and leaves it
to the reader to prove, so we give the proof). To see that this is the case, let A be
the maximal atlas of S, and let A′ ⊂ A consist of those surface charts which have
standard unit normal in the direction of N. We need to show this is still an atlas,
which will follow so long as we can show it covers S. But this is obvious, since if
σ ∈ A, then −σ ∈ A, where −σ(u, v) = σ(−u, v) is the same chart as σ except
with the opposite orientation.



(4.18) As this is a surface of revolution, we use Example 4.13 to write down an
atlas consisting of two surface patchs:

σ(u, v) = (cosh v cos u, cosh v sinu, v) for u ∈ R and v ∈ (−π, π)
σ(u, v) = (cosh v cos u, cosh v sinu, v) for u ∈ R and v ∈ (0, 2π)

As any angle in [0, 2π] lies in one of the surface patches, these cover the catenoid,
and so we indeed have an atlas.

(4.19) One can check that ‖σ‖ = 1, showing that σ parametrizes part of the unit
sphere. We then note that σ is also the parametrization of the surface of revolution
obtained from rotating the curve t (→ (sech t, 0, tanh t) about the z-axis. This curve
is regular, and since sech > 0, the curve never touches the z-axis. Thus, by Example
4.13, σ is a regular surface patch.

Parallels are then the curves in the surface which come from rotating a fixed point
about the z-axis; that is, by setting v to be constant. Meridians are the curves in
the surface which are the images of the original curve after rotating through a fixed
angle; that is, by setting u to be constant.

(5.1) Let g denote the first fundamental form. Then we have
(i) g = 2 cosh2 u du2+4 sinhu coshu sinh v cosh v dudv+sinh2 u dv2. This surface

is a quadric cone (see Proposition 4.6).
(ii) g = (2+4u2)du2+8uv dudv+(2+4v2)dv2. This is a paraboloid of revolution

(see Example 4.13).
(iii) g = (cosh2 u+sinh2 u)du2 + dv2. This is a hyperbolic cylinder (see Exercise

4.8).
(iv) g = (1+4u2)du2+8uv dudv+(1+4v2)dv2. This is a paraboloid of revolution.


