(4.6) Clearly the patch $\boldsymbol{\sigma}$ covers the graph of f. Since f is smooth, $\boldsymbol{\sigma}$ is smooth. We then calculate $\boldsymbol{\sigma}_{u} \times \boldsymbol{\sigma}_{v}=\left(-\frac{\partial f}{\partial u},-\frac{\partial f}{\partial v}, 1\right)$, which is never zero, and so $\boldsymbol{\sigma}$ is in fact regular.
(4.7) Recall that the maps $\sigma_{ \pm}^{x}: U \rightarrow S^{2}$ are defined by

$$
\boldsymbol{\sigma}_{ \pm}^{x}(u, v)=\left(\pm \sqrt{1-u^{2}-v^{2}}, u, v\right)
$$

where $U=\left\{(u, v): u^{2}+v^{2}<1\right.$, and similar definitions are given for $\boldsymbol{\sigma}_{ \pm}^{y}$ and $\boldsymbol{\sigma}_{ \pm}^{z}$. We will show that $\boldsymbol{\sigma}_{+}^{x}$ is regular, as the proof for the other coordinate patches is identical. We can compute

$$
\left(\boldsymbol{\sigma}_{+}^{x}\right)_{u} \times\left(\boldsymbol{\sigma}_{+}^{x}\right)_{v}=\left(1, \frac{u}{\sqrt{1-u^{2}-v^{2}}}, \frac{v}{\sqrt{1-u^{2}-v^{2}}}\right),
$$

which is certainly never zero. Since we restrict to $u^{2}+v^{2}<1, \boldsymbol{\sigma}_{+}^{x}$ is smooth, and so is in fact regular.

To find the transition maps, first note that the images of $\boldsymbol{\sigma}_{+}^{x}$ and $\boldsymbol{\sigma}_{-}^{x}$ do not overlap, so there is no transition map between those two charts. Similarly there are no transition maps between $\boldsymbol{\sigma}_{+}^{y}$ and $\boldsymbol{\sigma}_{-}^{y}$ and between $\boldsymbol{\sigma}_{+}^{z}$ and $\boldsymbol{\sigma}_{-}^{z}$. Now, the transition map from $\boldsymbol{\sigma}_{+}^{x}$ to $\boldsymbol{\sigma}_{ \pm}^{y}$ is the function $\Phi_{ \pm}$defined by $\Phi_{ \pm}=\left(\boldsymbol{\sigma}_{+}^{x}\right)^{-1} \circ \boldsymbol{\sigma}_{ \pm}^{y}$. This tells us that the domain of $\Phi_{ \pm}$must be the set $U^{\prime}=\{(u, v) \in U: u>0\}$, as these are the values for which $\boldsymbol{\sigma}_{ \pm}^{y}$ gives a positive x value, and hence lie in the image of $\boldsymbol{\sigma}_{+}^{x}$. Denoting $(\widetilde{u}, \widetilde{v})=\Phi_{ \pm}(u, v)$, this means that $\boldsymbol{\sigma}_{+}^{x}(\widetilde{u}, \widetilde{v})=\boldsymbol{\sigma}_{ \pm}^{y}(u, v)$. Hence we see that $\widetilde{u}= \pm \sqrt{1-u^{2}-v^{2}}$ and $\widetilde{v}=v$. As $u^{2}+v^{2}<1$, the formulas for \widetilde{u} and \widetilde{v}, and hence $\Phi_{ \pm}$, are smooth.

Similarly, one could compute the other transition functions as:

$$
\begin{aligned}
& \boldsymbol{\sigma}_{-}^{x} \rightarrow \boldsymbol{\sigma}_{ \pm}^{y}: \Phi_{ \pm}(u, v)=\left(\pm \sqrt{1-u^{2}-v^{2}}, v\right), u<0 \\
& \boldsymbol{\sigma}_{+}^{x} \rightarrow \boldsymbol{\sigma}_{ \pm}^{z}: \Phi_{ \pm}(u, v)=\left(v, \pm \sqrt{1-u^{2}-v^{2}}\right), u>0 \\
& \boldsymbol{\sigma}_{-}^{x} \rightarrow \boldsymbol{\sigma}_{ \pm}^{z}: \Phi_{ \pm}(u, v)=\left(v, \pm \sqrt{1-u^{2}-v^{2}}\right), u<0 \\
& \boldsymbol{\sigma}_{+}^{y} \rightarrow \boldsymbol{\sigma}_{ \pm}^{z}: \Phi_{ \pm}(u, v)=\left(u, \pm \sqrt{1-u^{2}-v^{2}}\right), v>0 \\
& \boldsymbol{\sigma}_{-}^{y} \rightarrow \boldsymbol{\sigma}_{ \pm}^{z}: \Phi_{ \pm}(u, v)=\left(u, \pm \sqrt{1-u^{2}-v^{2}}\right), v<0 .
\end{aligned}
$$

To get the final maps, just take the inverse of the appropriate transition map above.
(4.8) Restrict to the region $R=\{(r, \theta) \in(0, \infty) \times \mathbb{R}\}$ so that $\boldsymbol{\sigma}$ is injective and defined on an open region (this is because r^{2} is not injective in general). It is easy to then check that $\boldsymbol{\sigma}$ maps onto the part of the hyperbolic cylinder with $z>0$. Another possible parametrization we could have used is $\widetilde{\boldsymbol{\sigma}}(u, v)=\left(u, v, u^{2}-v^{2}\right)$ defined on the region $\left\{(u, v): u^{2}-v^{2}>0\right\}$, coming from the setup from Exercise 4.6. Setting $r=\sqrt{u^{2}-v^{2}}$ and $\theta=\cosh ^{-1}\left(\frac{u}{\sqrt{u^{2}-v^{2}}}\right)$, and noting that since $u^{2}-v^{2}>0$, the expressions for r and θ are well-defined and in fact smooth in u and v, we see that $\tilde{\boldsymbol{\sigma}}$ is a reparametrization of $\boldsymbol{\sigma}$.

To parametrize the region $z<0$, we can use the two analogous parametrizations

$$
\begin{aligned}
\boldsymbol{\sigma}(r, \theta) & =\left(r \sinh \theta, r \cosh \theta,-r^{2}\right) \\
\widetilde{\boldsymbol{\sigma}}(u, v) & =\left(u, v, u^{2}-v^{2}\right)
\end{aligned}
$$

on the regions $\{(r, \theta) \in(-\infty, 0) \times \mathbb{R}\}$ and $\left\{(u, v): u^{2}-v^{2}<0\right\}$. The reparametrization is then given by $r=\sqrt{v^{2}-u^{2}}$ and $\theta=\cosh ^{-1}\left(\frac{v}{\sqrt{v^{2}-u^{2}}}\right)$.
(4.12) Let Σ be a smooth surface and let $\boldsymbol{\sigma}$ be a regular surface patch. Let a be a vector and A be an invertible linear transformation, and define $\boldsymbol{\sigma}_{1}=\boldsymbol{\sigma}+\mathbf{a}$, $\boldsymbol{\sigma}_{2}=A \circ \boldsymbol{\sigma}$. Since translations and linear transformations are both smooth, $\boldsymbol{\sigma}_{i}$ are both smooth. We then calculate $\left(\boldsymbol{\sigma}_{1}\right)_{u}=\boldsymbol{\sigma}_{u},\left(\boldsymbol{\sigma}_{1}\right)_{v}=\boldsymbol{\sigma}_{v},\left(\boldsymbol{\sigma}_{2}\right)_{u}=A \circ \boldsymbol{\sigma}_{u}$, and $\left(\boldsymbol{\sigma}_{2}\right)_{v}=A \circ \boldsymbol{\sigma}_{v}$. As A is invertible, these shows that $\boldsymbol{\sigma}_{1}$ and $\boldsymbol{\sigma}_{2}$ are regular. Doing this for the atlas of Σ then shows us that we get an atlas for the surfaces Σ_{1} and Σ_{2} coming from translation by a and the linear transformation A, respectively.
(4.13) (i) $-2 x+2 y+z=0$.
(ii) $-2 x-2 y+z=0$.
(4.14) Each point of the propellor will sweep out a helix, and we've already seen that a helix with radius v is parametrized by $u \mapsto(v \cos u, v \sin u, \lambda u)$ for some constant λ. Hence letting v vary, we get the given parametrization of the helicoid. Next, we calculate the standard unit normal of $\boldsymbol{\sigma}$ as $\mathbf{N}=\left(\lambda^{2}+v^{2}\right)^{-1 / 2}(-\lambda \sin u, \lambda \cos u, v)$. The angle this makes with the z-axis is θ, where θ is given by $\cos \theta=\frac{v}{\left(\lambda^{2}+v^{2}\right)^{1 / 2}}$. Hence $\cot \theta= \pm \frac{v}{\lambda}$. But the distance from the z-axis is given by v, so $\cot \theta$ is proportional to the distance from the z-axis.
(4.15) Let $\widetilde{\boldsymbol{\sigma}}(\widetilde{u}, \widetilde{v})=\boldsymbol{\sigma}(u, v)$ be a reparametrization of $\boldsymbol{\sigma}$. Then we calculate

$$
\begin{aligned}
& \tilde{\boldsymbol{\sigma}}_{\widetilde{u}}=\frac{\partial u}{\partial \widetilde{u}} \boldsymbol{\sigma}_{u}+\frac{\partial v}{\partial \widetilde{u}} \boldsymbol{\sigma}_{v} \\
& \widetilde{\boldsymbol{\sigma}}_{\widetilde{v}}=\frac{\partial u}{\partial \widetilde{v}} \boldsymbol{\sigma}_{u}+\frac{\partial v}{\partial \widetilde{v}} \boldsymbol{\sigma}_{v} .
\end{aligned}
$$

Thus $\widetilde{\boldsymbol{\sigma}}_{\widetilde{u}}$ and $\widetilde{\boldsymbol{\sigma}}_{\widetilde{v}}$ are in the span of $\boldsymbol{\sigma}_{u}$ and $\boldsymbol{\sigma}_{v}$, and so too are linear combinations of $\widetilde{\boldsymbol{\sigma}}_{\widetilde{u}}$ and $\widetilde{\boldsymbol{\sigma}}_{\widetilde{v}}$.
(4.16) Let $\gamma(t)=(x(t), y(t), z(t))$ be a curve in S. Then $f(\gamma(t))=0$, and differentiating, we see that

$$
0=\nabla f \cdot \gamma^{\prime}
$$

Hence ∇f is perpendicular to the tangent of γ. Since the tangent space of S is the collection of all tangent vectors to curves, this shows that ∇f is perpendicular to every tangent plane of S.

Now, note that since ∇f is never zero, we can define $\mathbf{N}=\|\nabla f\|^{-1} \nabla f$, which is a smooth choice of a normal vector over the whole of S. Thus we need to show that this implies that S is orientable (the book states this as a fact, and leaves it to the reader to prove, so we give the proof). To see that this is the case, let \mathcal{A} be the maximal atlas of S, and let $\mathcal{A}^{\prime} \subset \mathcal{A}$ consist of those surface charts which have standard unit normal in the direction of \mathbf{N}. We need to show this is still an atlas, which will follow so long as we can show it covers S. But this is obvious, since if $\boldsymbol{\sigma} \in \mathcal{A}$, then $-\boldsymbol{\sigma} \in \mathcal{A}$, where $-\boldsymbol{\sigma}(u, v)=\boldsymbol{\sigma}(-u, v)$ is the same chart as $\boldsymbol{\sigma}$ except with the opposite orientation.
(4.18) As this is a surface of revolution, we use Example 4.13 to write down an atlas consisting of two surface patchs:

$$
\begin{aligned}
& \boldsymbol{\sigma}(u, v)=(\cosh v \cos u, \cosh v \sin u, v) \text { for } u \in \mathbb{R} \text { and } v \in(-\pi, \pi) \\
& \boldsymbol{\sigma}(u, v)=(\cosh v \cos u, \cosh v \sin u, v) \text { for } u \in \mathbb{R} \text { and } v \in(0,2 \pi)
\end{aligned}
$$

As any angle in $[0,2 \pi]$ lies in one of the surface patches, these cover the catenoid, and so we indeed have an atlas.
(4.19) One can check that $\|\boldsymbol{\sigma}\|=1$, showing that $\boldsymbol{\sigma}$ parametrizes part of the unit sphere. We then note that $\boldsymbol{\sigma}$ is also the parametrization of the surface of revolution obtained from rotating the curve $t \mapsto(\operatorname{sech} t, 0, \tanh t)$ about the z-axis. This curve is regular, and since sech >0, the curve never touches the z-axis. Thus, by Example $4.13, \sigma$ is a regular surface patch.

Parallels are then the curves in the surface which come from rotating a fixed point about the z-axis; that is, by setting v to be constant. Meridians are the curves in the surface which are the images of the original curve after rotating through a fixed angle; that is, by setting u to be constant.
(5.1) Let g denote the first fundamental form. Then we have
(i) $g=2 \cosh ^{2} u d u^{2}+4 \sinh u \cosh u \sinh v \cosh v d u d v+\sinh ^{2} u d v^{2}$. This surface is a quadric cone (see Proposition 4.6).
(ii) $g=\left(2+4 u^{2}\right) d u^{2}+8 u v d u d v+\left(2+4 v^{2}\right) d v^{2}$. This is a paraboloid of revolution (see Example 4.13).
(iii) $g=\left(\cosh ^{2} u+\sinh ^{2} u\right) d u^{2}+d v^{2}$. This is a hyperbolic cylinder (see Exercise 4.8).
(iv) $g=\left(1+4 u^{2}\right) d u^{2}+8 u v d u d v+\left(1+4 v^{2}\right) d v^{2}$. This is a paraboloid of revolution.

