(4.6) Clearly the patch $\boldsymbol{\sigma}$ covers the graph of f. Since f is smooth, $\boldsymbol{\sigma}$ is smooth. We then calculate $\boldsymbol{\sigma}_u \times \boldsymbol{\sigma}_v = (-\frac{\partial f}{\partial u}, -\frac{\partial f}{\partial v}, 1)$, which is never zero, and so $\boldsymbol{\sigma}$ is in fact regular.

(4.7) Recall that the maps $\sigma_{\pm}^x \colon U \to S^2$ are defined by

$$\sigma_{\pm}^{x}(u,v) = (\pm \sqrt{1 - u^2 - v^2}, u, v)$$

where $U = \{(u, v) : u^2 + v^2 < 1$, and similar definitions are given for σ_{\pm}^y and σ_{\pm}^z . We will show that σ_{\pm}^x is regular, as the proof for the other coordinate patches is identical. We can compute

$$(\boldsymbol{\sigma}_{+}^{x})_{u} \times (\boldsymbol{\sigma}_{+}^{x})_{v} = \left(1, \frac{u}{\sqrt{1 - u^{2} - v^{2}}}, \frac{v}{\sqrt{1 - u^{2} - v^{2}}}\right)$$

which is certainly never zero. Since we restrict to $u^2 + v^2 < 1$, σ_+^x is smooth, and so is in fact regular.

To find the transition maps, first note that the images of σ_{\pm}^x and σ_{\pm}^x do not overlap, so there is no transition map between those two charts. Similarly there are no transition maps between σ_{\pm}^y and σ_{\pm}^y and between σ_{\pm}^z and σ_{\pm}^z . Now, the transition map from σ_{\pm}^x to σ_{\pm}^y is the function Φ_{\pm} defined by $\Phi_{\pm} = (\sigma_{\pm}^x)^{-1} \circ \sigma_{\pm}^y$. This tells us that the domain of Φ_{\pm} must be the set $U' = \{(u, v) \in U : u > 0\}$, as these are the values for which σ_{\pm}^y gives a positive x value, and hence lie in the image of σ_{\pm}^x . Denoting $(\tilde{u}, \tilde{v}) = \Phi_{\pm}(u, v)$, this means that $\sigma_{\pm}^x(\tilde{u}, \tilde{v}) = \sigma_{\pm}^y(u, v)$. Hence we see that $\tilde{u} = \pm \sqrt{1 - u^2 - v^2}$ and $\tilde{v} = v$. As $u^2 + v^2 < 1$, the formulas for \tilde{u} and \tilde{v} , and hence Φ_{\pm} , are smooth.

Similarly, one could compute the other transition functions as:

$$\begin{split} \sigma_{-}^{x} &\to \sigma_{\pm}^{y} : \Phi_{\pm}(u,v) = (\pm\sqrt{1-u^{2}-v^{2}},v), u < 0 \\ \sigma_{+}^{x} &\to \sigma_{\pm}^{z} : \Phi_{\pm}(u,v) = (v,\pm\sqrt{1-u^{2}-v^{2}}), u > 0 \\ \sigma_{-}^{x} &\to \sigma_{\pm}^{z} : \Phi_{\pm}(u,v) = (v,\pm\sqrt{1-u^{2}-v^{2}}), u < 0 \\ \sigma_{+}^{y} &\to \sigma_{\pm}^{z} : \Phi_{\pm}(u,v) = (u,\pm\sqrt{1-u^{2}-v^{2}}), v > 0 \\ \sigma_{-}^{y} &\to \sigma_{\pm}^{z} : \Phi_{\pm}(u,v) = (u,\pm\sqrt{1-u^{2}-v^{2}}), v < 0. \end{split}$$

To get the final maps, just take the inverse of the appropriate transition map above.

(4.8) Restrict to the region $R = \{(r, \theta) \in (0, \infty) \times \mathbb{R}\}$ so that σ is injective and defined on an open region (this is because r^2 is not injective in general). It is easy to then check that σ maps onto the part of the hyperbolic cylinder with z > 0. Another possible parametrization we could have used is $\tilde{\sigma}(u, v) = (u, v, u^2 - v^2)$ defined on the region $\{(u, v): u^2 - v^2 > 0\}$, coming from the setup from Exercise 4.6. Setting $r = \sqrt{u^2 - v^2}$ and $\theta = \cosh^{-1}(\frac{u}{\sqrt{u^2 - v^2}})$, and noting that since $u^2 - v^2 > 0$, the expressions for r and θ are well-defined and in fact smooth in u and v, we see that $\tilde{\sigma}$ is a reparametrization of σ .

To parametrize the region z < 0, we can use the two analogous parametrizations

$$\begin{split} \boldsymbol{\sigma}(r,\theta) &= (r \sinh \theta, r \cosh \theta, -r^2) \\ \boldsymbol{\widetilde{\sigma}}(u,v) &= (u,v,u^2-v^2) \end{split}$$

on the regions $\{(r, \theta) \in (-\infty, 0) \times \mathbb{R}\}$ and $\{(u, v) \colon u^2 - v^2 < 0\}$. The reparametrization is then given by $r = \sqrt{v^2 - u^2}$ and $\theta = \cosh^{-1}(\frac{v}{\sqrt{v^2 - u^2}})$.

(4.12) Let Σ be a smooth surface and let $\boldsymbol{\sigma}$ be a regular surface patch. Let **a** be a vector and A be an invertible linear transformation, and define $\boldsymbol{\sigma}_1 = \boldsymbol{\sigma} + \mathbf{a}$, $\boldsymbol{\sigma}_2 = A \circ \boldsymbol{\sigma}$. Since translations and linear transformations are both smooth, $\boldsymbol{\sigma}_i$ are both smooth. We then calculate $(\boldsymbol{\sigma}_1)_u = \boldsymbol{\sigma}_u, (\boldsymbol{\sigma}_1)_v = \boldsymbol{\sigma}_v, (\boldsymbol{\sigma}_2)_u = A \circ \boldsymbol{\sigma}_u$, and $(\boldsymbol{\sigma}_2)_v = A \circ \boldsymbol{\sigma}_v$. As A is invertible, these shows that $\boldsymbol{\sigma}_1$ and $\boldsymbol{\sigma}_2$ are regular. Doing this for the atlas of Σ then shows us that we get an atlas for the surfaces Σ_1 and Σ_2 coming from translation by **a** and the linear transformation A, respectively.

(4.13) (i) -2x + 2y + z = 0. (ii) -2x - 2y + z = 0.

(4.14) Each point of the propellor will sweep out a helix, and we've already seen that a helix with radius v is parametrized by $u \mapsto (v \cos u, v \sin u, \lambda u)$ for some constant λ . Hence letting v vary, we get the given parametrization of the helicoid. Next, we calculate the standard unit normal of $\boldsymbol{\sigma}$ as $\mathbf{N} = (\lambda^2 + v^2)^{-1/2} (-\lambda \sin u, \lambda \cos u, v)$. The angle this makes with the z-axis is θ , where θ is given by $\cos \theta = \frac{v}{(\lambda^2 + v^2)^{1/2}}$. Hence $\cot \theta = \pm \frac{v}{\lambda}$. But the distance from the z-axis is given by v, so $\cot \theta$ is proportional to the distance from the z-axis.

(4.15) Let $\tilde{\sigma}(\tilde{u}, \tilde{v}) = \sigma(u, v)$ be a reparametrization of σ . Then we calculate

$$\widetilde{\boldsymbol{\sigma}}_{\widetilde{u}} = rac{\partial u}{\partial \widetilde{u}} \boldsymbol{\sigma}_u + rac{\partial v}{\partial \widetilde{u}} \boldsymbol{\sigma}_v \ \widetilde{\boldsymbol{\sigma}}_{\widetilde{v}} = rac{\partial u}{\partial \widetilde{v}} \boldsymbol{\sigma}_u + rac{\partial v}{\partial \widetilde{v}} \boldsymbol{\sigma}_v.$$

Thus $\tilde{\sigma}_{\tilde{u}}$ and $\tilde{\sigma}_{\tilde{v}}$ are in the span of σ_u and σ_v , and so too are linear combinations of $\tilde{\sigma}_{\tilde{u}}$ and $\tilde{\sigma}_{\tilde{v}}$.

(4.16) Let $\gamma(t) = (x(t), y(t), z(t))$ be a curve in S. Then $f(\gamma(t)) = 0$, and differentiating, we see that

$$0 = \nabla f \cdot \gamma'.$$

Hence ∇f is perpendicular to the tangent of γ . Since the tangent space of S is the collection of all tangent vectors to curves, this shows that ∇f is perpendicular to every tangent plane of S.

Now, note that since ∇f is never zero, we can define $\mathbf{N} = \|\nabla f\|^{-1} \nabla f$, which is a smooth choice of a normal vector over the whole of S. Thus we need to show that this implies that S is orientable (the book states this as a fact, and leaves it to the reader to prove, so we give the proof). To see that this is the case, let \mathcal{A} be the maximal atlas of S, and let $\mathcal{A}' \subset \mathcal{A}$ consist of those surface charts which have standard unit normal in the direction of \mathbf{N} . We need to show this is still an atlas, which will follow so long as we can show it covers S. But this is obvious, since if $\sigma \in \mathcal{A}$, then $-\sigma \in \mathcal{A}$, where $-\sigma(u, v) = \sigma(-u, v)$ is the same chart as σ except with the opposite orientation. (4.18) As this is a surface of revolution, we use Example 4.13 to write down an atlas consisting of two surface patchs:

$$\boldsymbol{\sigma}(u,v) = (\cosh v \cos u, \cosh v \sin u, v) \text{ for } u \in \mathbb{R} \text{ and } v \in (-\pi,\pi)$$
$$\boldsymbol{\sigma}(u,v) = (\cosh v \cos u, \cosh v \sin u, v) \text{ for } u \in \mathbb{R} \text{ and } v \in (0,2\pi)$$

As any angle in $[0, 2\pi]$ lies in one of the surface patches, these cover the catenoid, and so we indeed have an atlas.

(4.19) One can check that $\|\boldsymbol{\sigma}\| = 1$, showing that $\boldsymbol{\sigma}$ parametrizes part of the unit sphere. We then note that $\boldsymbol{\sigma}$ is also the parametrization of the surface of revolution obtained from rotating the curve $t \mapsto (\operatorname{sech} t, 0, \tanh t)$ about the z-axis. This curve is regular, and since sech > 0, the curve never touches the z-axis. Thus, by Example 4.13, $\boldsymbol{\sigma}$ is a regular surface patch.

Parallels are then the curves in the surface which come from rotating a fixed point about the z-axis; that is, by setting v to be constant. Meridians are the curves in the surface which are the images of the original curve after rotating through a fixed angle; that is, by setting u to be constant.

(5.1) Let g denote the first fundamental form. Then we have

(i) $g = 2 \cosh^2 u \, du^2 + 4 \sinh u \cosh u \sinh v \cosh v \, du dv + \sinh^2 u \, dv^2$. This surface is a quadric cone (see Proposition 4.6).

(ii) $g = (2+4u^2)du^2 + 8uv \ dudv + (2+4v^2)dv^2$. This is a paraboloid of revolution (see Example 4.13).

(iii) $g = (\cosh^2 u + \sinh^2 u)du^2 + dv^2$. This is a hyperbolic cylinder (see Exercise 4.8).

(iv) $g = (1+4u^2)du^2 + 8uv \, dudv + (1+4v^2)dv^2$. This is a paraboloid of revolution.