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2.7 This surface is the collection of points that are a distance a from the curve γ.
By the Frenet-Serret equations

σs = t + a((−κt + τb) cos θ − τn sin θ),

= (1− aκ cos θ)t− aτ sin θn + aτ cos θb.

The theta derivative can be computed directly

σθ = −a sin θn + a cos θb.

Thus

σs × σθ = −a cos θ(1− aκ cos θ)n− a sin θ(1− aκ cos θ)b,

which is only zero if aκ cos θ = 1. This will never happen if κ < a−1 as this implies
aκ < 1 and thus aκ cos θ < 1.

4.3 First, using the chain rule, note that

d

dt

∣∣∣∣
t=t0

F (γ(t)) = ∇F (p) · γ̇(t0),

but since γ is contained in the surface S, γ̇ is tangent to S. Thus

∇F · γ̇ = ∇SF · γ̇ + (∇F ·N)(γ̇ ·N) = ∇SF · γ̇,

where N is some unit vector normal to S.
If ∇SF = 0 then the above calculation shows that for every curve, γ, in S passing

through p at t = t0, the function F ◦ γ has a local maximum or minimum at t0.
However it could be a local maximum for some curves and a local minimum for
other curves, in which case F restricted to the surface S would have neither a local
minimum nor a local maximum at p, but rather a saddle point.

1.1 i. Since

σu = (coshu sinh v, coshu cosh v, coshu)

and

σu = (sinhu cosh v, sinhu sinh v, 0),

E = ‖σu‖2 = 2 cosh2 u cosh2 v,

F = σu · σv =
1

2
sinh 2u sinh 2v,

G = ‖σv‖2 = sinh2 u cosh 2v.

Thus the first fundamental form is given by

2 cosh2 u cosh2 vdu2 + sinh 2u sinh 2vdudv + sinh2 u cosh 2vdv2.
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ii. Since
σu = (1, 1, 2u)

and
σu = (−1, 1, 2v),

E = ‖σu‖2 = 2 + 4u2,

F = σu · σv = 4uv,

G = ‖σv‖2 = 2 + 4v2.

Thus the first fundamental form is given by

(2 + 4u2)du2 + 8uvdudv + (2 + 4v2)dv2.

iii. Since
σu = (sinhu, coshu, 0)

and
σu = (0, 0, 1),

E = ‖σu‖2 = cosh 2u,

F = σu · σv = 0,

G = ‖σv‖2 = 1.

Thus the first fundamental form is given by

cosh 2udu2 + dv2.

iv. Since
σu = (1, 0, 2u)

and
σu = (0, 1, 2v),

E = ‖σu‖2 = 1 + 4u2,

F = σu · σv = 4uv,

G = ‖σv‖2 = 1 + 4v2.

Thus the first fundamental form is given by

(1 + 4u2)du2 + 8uvdudv + (1 + 4v2)dv2.

1.4 i. Let v = aσũ + bσṽ, then

v = a

(
∂u

∂ũ
σu +

∂v

∂ũ
σv

)
+ b

(
∂u

∂ṽ
σu +

∂v

∂ṽ
σv

)
,

=

(
a
∂u

∂ũ
+ b

∂u

∂ṽ

)
σu +

(
a
∂v

∂ũ
+ b

∂v

∂ṽ

)
σv.

Thus

du(v) = a
∂u

∂ũ
+ b

∂u

∂ṽ
=
∂u

∂ũ
dũ(v) +

∂u

∂ṽ
dṽ(v),
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showing that du = ∂u
∂ũ
dũ+ ∂u

∂ṽ
dṽ. Similarly

dv(v) = a
∂v

∂ũ
+ b

∂v

∂ṽ
=
∂v

∂ũ
dũ(v) +

∂v

∂ṽ
dṽ(v),

showing that dv = ∂v
∂ũ
dũ+ ∂v

∂ṽ
dṽ.

ii. The first fundamental form is given by(
dũ dṽ

)(Ẽ F̃

F̃ G̃

)(
dũ
dṽ

)
=
(
du dv

)(E F
F G

)(
du
dv

)
.

Substituting (
du
dv

)
=

(
∂u
∂ũ

∂u
∂ṽ

∂v
∂ũ

∂v
∂ṽ

)(
dũ
dṽ

)
= J

(
dũ
dṽ

)
,

from part (i) shows that(
dũ dṽ

)(Ẽ F̃

F̃ G̃

)(
dũ
dṽ

)
=
(
dũ dṽ

)
J t
(
E F
F G

)
J

(
dũ
dṽ

)
.

Thus (
Ẽ F̃

F̃ G̃

)
= J t

(
E F
F G

)
J.

1.5 (i)⇒ (ii)
Assume Ev = Gu = 0 then

Ev = 2σuv · σu = 0,

and

Gu = 2σuv · σv = 0.

Thus σuv must be normal to the surface.
(ii)⇒ (iii)
Assume that σuv is normal to the surface and consider the parallelogram

σ([u0, u1]× [v0, v1]),

the length of the v = v0 side is given by∫ u1

u0

‖σu(u, v0)‖du.

However this does not depend on v as

d

dv

∫ u1

u0

‖σu(u, v)‖du =

∫ u1

u0

σuv · σu

‖σu(u, v)‖
du = 0.

Thus the length of the v = v0 and v = v1 side must be equal, and similarly for the
u = u0 and u = u1 side.
(iii)⇒ (i)
Assume that the length of a paramater curve u 7→ σ(u, v),∫ u1

u0

√
E(u, v)du,
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does not depend on v, then

d

dv

∫ u1

u0

√
E(u, v)du =

∫ u1

u0

Ev(u, v)

2
√
E(u, v)

du = 0.

Thus

0 = lim
u1→u0

1

u1 − u0

∫ u1

u0

Ev(u, v)

2
√
E(u, v)

du =
Ev(u0, v)

2
√
E(u0, v)

.

Since this is true for all u0 it must be that Ev = 0. A similar argument using the
v-parameter curves will show that Gu = 0.


