Solutions

Math 147A
Winter 2012
Homework 6
2.7 This surface is the collection of points that are a distance a from the curve γ. By the Frenet-Serret equations

$$
\begin{aligned}
\boldsymbol{\sigma}_{s} & =\mathbf{t}+a((-\kappa \mathbf{t}+\tau \mathbf{b}) \cos \theta-\tau \mathbf{n} \sin \theta) \\
& =(1-a \kappa \cos \theta) \mathbf{t}-a \tau \sin \theta \mathbf{n}+a \tau \cos \theta \mathbf{b}
\end{aligned}
$$

The theta derivative can be computed directly

$$
\boldsymbol{\sigma}_{\theta}=-a \sin \theta \mathbf{n}+a \cos \theta \mathbf{b}
$$

Thus

$$
\boldsymbol{\sigma}_{s} \times \boldsymbol{\sigma}_{\theta}=-a \cos \theta(1-a \kappa \cos \theta) \mathbf{n}-a \sin \theta(1-a \kappa \cos \theta) \mathbf{b}
$$

which is only zero if $a \kappa \cos \theta=1$. This will never happen if $\kappa<a^{-1}$ as this implies $a \kappa<1$ and thus $a \kappa \cos \theta<1$.
4.3 First, using the chain rule, note that

$$
\left.\frac{d}{d t}\right|_{t=t_{0}} F(\gamma(t))=\nabla F(\mathbf{p}) \cdot \dot{\gamma}\left(t_{0}\right)
$$

but since γ is contained in the surface $\mathcal{S}, \dot{\gamma}$ is tangent to \mathcal{S}. Thus

$$
\nabla F \cdot \dot{\gamma}=\nabla_{\mathcal{S}} F \cdot \dot{\gamma}+(\nabla F \cdot \mathbf{N})(\dot{\gamma} \cdot \mathbf{N})=\nabla_{\mathcal{S}} F \cdot \dot{\gamma}
$$

where \mathbf{N} is some unit vector normal to \mathcal{S}.
If $\nabla_{\mathcal{S}} F=0$ then the above calculation shows that for every curve, γ, in \mathcal{S} passing through \mathbf{p} at $t=t_{0}$, the function $F \circ \gamma$ has a local maximum or minimum at t_{0}. However it could be a local maximum for some curves and a local minimum for other curves, in which case F restricted to the surface \mathcal{S} would have neither a local minimum nor a local maximum at \mathbf{p}, but rather a saddle point.
1.1 i. Since

$$
\boldsymbol{\sigma}_{u}=(\cosh u \sinh v, \cosh u \cosh v, \cosh u)
$$

and

$$
\begin{aligned}
\boldsymbol{\sigma}_{u} & =(\sinh u \cosh v, \sinh u \sinh v, 0) \\
E & =\left\|\boldsymbol{\sigma}_{u}\right\|^{2}=2 \cosh ^{2} u \cosh ^{2} v \\
F & =\boldsymbol{\sigma}_{u} \cdot \boldsymbol{\sigma}_{v}=\frac{1}{2} \sinh 2 u \sinh 2 v \\
G & =\left\|\boldsymbol{\sigma}_{v}\right\|^{2}=\sinh ^{2} u \cosh 2 v
\end{aligned}
$$

Thus the first fundamental form is given by

$$
2 \cosh ^{2} u \cosh ^{2} v d u^{2}+\sinh 2 u \sinh 2 v d u d v+\sinh ^{2} u \cosh 2 v d v^{2} .
$$

ii. Since

$$
\boldsymbol{\sigma}_{u}=(1,1,2 u)
$$

and

$$
\begin{aligned}
& \\
& \boldsymbol{\sigma}_{u}=(-1,1,2 v), \\
& E=\left\|\boldsymbol{\sigma}_{u}\right\|^{2}=2+4 u^{2}, \\
& F=\boldsymbol{\sigma}_{u} \cdot \boldsymbol{\sigma}_{v}=4 u v, \\
& G=\left\|\boldsymbol{\sigma}_{v}\right\|^{2}=2+4 v^{2} .
\end{aligned}
$$

Thus the first fundamental form is given by

$$
\left(2+4 u^{2}\right) d u^{2}+8 u v d u d v+\left(2+4 v^{2}\right) d v^{2} .
$$

iii. Since

$$
\boldsymbol{\sigma}_{u}=(\sinh u, \cosh u, 0)
$$

and

$$
\begin{gathered}
\quad \boldsymbol{\sigma}_{u}=(0,0,1), \\
E=\left\|\boldsymbol{\sigma}_{u}\right\|^{2}=\cosh 2 u, \\
F=\boldsymbol{\sigma}_{u} \cdot \boldsymbol{\sigma}_{v}=0, \\
G=\left\|\boldsymbol{\sigma}_{v}\right\|^{2}=1 .
\end{gathered}
$$

Thus the first fundamental form is given by

$$
\cosh 2 u d u^{2}+d v^{2}
$$

iv. Since

$$
\boldsymbol{\sigma}_{u}=(1,0,2 u)
$$

and

$$
\begin{gathered}
c \\
\boldsymbol{\sigma}_{u}=(0,1,2 v) \\
E=\left\|\boldsymbol{\sigma}_{u}\right\|^{2}=1+4 u^{2} \\
F=\boldsymbol{\sigma}_{u} \cdot \boldsymbol{\sigma}_{v}=4 u v \\
G=\left\|\boldsymbol{\sigma}_{v}\right\|^{2}=1+4 v^{2}
\end{gathered}
$$

Thus the first fundamental form is given by

$$
\left(1+4 u^{2}\right) d u^{2}+8 u v d u d v+\left(1+4 v^{2}\right) d v^{2} .
$$

1.4 i. Let $\mathbf{v}=a \boldsymbol{\sigma}_{\tilde{u}}+b \boldsymbol{\sigma}_{\tilde{v}}$, then

$$
\begin{aligned}
\mathbf{v} & =a\left(\frac{\partial u}{\partial \tilde{u}} \boldsymbol{\sigma}_{u}+\frac{\partial v}{\partial \tilde{u}} \boldsymbol{\sigma}_{v}\right)+b\left(\frac{\partial u}{\partial \tilde{v}} \boldsymbol{\sigma}_{u}+\frac{\partial v}{\partial \tilde{v}} \boldsymbol{\sigma}_{v}\right), \\
& =\left(a \frac{\partial u}{\partial \tilde{u}}+b \frac{\partial u}{\partial \tilde{v}}\right) \boldsymbol{\sigma}_{u}+\left(a \frac{\partial v}{\partial \tilde{u}}+b \frac{\partial v}{\partial \tilde{v}}\right) \boldsymbol{\sigma}_{v} .
\end{aligned}
$$

Thus

$$
d u(\mathbf{v})=a \frac{\partial u}{\partial \tilde{u}}+b \frac{\partial u}{\partial \tilde{v}}=\frac{\partial u}{\partial \tilde{u}} d \tilde{u}(\mathbf{v})+\frac{\partial u}{\partial \tilde{v}} d \tilde{v}(\mathbf{v})
$$

showing that $d u=\frac{\partial u}{\partial \tilde{u}} d \tilde{u}+\frac{\partial u}{\partial \tilde{v}} d \tilde{v}$. Similarly

$$
d v(\mathbf{v})=a \frac{\partial v}{\partial \tilde{u}}+b \frac{\partial v}{\partial \tilde{v}}=\frac{\partial v}{\partial \tilde{u}} d \tilde{u}(\mathbf{v})+\frac{\partial v}{\partial \tilde{v}} d \tilde{v}(\mathbf{v})
$$

showing that $d v=\frac{\partial v}{\partial \tilde{u}} d \tilde{u}+\frac{\partial v}{\partial \tilde{v}} d \tilde{v}$.
ii. The first fundamental form is given by

$$
\left(\begin{array}{ll}
d \tilde{u} & d \tilde{v}
\end{array}\right)\left(\begin{array}{ll}
\tilde{E} & \tilde{F} \\
\tilde{F} & \tilde{G}
\end{array}\right)\binom{d \tilde{u}}{d \tilde{v}}=\left(\begin{array}{ll}
d u & d v
\end{array}\right)\left(\begin{array}{ll}
E & F \\
F & G
\end{array}\right)\binom{d u}{d v} .
$$

Substituting

$$
\binom{d u}{d v}=\left(\begin{array}{ll}
\frac{\partial u}{\partial \tilde{u}} & \frac{\partial u}{\partial \tilde{v}} \\
\frac{\partial v}{\partial \tilde{u}} & \frac{\partial v}{\partial \tilde{v}}
\end{array}\right)\binom{d \tilde{u}}{d \tilde{v}}=J\binom{d \tilde{u}}{d \tilde{v}},
$$

from part (i) shows that

$$
\left(\begin{array}{ll}
d \tilde{u} & d \tilde{v}
\end{array}\right)\left(\begin{array}{cc}
\tilde{E} & \tilde{F} \\
\tilde{F} & \tilde{G}
\end{array}\right)\binom{d \tilde{u}}{d \tilde{v}}=\left(\begin{array}{ll}
d \tilde{u} & d \tilde{v}
\end{array}\right) J^{t}\left(\begin{array}{ll}
E & F \\
F & G
\end{array}\right) J\binom{d \tilde{u}}{d \tilde{v}} .
$$

Thus

$$
\left(\begin{array}{ll}
\tilde{E} & \tilde{F} \\
\tilde{F} & \tilde{G}
\end{array}\right)=J^{t}\left(\begin{array}{ll}
E & F \\
F & G
\end{array}\right) J .
$$

$1.5(i) \Rightarrow(i i)$
Assume $E_{v}=G_{u}=0$ then

$$
E_{v}=2 \boldsymbol{\sigma}_{u v} \cdot \boldsymbol{\sigma}_{u}=0,
$$

and

$$
G_{u}=2 \boldsymbol{\sigma}_{u v} \cdot \boldsymbol{\sigma}_{v}=0
$$

Thus $\boldsymbol{\sigma}_{u v}$ must be normal to the surface.
(ii) \Rightarrow (iii)

Assume that $\boldsymbol{\sigma}_{u v}$ is normal to the surface and consider the parallelogram

$$
\boldsymbol{\sigma}\left(\left[u_{0}, u_{1}\right] \times\left[v_{0}, v_{1}\right]\right),
$$

the length of the $v=v_{0}$ side is given by

$$
\int_{u_{0}}^{u_{1}}\left\|\boldsymbol{\sigma}_{u}\left(u, v_{0}\right)\right\| d u
$$

However this does not depend on v as

$$
\frac{d}{d v} \int_{u_{0}}^{u_{1}}\left\|\boldsymbol{\sigma}_{u}(u, v)\right\| d u=\int_{u_{0}}^{u_{1}} \frac{\boldsymbol{\sigma}_{u v} \cdot \boldsymbol{\sigma}_{u}}{\left\|\boldsymbol{\sigma}_{u}(u, v)\right\|} d u=0 .
$$

Thus the length of the $v=v_{0}$ and $v=v_{1}$ side must be equal, and similarly for the $u=u_{0}$ and $u=u_{1}$ side.
(iii) \Rightarrow (i)

Assume that the length of a paramater curve $u \mapsto \boldsymbol{\sigma}(u, v)$,

$$
\int_{u_{0}}^{u_{1}} \sqrt{E(u, v)} d u
$$

does not depend on v, then

$$
\frac{d}{d v} \int_{u_{0}}^{u_{1}} \sqrt{E(u, v)} d u=\int_{u_{0}}^{u_{1}} \frac{E_{v}(u, v)}{2 \sqrt{E(u, v)}} d u=0
$$

Thus

$$
0=\lim _{u_{1} \rightarrow u_{0}} \frac{1}{u_{1}-u_{0}} \int_{u_{0}}^{u_{1}} \frac{E_{v}(u, v)}{2 \sqrt{E(u, v)}} d u=\frac{E_{v}\left(u_{0}, v\right)}{2 \sqrt{E\left(u_{0}, v\right)}}
$$

Since this is true for all u_{0} it must be that $E_{v}=0$. A similar argument using the v-parameter curves will show that $G_{u}=0$.

