Solutions

Math 147A
Winter 2012
Homework 5
2.1 Since u, v, and $f(u, v)$ are all smooth, the surface patch

$$
\boldsymbol{\sigma}(u, v)=(u, v, f(u, v))
$$

is smooth. To check regularity compute

$$
\begin{aligned}
& \boldsymbol{\sigma}_{u}=\left(1,0, f_{u}(u, v)\right), \\
& \boldsymbol{\sigma}_{v}=\left(0,1, f_{v}(u, v)\right),
\end{aligned}
$$

and

$$
\boldsymbol{\sigma}_{u} \times \boldsymbol{\sigma}_{v}=\left(-f_{u},-f_{v}, 1\right)
$$

which is never zero.
2.2 To check that the surface patch

$$
\boldsymbol{\sigma}_{+}^{x}(u, v)=\left(\sqrt{1-u^{2}-v^{2}}, u, v\right)
$$

is regular compute it partial derivatives

$$
\begin{aligned}
& \boldsymbol{\sigma}_{+u}^{x}=\left(\frac{-u}{\sqrt{1-u^{2}-v^{2}}}, 1,0\right), \\
& \boldsymbol{\sigma}_{+v}^{x}=\left(\frac{-v}{\sqrt{1-u^{2}-v^{2}}}, 0,1\right),
\end{aligned}
$$

and

$$
\boldsymbol{\sigma}_{+u}^{x} \times \boldsymbol{\sigma}_{+v}^{x}=\left(1, \frac{u}{\sqrt{1-u^{2}-v^{2}}}, \frac{v}{\sqrt{1-u^{2}-v^{2}}}\right)
$$

which is never zero. Similarly, the other surface patches are also regular.
The transition function

$$
\boldsymbol{\Phi}(\tilde{u}, \tilde{v})=\left(\boldsymbol{\sigma}_{+}^{x}\right)^{-1} \circ \boldsymbol{\sigma}_{+}^{z}(\tilde{u}, \tilde{v})=\left(\tilde{v}, \sqrt{1-\tilde{u}^{2}-\tilde{v}^{2}}\right)
$$

is smooth. The other 23 transition functions also consist of one of the coordinates and $\sqrt{1-\tilde{u}^{2}-\tilde{v}^{2}}$ thus are also smooth.
2.3 i. The map $\boldsymbol{\sigma}$ is injective as $(u, v, u v)=(x, y, x y)$ implies $(u, v)=(x, y)$. Since

$$
\begin{aligned}
\boldsymbol{\sigma}_{u} & =(1,0, v), \\
\boldsymbol{\sigma}_{v} & =(0,1, u), \\
\boldsymbol{\sigma}_{u} \times \boldsymbol{\sigma}_{v} & =(-v,-u, 1),
\end{aligned}
$$

this is a regular surface patch.
ii. The map $\boldsymbol{\sigma}$ is injective as $\left(u, v^{2}, v^{3}\right)=\left(x, y^{2}, y^{3}\right)$ implies $u=x$ and $v^{3}=y^{3}$, hence $(u, v)=(x, y)$. However,

$$
\begin{aligned}
\boldsymbol{\sigma}_{u} & =(1,0,0), \\
\boldsymbol{\sigma}_{v} & =\left(0,2 v, 3 v^{2}\right), \\
\boldsymbol{\sigma}_{u} \times \boldsymbol{\sigma}_{v} & =\left(0,-3 v^{2}, 2 v\right),
\end{aligned}
$$

showing this surface patch is not regular on the line $v=0$.
iii. The map $\boldsymbol{\sigma}$ is not injective as $\boldsymbol{\sigma}(0,1)=(0,1,1)=\boldsymbol{\sigma}(-1,1)$. Also,

$$
\begin{aligned}
\boldsymbol{\sigma}_{u} & =(1+2 u, 0,0), \\
\boldsymbol{\sigma}_{v} & =(0,1,2 v), \\
\boldsymbol{\sigma}_{u} \times \boldsymbol{\sigma}_{v} & =(0,-2 v(1+2 u), 1+2 u)
\end{aligned}
$$

showing this map is not regular on the line $u=-1 / 2$.
4.1 The normal vector is $\boldsymbol{\sigma}_{u} \times \boldsymbol{\sigma}_{v}(1,1)$. Since
i.

$$
\begin{aligned}
\boldsymbol{\sigma}_{u} & =(1,0,2 u), \\
\boldsymbol{\sigma}_{v} & =(0,1,-2 v), \\
\boldsymbol{\sigma}_{u} \times \boldsymbol{\sigma}_{v} & =(-2 u, 2 v, 1),
\end{aligned}
$$

which is $(-2,2,1)$ at $(1,1,0)$, thus the tangent plane is given by

$$
-2 x+2 y+z=0
$$

ii. The normal vector is $\boldsymbol{\sigma}_{r} \times \boldsymbol{\sigma}_{\theta}(1,0)$. Since

$$
\begin{aligned}
\boldsymbol{\sigma}_{r}(1,0) & =(1,0,2), \\
\boldsymbol{\sigma}_{\theta}(1,0) & =(0,1,0), \\
\boldsymbol{\sigma}_{r} \times \boldsymbol{\sigma}_{\theta}(1,0) & =(-2,0,1)
\end{aligned}
$$

which is $(-2,2,1)$ at $(1,1,0)$, thus the tangent plane is given by

$$
-2 x+z=0
$$

4.2 Let $\tilde{\boldsymbol{\sigma}}(\tilde{u}, \tilde{v})=\boldsymbol{\sigma}(u, v)$, then

$$
\begin{aligned}
\boldsymbol{\sigma}_{u} & =\frac{\partial \tilde{u}}{\partial u} \tilde{\boldsymbol{\sigma}}_{\tilde{u}}+\frac{\partial \tilde{v}}{\partial u} \tilde{\boldsymbol{\sigma}}_{\tilde{v}} \\
\boldsymbol{\sigma}_{v} & =\frac{\partial \tilde{u}}{\partial v} \tilde{\boldsymbol{\sigma}}_{\tilde{u}}+\frac{\partial \tilde{v}}{\partial v} \tilde{\boldsymbol{\sigma}}_{\tilde{v}} .
\end{aligned}
$$

This shows that $\operatorname{span}\left\{\boldsymbol{\sigma}_{u}, \boldsymbol{\sigma}_{v}\right\} \subset \operatorname{span}\left\{\tilde{\boldsymbol{\sigma}}_{\tilde{u}}, \tilde{\boldsymbol{\sigma}}_{\tilde{v}}\right\}$. The reverse containment is also true as

$$
\begin{aligned}
& \tilde{\boldsymbol{\sigma}}_{\tilde{u}}=\frac{\partial u}{\partial \tilde{u}} \boldsymbol{\sigma}_{u}+\frac{\partial v}{\partial \tilde{u}} \boldsymbol{\sigma}_{v}, \\
& \tilde{\boldsymbol{\sigma}}_{\tilde{v}}=\frac{\partial u}{\partial \tilde{v}} \boldsymbol{\sigma}_{u}+\frac{\partial v}{\partial \tilde{v}} \boldsymbol{\sigma}_{v} .
\end{aligned}
$$

Thus span $\left\{\boldsymbol{\sigma}_{u}, \boldsymbol{\sigma}_{v}\right\}=\operatorname{span}\left\{\tilde{\boldsymbol{\sigma}}_{\tilde{u}}, \tilde{\boldsymbol{\sigma}}_{\tilde{v}}\right\}$.

