Solutions
147a Winter 2012
Homework 4
3.2 Assume that γ is paramaterized by arclength, then $\mathbf{t}=\dot{\gamma}$,

$$
\dot{\mathbf{n}}=-\kappa \mathbf{t}+\tau \mathbf{b},
$$

and since κ and τ are constant

$$
\ddot{\mathbf{n}}=-\left(\kappa^{2}+\tau^{2}\right) \mathbf{n} .
$$

This implies that

$$
\mathbf{n}=\mathbf{a}_{1} \cos (\omega s)+\mathbf{a}_{2} \sin (\omega s)
$$

where $\omega=\sqrt{\kappa^{2}+\tau^{2}}$ and \mathbf{a}_{1} and \mathbf{a}_{2} are some constant vectors. Since \mathbf{n} is a unit vector it must be perpendicular to

$$
\dot{\mathbf{n}}=-\mathbf{a}_{1} \omega \sin (\omega s)+\mathbf{a}_{2} \omega \cos (\omega s)
$$

but

$$
\mathbf{n} \cdot \dot{\mathbf{n}}=\left(\left\|\mathbf{a}_{2}\right\|-\left\|\mathbf{a}_{1}\right\|^{2}\right) \omega \cos (\omega s) \sin (\omega s)+\mathbf{a}_{1} \cdot \mathbf{a}_{2} \omega\left(\cos ^{2}(\omega s)-\sin ^{2}(\omega s)\right)
$$

which for $s=\frac{\pi}{4 \omega}$ implies that $\left\|\mathbf{a}_{2}\right\|=\left\|\mathbf{a}_{1}\right\|^{2}=1$, and for $s=\frac{\pi}{2 \omega}$ implies that $\mathbf{a}_{1} \cdot \mathbf{a}_{2}=0$. Multiplying \mathbf{n} by κ and integrating shows that

$$
\mathbf{t}=\frac{\kappa}{\omega}\left(\mathbf{a}_{1} \sin (\omega s)-\mathbf{a}_{2} \cos (\omega s)\right)+\mathbf{a}_{3},
$$

where \mathbf{a}_{3} is another constant vector, which must be perpendicular to \mathbf{a}_{1} and \mathbf{a}_{2} for \mathbf{t} to be perpendicular to \mathbf{n}. Rewriting the second Frenet-Serret equation gives

$$
\begin{aligned}
-\mathbf{a}_{1} \omega \sin (\omega s)+\mathbf{a}_{2} \omega \cos (\omega s) & =\frac{\kappa^{2}}{\omega}\left(-\mathbf{a}_{1} \sin (\omega s)+\mathbf{a}_{2} \cos (\omega s)\right)-\kappa \mathbf{a}_{3}+\tau \mathbf{b} \\
\omega^{2}\left(-\mathbf{a}_{1} \sin (\omega s)+\mathbf{a}_{2} \cos (\omega s)\right) & =\kappa^{2}\left(-\mathbf{a}_{1} \sin (\omega s)+\mathbf{a}_{2} \cos (\omega s)\right)-\kappa \omega \mathbf{a}_{3}+\tau \omega \mathbf{b} \\
\frac{\omega \tau^{2}}{\kappa}\left(\mathbf{a}_{3}-\mathbf{t}\right) & =-\kappa \omega \mathbf{a}_{3}+\tau \omega \mathbf{b} \\
\tau^{2} \mathbf{a}_{3}-\tau^{2} \mathbf{t} & =-\kappa^{2} \mathbf{a}_{3}+\tau \kappa \mathbf{b} \\
\mathbf{a}_{3} & =\frac{\tau}{\omega^{2}}(\tau \mathbf{t}+\kappa \mathbf{b})
\end{aligned}
$$

Finally choosing constant unit vectors $\mathbf{c}_{1}=-\mathbf{a}_{1}, \mathbf{c}_{2}=-\mathbf{a}_{2}$, and $\mathbf{c}_{3}=\frac{1}{\omega}(\tau \mathbf{t}+\kappa \mathbf{b})$, the unit tangent can be written as

$$
\mathbf{t}=\frac{\kappa}{\omega}\left(-\mathbf{c}_{1} \sin (\omega s)+\mathbf{c}_{2} \cos (\omega s)\right)+\frac{\tau}{\omega} \mathbf{c}_{3},
$$

and integrating gives the curve

$$
\gamma(s)=\frac{\kappa}{\omega}\left(\mathbf{c}_{1} \cos (\omega s)+\mathbf{c}_{2} \sin (\omega s)\right)+\frac{\tau}{\omega} \mathbf{c}_{3} s+\mathbf{d} .
$$

This shows that γ is a rotation and translation, and possibly a reflection (if $\mathbf{c}_{1} \times \mathbf{c}_{2}=$ $-\mathbf{c}_{3}$) of the helix

$$
\left(\frac{\kappa}{\omega} \cos (\omega s), \frac{\kappa}{\omega} \sin (\omega s), \frac{\tau}{\omega} s\right)
$$

3.4 If γ lies on a sphere centered at \mathbf{p} with radius r, then $\|\gamma-\mathbf{p}\|^{2}=r^{2}$, and taking a derivative yields $\gamma \cdot \mathbf{t}=0$. Thus

$$
\gamma(t)-\mathbf{p}=\alpha \mathbf{n}+\beta \mathbf{b}
$$

and

$$
\begin{aligned}
\dot{\gamma}(t) & =\dot{\alpha} \mathbf{n}+\alpha(-\kappa \mathbf{t}+\tau \mathbf{b})+\dot{\beta} \mathbf{b}-\beta \tau \mathbf{n} \\
& =-\alpha \kappa \mathbf{t}+(\dot{\alpha}-\beta \tau) \mathbf{n}+(\alpha \tau+\dot{\beta}) \mathbf{b} .
\end{aligned}
$$

This shows that $\alpha=-\frac{1}{\kappa}, \beta=\frac{\dot{\alpha}}{\tau}=\frac{\dot{\kappa}}{\tau \kappa^{2}}$, and $\dot{\beta}=\frac{\tau}{\kappa}$. This is the desired equation

$$
\frac{\tau}{\kappa}=\frac{d}{d s}\left(\frac{\dot{\kappa}}{\tau \kappa^{2}}\right)
$$

To prove the converse, let $\rho=1 / \kappa$ and $\sigma=1 / \tau$, the equation becomes

$$
\frac{\rho}{\sigma}=-\frac{d}{d s}(\dot{\rho} \sigma) .
$$

Multiplying by $2 \dot{\rho} \sigma$ and moving both terms to the left gives

$$
2 \rho \dot{\rho}+2 \dot{\rho} \sigma \frac{d}{d s}(\dot{\rho} \sigma)=0
$$

Integrating gives the equation

$$
\rho^{2}+(\dot{\rho} \sigma)^{2}=r^{2}
$$

for some constant r. Now let $\mathbf{t}, \mathbf{n}, \mathbf{b}$ be the unit tangent, normal and binormal vectors of γ and consider the spherical curve given by

$$
\mu(t)=\rho \mathbf{n}+\dot{\rho} \sigma \mathbf{b}
$$

This has derivative

$$
\begin{aligned}
\dot{\mu}(t) & =\dot{\rho} \mathbf{n}+\rho(-\kappa \mathbf{t}+\tau \mathbf{b})-\rho / \sigma \mathbf{b}-\dot{\rho} \sigma \tau \mathbf{n}, \\
& =-\mathbf{t} .
\end{aligned}
$$

Thus $\gamma(t)+\mu(t)=\mathbf{p}$ for some constant \mathbf{p}. Showing that γ is a spherical curve, as it is a translation of a spherical curve.

For Viviani's curve

$$
\gamma(t)=\left(\cos ^{2} t-\frac{1}{2}, \sin t \cos t, \sin t\right)
$$

the derivatives are

$$
\begin{aligned}
\dot{\gamma}(t) & =(-\sin 2 t, \cos 2 t, \cos t), \\
\ddot{\gamma}(t) & =(-2 \cos 2 t,-2 \sin 2 t,-\sin t), \\
\dddot{\gamma}(t) & =(4 \sin 2 t,-4 \cos 2 t,-\cos t) .
\end{aligned}
$$

Thus

$$
\begin{aligned}
\|\dot{\gamma}(t)\|^{2} & =1+\cos ^{2} t \\
\dot{\gamma}(t) \times \ddot{\gamma}(t) & =\left(\sin t(\cos (2 t)+2),-2 \cos ^{3} t, 2\right), \\
\|\dot{\gamma}(t) \times \ddot{\gamma}(t)\|^{2} & =5+3 \cos ^{2} t \\
(\dot{\gamma}(t) \times \ddot{\gamma}(t)) \cdot \dddot{\gamma}(t) & =6 \cos t
\end{aligned}
$$

and

$$
\begin{aligned}
\kappa & =\frac{\sqrt{5+3 \cos ^{2} t}}{\left(1+\cos ^{2} t\right)^{\frac{3}{2}}} \\
\frac{d \kappa}{d s} & =\frac{6 \sin t \cos t\left(2+\cos ^{2} t\right)}{\sqrt{5+3 \cos ^{2} t}\left(1+\cos ^{2} t\right)^{3}}, \\
\tau & =\frac{6 \cos (t)}{5+3 \cos ^{2} t}, \\
\frac{\dot{\kappa}}{\tau \kappa^{2}} & =\frac{\sin t\left(2+\cos ^{2} t\right)}{\sqrt{5+3 \cos ^{2} t}} .
\end{aligned}
$$

Finally, taking the derivative yields

$$
\frac{d}{d s} \frac{\dot{\kappa}}{\tau \kappa^{2}}=6 \cos t\left(\frac{1+\cos ^{2} t}{5+3 \cos ^{2} t}\right)^{\frac{3}{2}}=\frac{\tau}{\kappa}
$$

3.6 Let $b_{i j}=\mathbf{v}_{i} \cdot \mathbf{v}_{j}$ then these satisfy

$$
\dot{b}_{i j}=\sum_{k}\left(a_{i k} \mathbf{v}_{k} \cdot \mathbf{v}_{j}+\mathbf{v}_{i} \cdot\left(a_{j k} \mathbf{v}_{k}\right)\right)=\sum_{k}\left(a_{i k} b_{k j}+b_{i k} a_{j k}\right) .
$$

For the matrices $A=\left(a_{i j}\right)$ and $B=\left(b_{i j}\right)$ this can be written succinctly as

$$
\dot{B}=A B+B A^{T}=A B-B A,
$$

while the initially orthonormal condition becomes

$$
B\left(s_{0}\right)=I,
$$

where I is the identity matrix. Now, $B=I$ is a constant solution to this system of equations. Uniqueness of solutions to systems of ODE's then implies that $B(s)=I$ for all s, thus the vectors remain orthonormal.

In fact, the only initial conditions which will give constant solutions for any skew symmetric matrix are $B\left(s_{0}\right)=c I$ for a constant c.

