Solutions

147a Winter 2012

Homework 3

2.1 Since \mathbf{n}_{s} is a unit vector, $\mathbf{n}_{s} \cdot \mathbf{n}_{s}=1$ and $2 \dot{\mathbf{n}}_{s} \cdot \mathbf{n}_{s}=0$. Since γ is a plane curve, it follows that $\dot{\mathbf{n}}_{s}=a \mathbf{t}$. Taking the derivative of $\mathbf{t} \cdot \mathbf{n}_{s}=0$ gives the equation

$$
\dot{\mathbf{t}} \cdot \mathbf{n}_{s}+\mathbf{t} \cdot \dot{\mathbf{n}}_{s}=\kappa_{s} \mathbf{n}_{s} \cdot \mathbf{n}_{s}+a \mathbf{t} \cdot \mathbf{t}=\kappa_{s}+a=0 .
$$

This shows that a must be minus the signed curvature and $\dot{\mathbf{n}}_{s}=-\kappa_{s} \mathbf{t}$, as desired.
$3.1 \quad$ i. The curve $\gamma(t)=\left(\frac{1}{3}(1+t)^{3 / 2}, \frac{1}{3}(1-t)^{3 / 2}, \frac{t}{\sqrt{2}}\right)$ is unit speed, thus

$$
\mathbf{t}=\dot{\gamma}=\left(\frac{1}{2}(1+t)^{1 / 2},-\frac{1}{2}(1-t)^{1 / 2}, \frac{1}{\sqrt{2}}\right) .
$$

The unit normal is given by

$$
\kappa \mathbf{n}=\ddot{\gamma}=\left(\frac{1}{4}(1+t)^{-1 / 2}, \frac{1}{4}(1-t)^{-1 / 2}, 0\right),
$$

showing that the curvature is

$$
\kappa=\frac{1}{\sqrt{8\left(1-t^{2}\right)}},
$$

and the unit normal is

$$
\mathbf{n}=\left(\frac{1}{\sqrt{2}}(1-t)^{1 / 2}, \frac{1}{\sqrt{2}}(1+t)^{1 / 2}, 0\right) .
$$

The binormal is then

$$
\mathbf{b}=\mathbf{t} \times \mathbf{n}=\left(-\frac{1}{2}(1+t)^{1 / 2}, \frac{1}{2}(1-t)^{1 / 2}, \frac{1}{\sqrt{2}}\right),
$$

and the torsion is given by

$$
-\tau \mathbf{n}=\dot{\mathbf{b}}=\left(-\frac{1}{4}(1+t)^{-1 / 2},-\frac{1}{4}(1-t)^{-1 / 2}, 0\right) .
$$

Thus

$$
\tau=\frac{1}{\sqrt{8\left(1-t^{2}\right)}}
$$

and to check the Frenet-Serret formulas compute

$$
\dot{\mathbf{n}}=\left(-\frac{1}{2 \sqrt{2}}(1-t)^{-1 / 2}, \frac{1}{2 \sqrt{2}}(1+t)^{-1 / 2}, 0\right)
$$

and

$$
\begin{aligned}
-\kappa \mathbf{t}+\tau \mathbf{b}= & \frac{1}{\sqrt{8\left(1-t^{2}\right)}}[- \\
& \left(\frac{1}{2}(1+t)^{1 / 2},-\frac{1}{2}(1-t)^{1 / 2}, \frac{1}{\sqrt{2}}\right) \\
& \left.+\left(-\frac{1}{2}(1+t)^{1 / 2}, \frac{1}{2}(1-t)^{1 / 2}, \frac{1}{\sqrt{2}}\right)\right] \\
= & \frac{1}{\sqrt{8\left(1-t^{2}\right)}}\left(-(1+t)^{1 / 2},(1-t)^{1 / 2}, 0\right), \\
= & \frac{1}{2 \sqrt{2}}\left(-(1-t)^{-1 / 2},(1+t)^{-1 / 2}, 0\right) .
\end{aligned}
$$

ii. As before, when $\gamma(t)=\left(\frac{4}{5} \cos t, 1-\sin t,-\frac{3}{5} \cos t\right)$,

$$
\begin{aligned}
& \mathbf{t}=\dot{\gamma}=\left(-\frac{4}{5} \sin t,-\cos t, \frac{3}{5} \sin t\right), \\
& \kappa \mathbf{n}=\ddot{\gamma}=\left(-\frac{4}{5} \cos t, \sin t, \frac{3}{5} \cos t\right),
\end{aligned}
$$

and the curvature is just $\kappa=1$. The binormal is

$$
\mathbf{b}=\mathbf{t} \times \mathbf{n}=\left(-\frac{3}{5}, 0,-\frac{4}{5}\right),
$$

and thus the torsion is $\tau=0$. The formula

$$
\dot{\mathbf{n}}=-\mathbf{t},
$$

is the final Frenet-Serret formula and is easily seen to be true.
Now γ lies in a plane normal to \mathbf{b}, and passes through the origin when $t=\frac{\pi}{2}$. Thus γ lies in the plane $3 x+4 z=0$. Its center is the midpoint of $\gamma(0)$ and $\gamma(\pi)$, which is

$$
\frac{1}{2}\left[\left(\frac{4}{5}, 1,-\frac{3}{5}\right)+\left(\frac{-4}{5}, 1, \frac{3}{5}\right)\right]=(0,1,0)
$$

From the curvature, the radius should be 1, to check the diamater is the length of

$$
\gamma(\pi)-\gamma(0)=\left(\frac{-4}{5}, 1, \frac{3}{5}\right)-\left(\frac{4}{5}, 1,-\frac{3}{5}\right)=\left(-\frac{8}{5}, 0, \frac{6}{5}\right)
$$

which is $\sqrt{\frac{64+36}{25}}=2$, as expected.
3.3 Since \mathbf{t} makes a constant angle, θ, with \mathbf{a}, it follows that $\mathbf{t} \cdot \mathbf{a}=\cos (\theta)$. Noting that \mathbf{a} and θ are constant and taking the derivative of this equation yields $\kappa \mathbf{n} \cdot \mathbf{a}=0$. which shows that \mathbf{n} and \mathbf{a} are perpendicular. Let $\mathbf{b} \cdot \mathbf{a}=c$ then

$$
\mathbf{a}=\cos (\theta) \mathbf{t}+c \mathbf{b}
$$

Since \mathbf{a} is a unit vector $\|\mathbf{a}\|^{2}=\cos ^{2}(\theta)+c^{2}=1$. This shows that $c= \pm \sin (\theta)$. The derivative of $\mathbf{n} \cdot \mathbf{a}=0$ is

$$
\dot{\mathbf{n}} \cdot \mathbf{a}=-\kappa \mathbf{t} \cdot \mathbf{a}+\tau \mathbf{b} \cdot \mathbf{a}=-\kappa \cos (\theta) \pm \tau \sin (\theta)=0 .
$$

This gives the desired result, $\tau= \pm \kappa \cot (\theta)$.

For $\lambda \neq 0$, let $\theta=\arctan \left(\frac{1}{\lambda}\right)$ and $\mathbf{a}=\cos (\theta) \mathbf{t}+\sin (\theta) \mathbf{b}$, then γ will be a generalized helix provide \mathbf{a} is fixed. This is evident from its derivative and the equation $\kappa=$ $\tan (\theta) \tau$,

$$
\dot{\mathbf{a}}=\cos (\theta) \kappa \mathbf{n}-\sin (\theta) \tau \mathbf{b}=(\cos (\theta) \tan (\theta) \tau-\sin (\theta) \tau) \mathbf{n}=0
$$

For $\lambda=0$ the torsion is zero and \mathbf{b} is a constant vector with constant angle $\frac{\pi}{2}$ with the unit tangent.

The standard helix $(a \cos t, a \cos t, b t)$ has tangent $(-a \sin t, a \cos t, b)$ which has constant angle $\theta=\arccos \left(b / \sqrt{a^{2}+b^{2}}\right)$ with the unit vector $(0,0,1)$. Thus it is also a generalized helix.
(1) Since $\gamma(t)=\left(e^{t} \cos t, e^{t} \sin t, e^{t}\right)$ is not unit speed, use $\kappa=\frac{\|\dot{\gamma} \times \ddot{\gamma}\|}{\|\dot{\gamma}\|^{3}}$ and $\tau=\frac{(\dot{\gamma} \times \ddot{\gamma}) \cdot \ddot{\gamma}}{\|\dot{\gamma} \times \ddot{\gamma}\|^{2}}$. Computing

$$
\begin{aligned}
\dot{\gamma} & =\left(e^{t}(\cos t-\sin t), e^{t}(\sin t+\cos t), e^{t}\right), \\
\ddot{\gamma} & =\left(-2 e^{t} \sin t, 2 e^{t} \cos t, e^{t}\right) \\
\dddot{\gamma} & =\left(-2 e^{t}(\sin t+\cos t), 2 e^{t}(\cos t-\sin t), e^{t}\right),
\end{aligned}
$$

and

$$
\begin{aligned}
\|\dot{\gamma}\|^{2} & =3 e^{2 t}, \\
\dot{\gamma} \times \ddot{\gamma} & =\left(e^{2 t}(\sin t-\cos t),-e^{2 t}(\cos t+\sin t), 2 e^{2 t}\right), \\
(\dot{\gamma} \times \ddot{\gamma}) \cdot \dddot{\gamma} & =2 e^{3 t},
\end{aligned}
$$

then yields

$$
\begin{aligned}
\kappa & =\frac{\sqrt{2}}{3} e^{-t} \\
\tau & =\frac{2}{3} e^{-t}
\end{aligned}
$$

(2) Again $\gamma(t)=(\cosh t, \sinh t, t)$ is not unit speed, thus $\kappa=\frac{\|\dot{\gamma} \times \ddot{\gamma}\|}{\|\dot{\gamma}\|^{3}}$ and $\tau=\frac{(\dot{\gamma} \times \ddot{\gamma}) \cdot \ddot{\gamma}}{\|\dot{\gamma} \times\|^{2}}$. Computing

$$
\begin{aligned}
& \dot{\gamma}=(\sinh t, \cosh t, 1), \\
& \ddot{\gamma}=(\cosh t, \sinh t, 0), \\
& \dddot{\gamma}=(\sinh t, \cosh t, 0),
\end{aligned}
$$

and

$$
\begin{aligned}
\|\dot{\gamma}\|^{2} & =2 \cosh ^{2} t \\
\dot{\gamma} \times \ddot{\gamma} & =(-\sinh t, \cosh t,-1), \\
(\dot{\gamma} \times \ddot{\gamma}) \cdot \dddot{\gamma} & =1,
\end{aligned}
$$

then yields

$$
\begin{aligned}
\kappa & =\frac{1}{2} \operatorname{sech}^{2} t \\
\tau & =\frac{1}{2} \operatorname{sech}^{2} t
\end{aligned}
$$

