Solutions

147a Winter 2012
Homework 2
1.1 i. Recall that $\dot{\gamma}=\left(\frac{1}{2}(1+t)^{\frac{1}{2}},-\frac{1}{2}(1-t)^{\frac{1}{2}}, \frac{1}{\sqrt{2}}\right)$, and $\|\dot{\gamma}\|=1$. Hence $\kappa(t)=\|\ddot{\gamma}(t)\|$, and since

$$
\ddot{\gamma}(t)=\left(\frac{1}{4}(1+t)^{-\frac{1}{2}}, \frac{1}{2}(1-t)^{-\frac{1}{2}}, 0\right),
$$

it follows that

$$
\kappa(t)=\frac{1}{\sqrt{8\left(1-t^{2}\right)}}
$$

ii. Since $\dot{\gamma}=\left(-\frac{4}{5} \sin (t),-\cos (t), \frac{3}{5} \sin (t)\right)$, and $\|\dot{\gamma}\|=1$, it is again the case that $\kappa(t)=\|\ddot{\gamma}(t)\|$. The equation

$$
\ddot{\gamma}=\left(-\frac{4}{5} \cos (t), \sin (t), \frac{3}{5} \cos (t)\right),
$$

then implies that

$$
\kappa(t)=\|\ddot{\gamma}(t)\|=1
$$

iii. Since $\|\dot{\gamma}\| \neq 1$ the curvature is given by $\kappa(t)=\frac{\|\ddot{\gamma} \times \dot{\gamma}\|}{\|\dot{\gamma}\|^{3}}$. Now $\dot{\gamma}(t)=(1, \sinh (t))$ and $\ddot{\gamma}(t)=$ $(0, \cosh (t))$. Therefore

$$
\|\ddot{\gamma} \times \dot{\gamma}\|=\left\|\begin{array}{cc}
0 & \cosh (t) \\
1 & \sinh (t)
\end{array}\right\|=\cosh (t)
$$

and

$$
\kappa(t)=\operatorname{sech}^{2}(t)
$$

iv.

$$
\kappa(t)=\frac{\|\ddot{\gamma} \times \dot{\gamma}\|}{\|\dot{\gamma}\|^{3}}=\frac{1}{3|\cos (t) \sin (t)|} .
$$

This goes to ∞ when t is an integer multiple of $\pi / 2$, at these time $\left(\cos ^{3} t, \sin ^{3} t\right)=(\pm 1,0),(0, \pm 1)$.
1.2 Let $s(t)$ be the arclength from a fixed point p on the curve γ. Since γ is regular, by proposition 1.3.5 s is a smooth function of t. Since $\kappa(t)=\left\|\frac{d^{2} \gamma}{d s^{2}}(s(t))\right\|$ and $\|\cdot\|: \mathbb{R}^{2} \backslash\{(0,0)\} \rightarrow \mathbb{R}$ is smooth $\kappa(t)$ can be given as a composition of smooth functions as long as $\frac{d^{2} \gamma}{d s^{2}} \neq(0,0)$. Of course $\frac{d^{2} \gamma}{d s^{2}}=(0,0)$ contradicts the assumption $\kappa(t)>0$, showing that $\kappa(t)$ is indeed smooth.

For a counter example when $\kappa=0$ one could use $\gamma(t)=\left(t, t^{3}\right)$, then $\dot{\gamma}(t)=\left(1,3 t^{2}\right), \ddot{\gamma}(t)=(0,6 t)$, $\|\ddot{\gamma} \times \dot{\gamma}\|=\left\|\begin{array}{cc}0 & 6 t \\ 1 & 3 t^{2}\end{array}\right\|=6|t|$, and $\kappa(t)=\frac{6|t|}{\left(1+9 t^{4}\right)^{3 / 2}}$ is not differentiable at $t=0$.
2.2 Assume that γ is unit speed parameterized then $\mathbf{t}=\dot{\gamma}$ is smooth. Since the counter clockwise rotation $r: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ given by $r(x, y)=(-y, x)$ is smooth, $\mathbf{n}_{s}=r(\mathbf{t})$ is also smooth. Finally, the dot product _. : $\mathbb{R}^{2} \times \mathbb{R}^{2} \rightarrow \mathbb{R}$ is smooth so $\kappa_{s}=\ddot{\gamma} \cdot \mathbf{n}_{s}$ is smooth. Since any unit speed parameterization is smooth for regular curves this also proves the non-unit speed case by composing with such a reparameterization.

Alternatively use propositions 2.2 .1 and 2.2 .3 to show that κ_{s} is the derivative of a smooth function and is therefore smooth.
2.5 Let $s(t)$ be a unit speed parameterization of γ then

$$
\frac{d \gamma^{\lambda}}{d s}=\mathbf{t}-\lambda \kappa_{s} \mathbf{t}=\left(1-\lambda \kappa_{s}\right) \mathbf{t}
$$

This shows that γ^{λ} is regular as long as $\lambda \kappa_{s} \neq 1$, and its unit tangent vector and normal vectors coincide with those of γ. Now let $s^{\lambda}(s)$ be a unit speed paramaterization for γ^{λ}, then its inverse $s\left(s^{\lambda}\right)$ has derivative $\frac{d s}{d s^{\lambda}}=\frac{1}{\left|1-\lambda \kappa_{s}\right|}$, and the curvature of γ^{λ} is

$$
\kappa_{s}^{\lambda}=\frac{d \mathbf{t}}{d s^{\lambda}} \cdot \mathbf{n}_{s}=\frac{d \mathbf{t}}{d s} \frac{d s}{d s^{\lambda}} \cdot \mathbf{n}_{s}=\frac{\kappa_{s}}{\left|1-\lambda \kappa_{s}\right|} .
$$

2.6 The three points, $\gamma\left(s_{0}\right), \gamma\left(s_{0} \pm \delta s\right)$ are on a circle of radius r and center ϵ provided

$$
r^{2}=\left\|\gamma\left(s_{0}\right)-\epsilon\right\|^{2}=\left\|\gamma\left(s_{0}+\delta s\right)-\epsilon\right\|^{2}=\left\|\gamma\left(s_{0}-\delta s\right)-\epsilon\right\|^{2}
$$

There will always be a unique r and ϵ solving these equations provided δs is non-zero, and in the case of a closed curve, small enough to guarantee $\gamma\left(s_{0}+\delta s\right) \neq \gamma\left(s_{0}-\delta s\right)$. Let $a\left(s_{0}, \delta s\right)$ and $b\left(s_{0}, \delta s\right)$ be given by

$$
\epsilon-\gamma\left(s_{0}\right)=a(s, \delta s) \mathbf{t}+b(s, \delta s) \mathbf{n}_{s}
$$

Then it must be that

$$
\begin{aligned}
r^{2} & =\left\|\gamma\left(s_{0}+\delta s\right)-\epsilon\right\|^{2}, \\
& =\left\|\left(\gamma\left(s_{0}+\delta s\right)-\gamma\left(s_{0}\right)\right)-\left(\epsilon-\gamma\left(s_{0}\right)\right)\right\|^{2}, \\
& =\left\|\gamma\left(s_{0}+\delta s\right)-\gamma\left(s_{0}\right)\right\|^{2}-2\left[\gamma\left(s_{0}+\delta s\right)-\gamma\left(s_{0}\right)\right] \cdot\left[\epsilon-\gamma\left(s_{0}\right)\right]+\left\|\epsilon-\gamma\left(s_{0}\right)\right\|^{2}, \\
& =\left\|\gamma\left(s_{0}+\delta s\right)-\gamma\left(s_{0}\right)\right\|^{2}-2\left[\gamma\left(s_{0}+\delta s\right)-\gamma\left(s_{0}\right)\right] \cdot\left[\epsilon-\gamma\left(s_{0}\right)\right]+r^{2} .
\end{aligned}
$$

Which, in turn, implies that

$$
\left\|\gamma\left(s_{0}+\delta s\right)-\gamma\left(s_{0}\right)\right\|^{2}=2\left[\gamma\left(s_{0}+\delta s\right)-\gamma\left(s_{0}\right)\right] \cdot\left[a\left(s_{0}, \delta s\right) \mathbf{t}+b\left(s_{0}, \delta s\right) \mathbf{n}_{s}\right]
$$

The left hand side of this is on the order of δs^{2}, so dividing by δs and taking δs to zero yields.

$$
\dot{\gamma}\left(s_{0}\right) \cdot \lim _{\delta s \rightarrow 0}\left(a\left(s_{0}, \delta s\right) \mathbf{t}+b\left(s_{0}, \delta s\right) \mathbf{n}_{s}\right)=\lim _{\delta s \rightarrow 0} a\left(s_{0}, \delta s\right)=0 .
$$

Note that

$$
\begin{aligned}
0= & \left\|\gamma\left(s_{0}+\delta s\right)-\epsilon\right\|^{2}+\left\|\epsilon-\gamma\left(s_{0}-\delta s\right)\right\|^{2}-2\left\|\gamma\left(s_{0}\right)-\epsilon\right\|^{2}, \\
=\| & \left\|\left(\gamma\left(s_{0}+\delta s\right)-\gamma\left(s_{0}\right)\right)-\left(\epsilon-\gamma\left(s_{0}\right)\right)\right\|^{2}+\left\|\left(\gamma\left(s_{0}\right)-\gamma\left(s_{0}-\delta s\right)\right)+\left(\epsilon-\gamma\left(s_{0}\right)\right)\right\|^{2} \\
& \quad-2\left\|\gamma\left(s_{0}\right)-\epsilon\right\|^{2}, \\
= & \left\|\left(\gamma\left(s_{0}+\delta s\right)-\gamma\left(s_{0}\right)\right)\right\|^{2}-2\left[\gamma\left(s_{0}+\delta s\right)-\gamma\left(s_{0}\right)\right] \cdot\left[\epsilon-\gamma\left(s_{0}\right)\right] \\
& \quad+\left\|\left(\gamma\left(s_{0}\right)-\gamma\left(s_{0}-\delta s\right)\right)\right\|^{2}+2\left[\gamma\left(s_{0}\right)-\gamma\left(s_{0}-\delta s\right)\right] \cdot\left[\epsilon-\gamma\left(s_{0}\right)\right],
\end{aligned}
$$

implies that

$$
\left\|\left(\gamma\left(s_{0}+\delta s\right)-\gamma\left(s_{0}\right)\right)\right\|^{2}+\left\|\left(\gamma\left(s_{0}\right)-\gamma\left(s_{0}-\delta s\right)\right)\right\|^{2}
$$

and

$$
2\left[\gamma\left(s_{0}+\delta s\right)-2 \gamma\left(s_{0}\right)+\gamma\left(s_{0}-\delta s\right)\right] \cdot\left[a\left(s_{0}, \delta s\right) \mathbf{t}+b\left(s_{0}, \delta s\right) \mathbf{n}_{s}\right]
$$

are equal. Dividing by δs^{2} and taking δs to zero yields

$$
2\left\|\dot{\gamma}\left(s_{0}\right)\right\|^{2}=2 \ddot{\gamma}\left(s_{0}\right) \cdot \lim _{\delta s \rightarrow 0} b(s, \delta s) \mathbf{n}_{s}
$$

Since γ is unit speed, this is just

$$
2=2 \kappa_{s} \lim _{\delta s \rightarrow 0} b(s, \delta s) .
$$

Finally, this shows that if $\kappa_{s} \neq 0$ then ϵ converges as δs goes to zero, and it converges to

$$
\epsilon\left(s_{0}\right)=\gamma\left(s_{0}\right)+\frac{1}{\kappa_{s}} \mathbf{n}_{s} .
$$

2.7 The tangent to ϵ is

$$
\dot{\epsilon}=\mathbf{t}-\frac{\dot{\kappa}_{s}}{\kappa_{s}^{2}} \mathbf{n}_{s}-\mathbf{t}=-\frac{\dot{\kappa}_{s}}{\kappa_{s}^{2}} \mathbf{n}_{s}
$$

Therefore since $\dot{\kappa}_{s}>0$ the arclength is

$$
s^{\epsilon}(s)=\int_{s_{0}}^{s} \frac{\dot{\kappa}_{s}}{\kappa_{s}^{2}} d s^{\prime}=-\frac{1}{\kappa_{s}}+C
$$

Since the unit tangent to ϵ is $\mathbf{t}^{\epsilon}=-\mathbf{n}_{s}$, the signed unit normal is $\mathbf{n}_{s}^{\epsilon}=\mathbf{t}$. Thus the signed curvature of ϵ is

$$
\kappa_{s}^{\epsilon}=-\frac{d \mathbf{n}_{s}}{d s} \frac{d s}{d s^{\epsilon}} \cdot \mathbf{t}=\frac{\kappa_{s}^{3}}{\dot{\kappa}_{s}} .
$$

For the cycloid, $\gamma(t)=a(t-\sin t, 1-\cos t)$, the first and second derivative are

$$
\dot{\gamma}(t)=a(1-\cos t, \sin t) \quad \text { and } \quad \ddot{\gamma}(t)=a(\sin t, \cos t)
$$

Thus the signed unit normal is

$$
\mathbf{n}_{s}=\frac{1}{\|\dot{\gamma}\|} a(-\sin t, 1-\cos t)
$$

and the curvature is

$$
\kappa=\frac{a^{2}}{\|\dot{\gamma}\|^{3}}\left\|\begin{array}{cc}
\sin t & \cos t \\
1-\cos t & \sin t
\end{array}\right\|=\frac{a^{2}}{\|\dot{\gamma}\|^{3}}(1-\cos (t))
$$

The signed curvature is always negative so

$$
\frac{1}{\kappa_{s}} \mathbf{n}_{s}=\frac{\|\dot{\gamma}\|^{2}}{a(1-\cos (t))}(\sin t,-1+\cos t)
$$

Since $\|\dot{\gamma}\|^{2}=a^{2}(2-2 \cos t)$ this is just

$$
\frac{1}{\kappa_{s}} \mathbf{n}_{s}=2 a(\sin t,-1+\cos t),
$$

and

$$
\epsilon(t)=a(t-\sin t, 1-\cos t)+2 a(\sin t,-1+\cos t)=a(t+\sin t,-1+\cos (t) .
$$

Using the reparameterization $t=\tilde{t}-\pi$ this becomes

$$
\epsilon(\tilde{t})=a(\tilde{t}-\sin \tilde{t},-1-\cos \tilde{t})
$$

which is just $\gamma(\tilde{t})-(0,2)$.

