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Solutions
147a Winter 2012
Homework 2
i. Recall that § = (§(1+)2, —3(1 = 1)2, 55), and ||§]| = 1. Hence x(t) = ||§(t)], and since

(1-1)7%,0),

N =

() = (0975,

it follows that
1

V8 —12)
4 3

ii. Since 4 = (—z sin(t), —cos(t), £ sin(t)), and [|§|| = 1, it is again the case that x(t) = [|5(t)]|.
The equation

k(t) =

5 = (—% cos(t), sin(t), g cos(t)),

then implies that
k() = [IF@)] = L.
iii. Since ||¥|| # 1 the curvature is given by x(t) = HWWXHZH' Now 4(t) = (1,sinh(¢)) and %(t) =
(0, cosh(t)). Therefore

0 cosh(?)

TRSTE il )

and
K(t) = sech?(t).

iv.

15 > Al
K(t) = — = - .
I91% 3[cos(t) sin(#)]
This goes to co when # is an integer multiple of 7/2, at these time (cos® ¢, sin®t) = (+1,0), (0, +1).
Let s(t) be the arclength from a fixed point p on the curve v. Since 7 is regular, by proposition 1.3.5

s is a smooth function of ¢. Since k(t) = ‘ %(s(t))” and || - || : R%\ {(0,0)} — R is smooth r(t)

can be given as a composition of smooth functions as long as % # (0,0). Of course fTZ = (0,0)
contradicts the assumption x(t) > 0, showing that x(¢) is indeed smooth.
For a counter example when x = 0 one could use v(t) = (¢, %), then 4(¢) = (1, 3t?), 5(t) = (0, 6t),

15 x ¥l = H (1) 36;2 = 6|t|, and k(t) = % is not differentiable at ¢ = 0.

Assume that « is unit speed parameterized then t = 4 is smooth. Since the counter clockwise
rotation 7 : R? — R2 given by r(z,y) = (—y, z) is smooth, n, = r(t) is also smooth. Finally, the dot
product _-_: R2 x R? — R is smooth so k, = 4 -n, is smooth. Since any unit speed parameterization
is smooth for regular curves this also proves the non-unit speed case by composing with such a
reparameterization.

Alternatively use propositions 2.2.1 and 2.2.3 to show that x is the derivative of a smooth function
and is therefore smooth.
Let s(t) be a unit speed parameterization of v then

A
ddls =t — Arst = (1 — Ars)t.

This shows that 7 is regular as long as Ak, # 1, and its unit tangent vector and normal vectors
coincide with those of 7. Now let s*(s) be a unit speed paramaterization for 4*, then its inverse
5(s*) has derivative -2 and the curvature of 4 is

_ 1
= =X’
A dt _dt ds K
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2.6
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The three points, v(so),7(so = ds) are on a circle of radius r and center e provided
12 = y(s0) — el2 = (s +35) — el = (s — 35) — el
There will always be a unique r and e solving these equations provided Js is non-zero, and in the
case of a closed curve, small enough to guarantee v(sg + ds) # v(so — 0s). Let a(so,ds) and b(sg, ds)
be given by
e —v(s0) = a(s,ds)t + b(s, ds)ns.
Then it must be that
r? = ||y(so + 0s) — €)%,

= [I(y(s0 + d5) = 7(s0)) = (€ = v(s0)) >,

= [[7(s0 + ds) = v(s0)I* = 2[v(s0 + d5) = ¥(s0)] - [e = ¥(s0)] + e = ¥ (s0)I%,

= |[7(s0 + 0s) = v(s0)lI> = 2[v(s0 + d5) = ¥(s0)] - [e = 7(s0)] + 1%

Which, in turn, implies that
[7(s0 + 8s) = (s0)[I” = 2[7(s0 + d5) = 7(50)] - [a(s0, 85)t + b(s0, d5)n].
The left hand side of this is on the order of §s2, so dividing by ds and taking s to zero yields.
A(s0) - 61221()(&(50, 08)t + b(s0,0s)n,) = 6151210(1(50, ds) = 0.
Note that
0= [[7(s0 +ds) — €| + le = v(s0 — d5)[|* = 2[[7(s0) — €%,
= [[(v(s0 + d5) = v(s0)) = (e = v(s0)I* + [|(v(s0) — (50 = 85)) + (e = 7(s0))”
—2|ly(s0) — %,
= [[(v(s0 + ds5) = v(s0))II” = 2[(s0 + d5) —7(50)] - [€ = 7(50)]
+ [[(7(s0) = v(s0 = 88)[I* + 2[7(s0) — (50 — 85)] - [e = 7(s0)]
implies that

[(7(s0 + 85) = v(so)II” + [ (v(s0) = ¥(s0 — 85))|I>
and

2[v(s0 +0s) — 27(s0) +v(so — 0s)] - [a(s0, 0s)t + b(s0, Is)n,]
are equal. Dividing by ds? and taking s to zero yields

2|17 (s0)|I* = 2%(so) - lim b(s, 6s)ns.
65—0
Since «y is unit speed, this is just
2 =2k, lim b(s,ds).
65—0

Finally, this shows that if ks # 0 then e converges as ds goes to zero, and it converges to

€(s0) = (s0) + ~n.

S

The tangent to € is

. s K
é=t——n,—t=-—n,.
K"S K'/S

Therefore since k45 > 0 the arclength is
Sk 1
s€(s) = / —ds' = ——+C.
So Ks Ks

Since the unit tangent to € is t© = —n,, the signed unit normal is n = t. Thus the signed curvature

of € is 5
_dng ds Ky

KE = ==,
s ds ds¢ K



For the cycloid, v(t) = a(t — sint,1 — cost), the first and second derivative are
4(t) = a(l — cost,sint) and A(t) = a(sint, cost).

Thus the signed unit normal is
1 .
n; = —a(—sint, 1 — cost),
el

and the curvature is

2 . )
a sint cost a
"TIRIE || 1—cost sint H = W(l—COS(t))-
The signed curvature is always negative so
1 [edls .
—ng = ————(sint, —1 + cost).
ks a(l—cos(t)) (sint, —1 + )

Since ||4]|? = a?(2 — 2cost) this is just
—n, = 2a(sint, —1 + cost),
Rs
and
e(t) = a(t —sint, 1 — cost) + 2a(sint, —1 + cost) = a(t + sint, —1 + cos(¥).
Using the reparameterization ¢t = ¢t — 7 this becomes
e(t) = a(t —sint, —1 — cost),

which is just v(t) — (0, 2).



