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Homework 2
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it follows that

κ(t) =
1√

8(1− t2)
.

ii. Since γ̇ = (− 4
5 sin(t),− cos(t), 35 sin(t)), and ‖γ̇‖ = 1, it is again the case that κ(t) = ‖γ̈(t)‖.

The equation

γ̈ = (−4

5
cos(t), sin(t),

3

5
cos(t)),

then implies that

κ(t) = ‖γ̈(t)‖ = 1.

iii. Since ‖γ̇‖ 6= 1 the curvature is given by κ(t) = ‖γ̈×γ̇‖
‖γ̇‖3 . Now γ̇(t) = (1, sinh(t)) and γ̈(t) =

(0, cosh(t)). Therefore

‖γ̈ × γ̇‖ =

∥∥∥∥ 0 cosh(t)
1 sinh(t)

∥∥∥∥ = cosh(t),

and

κ(t) = sech2(t).

iv.

κ(t) =
‖γ̈ × γ̇‖
‖γ̇‖3

=
1

3| cos(t) sin(t)|
.

This goes to∞ when t is an integer multiple of π/2, at these time (cos3 t, sin3 t) = (±1, 0), (0,±1).
1.2 Let s(t) be the arclength from a fixed point p on the curve γ. Since γ is regular, by proposition 1.3.5

s is a smooth function of t. Since κ(t) =
∥∥∥d2γds2 (s(t))

∥∥∥ and ‖ · ‖ : R2 \ {(0, 0)} → R is smooth κ(t)

can be given as a composition of smooth functions as long as d2γ
ds2 6= (0, 0). Of course d2γ

ds2 = (0, 0)
contradicts the assumption κ(t) > 0, showing that κ(t) is indeed smooth.

For a counter example when κ = 0 one could use γ(t) = (t, t3), then γ̇(t) = (1, 3t2), γ̈(t) = (0, 6t),

‖γ̈ × γ̇‖ =

∥∥∥∥ 0 6t
1 3t2

∥∥∥∥ = 6|t|, and κ(t) = 6|t|
(1+9t4)3/2

is not differentiable at t = 0.

2.2 Assume that γ is unit speed parameterized then t = γ̇ is smooth. Since the counter clockwise
rotation r : R2 → R2 given by r(x, y) = (−y, x) is smooth, ns = r(t) is also smooth. Finally, the dot
product · : R2×R2 → R is smooth so κs = γ̈ ·ns is smooth. Since any unit speed parameterization
is smooth for regular curves this also proves the non-unit speed case by composing with such a
reparameterization.

Alternatively use propositions 2.2.1 and 2.2.3 to show that κs is the derivative of a smooth function
and is therefore smooth.

2.5 Let s(t) be a unit speed parameterization of γ then

dγλ

ds
= t− λκst = (1− λκs)t.

This shows that γλ is regular as long as λκs 6= 1, and its unit tangent vector and normal vectors
coincide with those of γ. Now let sλ(s) be a unit speed paramaterization for γλ, then its inverse
s(sλ) has derivative ds

dsλ
= 1
|1−λκs| , and the curvature of γλ is

κλs =
dt

dsλ
· ns =

dt

ds

ds

dsλ
· ns =

κs
|1− λκs|

.
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2.6 The three points, γ(s0), γ(s0 ± δs) are on a circle of radius r and center ε provided

r2 = ‖γ(s0)− ε‖2 = ‖γ(s0 + δs)− ε‖2 = ‖γ(s0 − δs)− ε‖2.
There will always be a unique r and ε solving these equations provided δs is non-zero, and in the
case of a closed curve, small enough to guarantee γ(s0 + δs) 6= γ(s0− δs). Let a(s0, δs) and b(s0, δs)
be given by

ε− γ(s0) = a(s, δs)t + b(s, δs)ns.

Then it must be that

r2 = ‖γ(s0 + δs)− ε‖2,
= ‖(γ(s0 + δs)− γ(s0))− (ε− γ(s0))‖2,
= ‖γ(s0 + δs)− γ(s0)‖2 − 2[γ(s0 + δs)− γ(s0)] · [ε− γ(s0)] + ‖ε− γ(s0)‖2,
= ‖γ(s0 + δs)− γ(s0)‖2 − 2[γ(s0 + δs)− γ(s0)] · [ε− γ(s0)] + r2.

Which, in turn, implies that

‖γ(s0 + δs)− γ(s0)‖2 = 2[γ(s0 + δs)− γ(s0)] · [a(s0, δs)t + b(s0, δs)ns].

The left hand side of this is on the order of δs2, so dividing by δs and taking δs to zero yields.

γ̇(s0) · lim
δs→0

(a(s0, δs)t + b(s0, δs)ns) = lim
δs→0

a(s0, δs) = 0.

Note that

0 = ‖γ(s0 + δs)− ε‖2 + ‖ε− γ(s0 − δs)‖2 − 2‖γ(s0)− ε‖2,
= ‖(γ(s0 + δs)− γ(s0))− (ε− γ(s0))‖2 + ‖(γ(s0)− γ(s0 − δs)) + (ε− γ(s0))‖2

− 2‖γ(s0)− ε‖2,
= ‖(γ(s0 + δs)− γ(s0))‖2 − 2[γ(s0 + δs)− γ(s0)] · [ε− γ(s0)]

+ ‖(γ(s0)− γ(s0 − δs))‖2 + 2[γ(s0)− γ(s0 − δs)] · [ε− γ(s0)],

implies that

‖(γ(s0 + δs)− γ(s0))‖2 + ‖(γ(s0)− γ(s0 − δs))‖2

and

2[γ(s0 + δs)− 2γ(s0) + γ(s0 − δs)] · [a(s0, δs)t + b(s0, δs)ns]

are equal. Dividing by δs2 and taking δs to zero yields

2‖γ̇(s0)‖2 = 2γ̈(s0) · lim
δs→0

b(s, δs)ns.

Since γ is unit speed, this is just

2 = 2κs lim
δs→0

b(s, δs).

Finally, this shows that if κs 6= 0 then ε converges as δs goes to zero, and it converges to

ε(s0) = γ(s0) +
1

κs
ns.

2.7 The tangent to ε is

ε̇ = t− κ̇s
κ2s

ns − t = − κ̇s
κ2s

ns.

Therefore since κ̇s > 0 the arclength is

sε(s) =

∫ s

s0

κ̇s
κ2s
ds′ = − 1

κs
+ C.

Since the unit tangent to ε is tε = −ns, the signed unit normal is nεs = t. Thus the signed curvature
of ε is

κεs = −dns
ds

ds

dsε
· t =

κ3s
κ̇s
.
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For the cycloid, γ(t) = a(t− sin t, 1− cos t), the first and second derivative are

γ̇(t) = a(1− cos t, sin t) and γ̈(t) = a(sin t, cos t).

Thus the signed unit normal is

ns =
1

‖γ̇‖
a(− sin t, 1− cos t),

and the curvature is

κ =
a2

‖γ̇‖3

∥∥∥∥ sin t cos t
1− cos t sin t

∥∥∥∥ =
a2

‖γ̇‖3
(1− cos(t)).

The signed curvature is always negative so

1

κs
ns =

‖γ̇‖2

a(1− cos(t))
(sin t,−1 + cos t).

Since ‖γ̇‖2 = a2(2− 2 cos t) this is just

1

κs
ns = 2a(sin t,−1 + cos t),

and
ε(t) = a(t− sin t, 1− cos t) + 2a(sin t,−1 + cos t) = a(t+ sin t,−1 + cos(t).

Using the reparameterization t = t̃− π this becomes

ε(t̃) = a(t̃− sin t̃,−1− cos t̃),

which is just γ(t̃)− (0, 2).


