Solutions

147a Winter 2012
Homework 1
$1.1\left(t^{2}, t^{4}\right)$ is not a paramaterization of $y=x^{2}$ as it misses the left half of the parabola.
1.2 Many different paramaterizations are possible.
i. $(\tan (t), \sec (t)) \quad t \in(-\pi / 2, \pi / 2), t \in(\pi / 2,3 \pi / 2)$
ii. $(2 \cos (t), 3 \sin (t)) \quad t \in[0,2 \pi)$.
$1.4 \quad$ i. $\dot{\gamma}(t)=(-2 \cos (t) \sin (t), 2 \cos (t) \sin (t))$
ii. $\dot{\gamma}(t)=\left(e^{t}, 2 t\right)$
1.7 Let a circle of radius a start touching the origin and roll along the x axis at constant unit angular velocity. Then the curve traced by the center of the circle is, $\alpha(t)=(a t, a)$. If $\gamma(t)$ is the curve traced by the point starting at the origin then $\beta(t)=\gamma(t)-\alpha(t)$ is the vector pointing from the center of the circle to this point. Since the circle is moving clockwise with consant unit angular velocity and the initial vector is $(0,-a)$ it can be seen that $\beta(t)=(-a \sin (t),-a \cos (t))$. Thus

$$
\gamma(t)=\beta(t)+\alpha(t)=(a t-a \sin (t), a-a \cos (t))
$$

2.1 The tangent vector to the curve $\gamma(t)=(t, \cosh (t))$ is

$$
\dot{\gamma}(t)=(1, \sinh (t))
$$

Since $(0,1)$ corresponds to $t=0$ the arclength after time t is

$$
\begin{aligned}
s(t) & =\int_{0}^{t}\left\|\dot{\gamma}\left(t^{\prime}\right)\right\| d t^{\prime} \\
& =\int_{0}^{t} \sqrt{1+\sinh ^{2}\left(t^{\prime}\right)} d t^{\prime} \\
& =\int_{0}^{t} \cosh \left(t^{\prime}\right) d t^{\prime} \\
& =\sinh (t)
\end{aligned}
$$

$2.2 \quad$ i. $\dot{\gamma}(t)=\left(\frac{1}{2} \sqrt{1+t},-\frac{1}{2} \sqrt{1-t}, \frac{1}{\sqrt{2}}\right)$
$\|\dot{\gamma}(t)\|=\sqrt{\frac{1}{4}(1+t)+\frac{1}{4}(1-t)+\frac{1}{2}}=1$
ii. $\dot{\gamma}(t)=\left(-\frac{4}{5} \sin (t),-\cos (t), \frac{3}{5} \sin (t)\right)$
$\|\dot{\gamma}(t)\|=\sqrt{\frac{16}{25} \sin ^{2}(t)+\cos ^{2}(t)+\frac{9}{25} \sin ^{2}(t)}=1$
3.1 i. The tangent to the curve, $\dot{\gamma}=(-2 \cos (t) \sin (t), 2 \cos (t) \sin (t))$ is zero at all integer multiples of $\pi / 2$.
ii. This curve is regular as it avoids the zeros from part (i). An obvious unit speed paramaterization of the line $y=1-x$ is $\gamma(s)=(1-\sqrt{2} s, \sqrt{2} s)$.
iii. $\dot{\gamma}(t)=(1, \cosh (t))$ is never zero thus this curve is regular. Recall from (2.1) that

$$
s(t)=\sinh (t)
$$

. Therefore a unit speed paramterization would be

$$
\gamma(s)=\left(\sinh ^{-1}(s), \cosh \left(\sinh ^{-1}(s)\right)\right)
$$

3.4 i. Let $\tilde{\gamma}:(\tilde{\alpha}, \tilde{\beta}) \rightarrow \mathbb{R}^{n}$ be a reparamaterization of $\gamma:(\alpha, \beta) \rightarrow \mathbb{R}^{n}$. Then there is a smooth bijection $\phi:(\tilde{\alpha}, \tilde{\beta}) \rightarrow(\alpha, \beta)$ with smooth inverse, ϕ^{-1}, such that

$$
\tilde{\gamma}=\gamma \circ \phi
$$

Composing with ϕ^{-1} gives the equation

$$
\tilde{\gamma} \circ \phi^{-1}=\gamma .
$$

Since $\phi^{-1}:(\alpha, \beta) \rightarrow(\tilde{\alpha}, \tilde{\beta})$ is smooth with smooth inverse, ϕ, this shows that γ is a reparamaterization of $\tilde{\gamma}$.
ii. Let $\tilde{\gamma}:(\tilde{\alpha}, \tilde{\beta}) \rightarrow \mathbb{R}^{n}$ be a reparamaterization of $\gamma:(\alpha, \beta) \rightarrow \mathbb{R}^{n}$, and let $\hat{\gamma}:(\hat{\alpha}, \hat{\beta}) \rightarrow \mathbb{R}^{n}$ be a reparamaterization of $\tilde{\gamma}$. Then there are smooth bijections $\phi:(\tilde{\alpha}, \tilde{\beta}) \rightarrow(\alpha, \beta)$ and $\psi:(\hat{\alpha}, \hat{\beta}) \rightarrow$ $(\tilde{\alpha}, \tilde{\beta})$ with smooth inverses, ϕ^{-1} and ψ^{-1} such that

$$
\tilde{\gamma}=\gamma \circ \phi \quad \text { and } \quad \hat{\gamma}=\tilde{\gamma} \circ \psi
$$

Substituting the first into the second and using the associativity of function composition gives the equation

$$
\hat{\gamma}=(\gamma \circ \phi) \circ \psi=\gamma \circ(\phi \circ \psi) .
$$

Now $\phi \circ \psi$ is smooth, as a composition of smooth functions, and bijective, as a composition of bijections. Furthermore its inverse $(\phi \circ \psi)^{-1}=\psi^{-1} \circ \phi^{-1}$ is also a composition of smooth functions, and thus is smooth itself. This shows that $\hat{\gamma}$ is a reparamateriztion of γ. Q.E.D.

