THE HEISENBERG GROUP ACTS ON A STRICTLY CONVEX DOMAIN.

DARYL COOPER

Every linear group acts by isometries on some properly convex domain in real projective space. This follows from the fact that action of $\operatorname{SL}(n, \mathbb{R})$ on the space of quadratic form in n variables preserves the projectivization, $\operatorname{Pos}(n)$, of the properly convex cone consisting of positive definite forms. If Γ is the holonomy of a properly convex orbifold of finite volume then every virtually nilpotent group is virtually abelian, moreover every unipotent subgroup is conjugate into $\mathrm{PO}(n, 1)$. A reference for all this is [1]. This paper gives the first example of a unipotent group that is not virtually abelian and preserves a strictly convex domain. It answers a question asked by Misha Kapovich.

The Heisenberg group is the subgroup $H \subset \mathrm{SL}(3, \mathbb{R})$ of unipotent upper-triangular matrices. Define $\theta: H \rightarrow \mathrm{SL}(10, \mathbb{R})$ and $G=\theta(H)$ where

$$
\theta\left(\begin{array}{ccc}
1 & a & c \\
0 & 1 & b \\
0 & 0 & 1
\end{array}\right)=\left(\begin{array}{cccccccccc}
1 & 2 a & 2 c & a & a^{2} / 2 & a^{3} / 6 & b & 2 a^{2}+b^{2} / 2 & b^{3} / 6+2 a c & \left(a^{4}+b^{4}\right) / 24+c^{2} \\
0 & 1 & b & 0 & 0 & 0 & 0 & 2 a & a b+c & b c \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & a & c \\
0 & 0 & 0 & 1 & a & a^{2} / 2 & 0 & 0 & 0 & a^{3} / 6 \\
0 & 0 & 0 & 0 & 1 & a & 0 & 0 & 0 & a^{2} / 2 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & a \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & b & b^{2} / 2 & b^{3} / 6 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & b & b^{2} / 2 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & b \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

It is clear that θ is injective and easy to check that it is a homomorphism.
Theorem 0.1. There is a strictly convex domain $\Omega \subset \mathbb{R}^{9}{ }^{9}$ that is preserved by G. This is an effective action of the Heisenberg group on Ω by parabolic isometries that are unipotent.

Proof. The group G acts affinely on the affine patch $\left[x_{1}: x_{2}: x_{3}: x_{4}: x_{5}: x_{6}: x_{7}: x_{8}: x_{9}: 1\right]$ that we identify with \mathbb{R}^{9}. Let $p \in \mathbb{R}^{9}$ be the origin. Then $G \cdot p$ is

$$
\left(\left(a^{4}+b^{4}\right) / 24+c^{2}, b c, c, a^{3} / 6, a^{2} / 2, a, b^{3} / 6, b^{2} / 2, b\right)
$$

This orbit is an algebraic embedding $\mathbb{R}^{3} \hookrightarrow \mathbb{R}^{9}$ which limits on the single point

$$
q=[1: 0: 0: 0: 0: 0: 0: 0: 0: 0] \in \mathbb{R P}^{9}
$$

in the hyperplane at infinity, P_{∞}. This follows from the fact that $\left(a^{4}+b^{4}\right) / 24+c^{2}$ dominates all the other entries whenever at least one of $|a|,|b|,|c|$ is large.

Let $S \subset \mathbb{R}^{9}$ be this orbit. Choose 10 random points on $S \subset \mathbb{R} \mathbb{P}^{9}$ and compute the determinant, d, of the corresponding 10 vectors in \mathbb{R}^{10}. Then $d \neq 0$ therefore the interior $\Omega^{+} \subset \mathbb{R}^{9}$ of the convex hull of S has dimension 9 .

[^0]Moreover the closure Ω^{\prime} of Ω^{+}in $\mathbb{R P}^{9}$ is disjoint from the closure of the affine hyperplane $x_{1}=-1$, hence Ω^{+}is properly convex. Since $\Omega^{\prime} \cap P_{\infty}=q$ and G preserves q and P_{∞} and G is unipotent, it follows from (5.8) in [1] that G preserves some strictly convex domain $\Omega \subset \Omega^{\prime}$.

Corollary 0.2. There is a strictly convex real projective manifold Ω / Γ of dimension 9 with nilpotent fundamental group $\Gamma \cong\langle\alpha, \beta:[\alpha,[\alpha, \beta]],[\beta,[\alpha, \beta]]\rangle$ that is not virtually abelian. Moreover Γ is unipotent.

Proof. If Γ is a lattice in G then Ω / Γ is a strictly convex manifold with unipotent holonomy and Γ is nilpotent but not virtually abelian.

The genesis of this example is as follows. The image of H in $\operatorname{SL}(6, \mathbb{R})$ under the irreducible representation $\mathrm{SL}(3, \mathbb{R}) \rightarrow \mathrm{SL}(6, \mathbb{R})$ is

$$
\left(\begin{array}{cccccc}
1 & 2 a & a^{2} & 2 c & 2 a c & c^{2} \\
0 & 1 & a & b & a b+c & b c \\
0 & 0 & 1 & 0 & 2 b & b^{2} \\
0 & 0 & 0 & 1 & a & c \\
0 & 0 & 0 & 0 & 1 & b \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

and preserves $Q:=\operatorname{Pos}(3) \subset \mathbb{R P}^{5}$. The boundary of the closure of Q consists of semi-definite forms and contains flats, so Q is not strictly convex. Let $A, B, C \in \mathrm{SL}(6, \mathbb{R})$ be the elements corresponding to one of a, b, c being 1 and the others 0 . Each of A, B, C has a parabolic fixed point in ∂Q corresponding to a rank 1 quadratic form. Every point in Q converges to this parabolic fixed point under iteration by the given group element. The fixed point for A and B are distinct and lie in a flat in ∂Q.

The idea is to increase the dimension of the representation and use the extra dimensions to add parabolic blocks of size 5 onto A (row 1 and rows $7-10$) and onto B (row 1 and rows 11-14) that commute and the parabolic fixed point of each block is the rank-1 form that is a fixed point of C. This gives a 14-dimensional representation of H :

$$
\left(\begin{array}{cccccccccccccc}
1 & 2 a & a^{2} & 2 c & 2 a c & c^{2} & a & a^{2} / 2 & a^{3} / 6 & a^{4} / 24 & b & b^{2} / 2 & b^{3} / 6 & b^{4} / 24 \\
0 & 1 & a & b & a b+c & b c & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 2 b & b^{2} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & a & c & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & b & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & a & a^{2} / 2 & a^{3} / 6 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & a & a^{2} / 2 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & a & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & b & b^{2} / 2 & b^{3} / 6 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & b & b^{2} / 2 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & b \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

The top-left 6×6 block is the image of H in $\operatorname{SL}(6, \mathbb{R})$. The entries in A^{n} and B^{n} grow like n^{2}. This is beaten by the growth of some entries in the added blocks of size 5 which grow like n^{4}. This gives rise to a representation of H of dimension $6+4+4=14$. The orbit of

$$
[0: 0: 0: 0: 0: 1: 0: 0: 0: 1: 0: 0: 0: 1]
$$

is

$$
\left[\left(a^{4}+b^{4}\right) / 24+c^{2}: b c: b^{2}: c: b: 1: a^{3} / 6: a^{2} / 2: a: 1: b^{3} / 6: b^{2} / 2: b: 1\right]
$$

so there is a codimension- 4 projective hyperplane that is preserved, and which is defined by

$$
x_{6}=x_{10}=x_{14} \quad x_{5}=x_{13} \quad x_{3}=2 x_{12}
$$

The restriction to this hyperplane gives θ.

References

[1] D. Cooper, D. D. Long, and S. Tillmann. On convex projective manifolds and cusps. Adv. Math., 277:181-251, 2015.

Department of Mathematics, University of California, Santa Barbara, CA 93106, USA

E-mail address: cooper@math.ucsb.edu

[^0]: Date: August 31, 2016.
 The author acknowledges support from U.S. National Science Foundation grants DMS 1107452, 1107263, 1107367 "RNMS: GEometric structures And Representation varieties" (the GEAR Network). Cooper was partially supported by NSF grants DMS 1065939, 1207068 and 1045292 MSC 57N16, 57M50 .

