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A 3-Manifold with no Real Projective Structure

Daryl Cooper(1), William Goldman(2)

Dedicated to Michel Boileau on the occasion of his 60th birthday

RÉSUMÉ. — Nous montrons que la somme connexe de deux copies de
l’espace projectif de dimension trois n’admet pas de structure projective
réelle. Ceci est le premier exemple connu d’une variété connexe de dimen-
sion 3 sans structure projective réelle.

ABSTRACT. — We show that the connected sum of two copies of real
projective 3-space does not admit a real projective structure. This is the
first known example of a connected 3-manifold without a real projective
structure.
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1. Introduction

Geometric structures modeled on homogeneous spaces of Lie groups were
introduced by Ehresmann [14]. If X is a manifold upon which a Lie group G
acts transitively, then an Ehresmann structure modeled on the homogeneous
space (G, X) is defined by an atlas of coordinate charts into X such that the
coordinate changes locally lie in G. For example, an Ehresmann structure
modeled on Euclidean geometry is equivalent to a flat Riemannian met-
ric. More generally, constant curvature Riemannian metrics are Ehresmann
structures modeled on the sphere or hyperbolic space and their respective
groups of isometries. A recent survey of the theory of Ehresmann structures
on low-dimensional manifolds is [18]. Ehresmann (G, X)-structures are spe-
cial cases of flat Cartan connections (modeled on (G, X)) with vanishing
curvature. See Sharpe [26] for a modern treatment of this theory.

Topological uniformization in dimension 2 asserts that every closed 2-
manifold admits a constant curvature Riemannian metric. Therefore every
such surface is uniformized by one of three Ehresmann structures corre-
sponding to constant curvature Riemannian geometry. However, projective
and conformal geometry provide two larger geometries, each of which uni-
formize all surfaces (Ehresmann [14]).

The subject received renewed attention in the late 1970’s by W. Thurston,
who cast his Geometrization Conjecture (now proved by Perelman) in terms
of Ehresmann (G, X)-structures. Thurston proposed that the relevant ge-
ometries are locally homogeneous 3-dimensional Riemannian manifolds.
These are the 3-dimensional homogeneous spaces G/H where the isotropy
group H is compact. Up to local isometry, those which cover compact 3-
manifolds fall into eight types. See Scott [25], Thurston [29] and Bonahon
[5] for a description of these geometries. Every closed 3-manifold canonically
decomposes along essential elliptic or Euclidean 2-manifolds into pieces, each
of which admit a geometric structure of one of these eight types.

Since these eight geometries often themselves admit geometric struc-
tures modeled on homogeneous spaces with noncompact isotropy group, it is
tempting to search for geometries which uniformize every closed 3-manifold.
[15] exhibits examples of closed 3-manifolds which admit no flat conformal
structures. ([15] also contains examples of 3-manifolds, such as the 3-torus,
which admit no spherical CR-structure.) The purpose of this note is to ex-
hibit a closed 3-manifold (namely the connected sum RP3#RP3) which does
not admit a flat projective structure. (On the other hand RP3#RP3 does
admit a flat conformal and spherical CR structures.)
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A RPn-structure on a connected smooth n-manifold M is a Ehresmann
structure modeled on RPn with coordinate changes locally in the group
PGL(n + 1, R) of collineations (projective transformations) of RPn. Such
a structure is defined by an atlas for M where the transition maps are
the restrictions of projective transformations to open subset of projective
n-space. Fix a universal covering space M̃ → M ; then an atlas as above
determines an immersion called the developing map

M̃
dev−−−→ RPn

and a homomorphism called the holonomy:

π1M
holM−−−−→ PGL(n + 1, R)

such that for all m̃ ∈ M̃ and all g ∈ π1M that

devM (g · m̃) = holM (g) · devM (m̃).

Basic questions include the existence and classification of RP3-structures
on a given 3-manifold.

Recent progress on classification is documented in [12],[11]: in particular
certain closed hyperbolic 3-manifolds admit continuous families of projective
structures containing the hyperbolic structure, while others do not.

Every 2-manifold Σ admits a projective structure. The convex ones form
a cell of dimension 16genus(Σ) (Goldman [17]). Suhyoung Choi [8] showed
that every RP2-manifold of genus g > 1 decomposes naturally into convex
subsurfaces. Combining these two results completely classify RP2-structures
[10],[9]. Almost all geometric 3-manifolds admit a projective structure, in
fact:

Theorem.— Suppose that M is a 3-manifold equipped with one of the
eight Thurston geometric structures. Then either M is a Seifert fiber space
with a fibration that does not admit an orientation (and there is a double
cover which is real projective) or else M inherits a uniquely determined real
projective structure underlying the given Thurston geometric structure.

All this was presumably known to Thurston, and was documented by
Thiel[27] and Molnar [23]. This theorem is a consequence of the existence
of a representation of each of the eight Thurston geometries (G, X) into
(RP3,PGL(4, R)) except that in the case of the product geometries S2 × R

and H2 × R the group G = Isom(X) is replaced by the index-2 sub-
group Isom+(X), which preserves the orientation on the R direction. In
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general some 3-manifolds admit a real projective structure that is not ob-
tained from a Thurston geometric structure (Benoist [3]). Furthermore ex-
ceptional fibered examples admit exotic real projective structures which do
not arise from a projective representation of the associated geometry. (Com-
pare Guichard-Wienhard [19] for some examples on twisted S1-bundles over
closed hyperbolic surfaces.)

The manifold RP3#RP3 admits a geometric structure modeled on S2×R.
Our main result is:

Theorem.— The 3-manifold M = RP3#RP3 does not admit an RP3-
structure.

One impetus to prove this result is the fact that almost all geomet-
ric 3-manifolds in the sense of Thurston have projective structures. This
suggested that such structures might be universal for 3-manifolds, an out-
come that would have had significant consequences since, for example, every
closed simply connected projective manifold is a sphere. (This would imply
the Poincaré conjecture.) One could imagine a functional, analogous to the
Cherns-Simon invariant (whose critical points are conformally flat metrics)
or the projective Weyl tensor, whose gradient flow would converge to a flat
projective structure. Instead, as our simple example shows, the situation
turns out to be more intriguing and complex.

After proving this result we learned from Yves Benoist that this result
can also be deduced from his classification [1, 2] of real projective manifolds
with abelian holonomy. However we believe that our direct proof, without
using Benoist’s general machinery, may suggest generalizations. A key point
in Benoist’s classification (see [2], §4.4 and Proposition 4.9 in particular) is
that the developing image of such an RP3-structure is the complement of
a disjoint union of projective subspaces of dimension 0 (a point) and 2,
presenting a basic asymmetry which is incompatible with the deck trans-
formation of M̂ . This is impossible as described in the next paragraph. The
example in §3 is a projective 3-manifold whose holonomy is infinite dihedral
but not injective. In this case the developing image is the complement of two
projective lines, which deformation retracts to a two-torus, and has trivial
holonomy. In some sense1 this manifold is trying to be RP3#RP3.

To give some intuition for the following proof we first show that the
developing map for a real projective structure on RP3#RP3 cannot be in-
jective. The universal cover of M is S2 × R. If the developing map embeds
this in RP3 then there are two complementary components and they have

(1) A phrase the first author learned from Michel Boileau
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the homotopy type of a point and P2. There is a covering transformation of
the universal cover which swaps the ends. The holonomy leaves the image
of the developing map invariant but swaps the complementary components.
This is of course impossible since they have different homotopy types. Un-
fortunately one can’t in general assume the developing map for a projective
structure is injective.

Currently, it seems to be very difficult to show that a 3-manifold does
not admit a projective structure. We do not know if a connected sum can
ever admit a projective structure. Is there a projective structure on a closed
Seifert-fibered manifold ̸= S3 for which the holonomy of the fiber is trivial?
In this regard, we note that Carrière-d’Albo-Meignez [7] have shown that
several closed Seifert 3-manifolds do not admit affine structures.

This work was partially supported by NSF grants DMS-0706887, 070781,
1065939, 1207068, 1045292 and 0405605. Furthermore we are grateful for
the Research Network in the Mathematical Sciences grant for the GEAR
Research Network (DMS-1107367) for partial support as well as the Fo-
cused Research Grant DMS-1065965. Le premier auteur a appris beaucoup
mathématiques à partir de Michel et aussi une appréciation de fromage de
chévre et du vin rosé.

2. The Ehresmann-Weil-Thurston principle

Fundamental in the deformation theory of locally homogeneous (Ehres-
mann) structures is the following principle, first observed by Thurston [28]:

Theorem 2.1.— Let X be a manifold upon which a Lie group G acts
transitively. Let M have a geometric structure modeled on (G, X) with
holonomy representation π1(M) ρ−→ G. For ρ′ sufficiently near ρ in the space
of representations Hom(π1(M), G), there exists a (nearby) (G, X)-structure
on M with holonomy representation ρ′.

Corollary 2.2.— Let M be a closed manifold. The set of holonomy
representations of (G, X)-structures on M is open in Hom(π1(M), G).

This principle has a long history. In the context of CP1-structures, this is
due to Hejhal [20]; see also Earle [13] and Hubbard [21]. The first application
is the theorem of Weil [31] that the set of Fuchsian representations of the
fundamental group of a closed surface group in PSL(2, R) is open. The first
detailed proofs of this fact are Lok [22], Canary-Epstein-Green [6], and
Goldman [16] (the proof in [16] was worked out with M. Hirsch, and were
independently found by A. Haefliger). The ideas in these proofs may be
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traced to Ehresmann. For a more recent proof, with applications to rigidity,
see Bergeron-Gelander [4].

In the sequel M = RP3#RP3. By Van Kampen’s theorem,

π1M ∼= ⟨ a, b : a2 = 1 = b2 ⟩

is isomorphic to the infinite dihedral group.

3. An example with dihedral holonomy

Although we prove that no RP3-structure exists on RP3#RP3, there do
exist RP3-manifolds whose holonomy is the infinite dihedral group. Namely,
consider two linked projective lines ℓ1, ℓ2 in RP3 and a collineation γ having
ℓ1 as a sink and ℓ2 as a source. Then the complement

Ω := RP3 \ (ℓ1 ∪ ℓ2)

is fibered by 2-tori and the region between two of them forms a fundamental
domain for the cyclic group ⟨γ⟩ acting on Ω. The quotient Ω/⟨γ⟩ is an RP3-
manifold diffeomorphic to a 3-torus having cyclic holonomy group.

Now choose an free involution ι of RP3 which interchanges ℓ1 and ℓ2,
conjugating γ to γ−1. The group Γ := ⟨γ, ι⟩ acts properly and freely on Ω
and contains the cyclic subgroup ⟨γ⟩ with index two. The quotient Ω/Γ is
an RP3-manifold with cyclic holonomy. It is a Bieberbach manifold, having
a Euclidean structure.

In coordinates we may take ℓ1 and ℓ2 to be the projectivizations of
the linear subspaces R2 × {0} and {0} × R2 respectively. The projective
transformations γ and ι are represented by the respective matrices:

γ ←→

⎡

⎢
⎢
⎣

λ 0 0 0
0 λ 0 0
0 0 λ−1 0
0 0 0 λ−1

⎤

⎥
⎥
⎦ , ι←→

⎡

⎢
⎢
⎣

0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0

⎤

⎥
⎥
⎦

4. Proof of Main Theorem

Using the presentation of π1M above there is a short exact sequence

1 −→ Z −→ π1M ∼= Z2 ∗ Z2 −→ Z2 −→ 1.

and the product c := ab generates the infinite cyclic normal subgroup.
Corresponding to the subgroup of π1M generated by a and cn there is an
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n-fold covering space M (n) → M . The manifold M (n) is homeomorphic
to M . When n = 2 the cover is regular and corresponds to the subgroup
generated by a and bab−1. Thus any projective structure on M yields other
projective structures on (covers of) M whose holonomy has certain desirable
properties. We use this trick throughout the paper.

If M admits an RP3 structure, then there is a developing map devM :
M̃ → RP3 with holonomy holM : π1(M) → PGL(4, R). Choose A, B ∈
GL(4, R) with [A] = holM (a), [B] = holM (b) . Set C = AB.

In view of the previous remarks, after passing to the double covering-
space M (2), there is a projective structure with the matrices A and B con-
jugate. This property continues to hold after passing to a further n-fold
covering space M (2n) −→ M (2), thereby replacing C2 by C2n. This cover-
ing, combined with a small deformation, enables one to reduce the problem
to a restricted class of holonomies.

Outline proof. If M admits a projective structure then after a small de-
formation some finite covering is N = S2 × S1 with a projective structure
with holonomy contained in a one-parameter group G that becomes diag-
onal after conjugacy. Furthermore there is an involution, τ , of N reversing
the S1 factor which is realized by a projective map which normalizes G.
The flow generated by G on RP3 pulls back to N . The flow on RP3 has
stationary points consisting of certain projective subspaces corresponding
to the eigenspaces of G. One quickly reduces to the case that the flow on
N is periodic giving a product structure. The orbit space is S2. The orbit
space of the flow on RP3 is a non-Hausdorff surface L. The developing map
induces an immersion of S2 into L. There are only two possibilities for L
corresponding to the two structures of the stationary set. The possibilities
for immersions of S2 into L are determined. None of these is compatible with
the action of τ . This contradicts the existence of a developing map.

Lemma 4.1.— The holonomy is injective.

Proof. — Otherwise the holonomy has image a proper quotient of the infi-
nite dihedral group which is therefore a finite group. The cover M̃ ′ → M
corresponding to the kernel of the holonomy is then a finite cover which is
immersed into RP3 by the developing map. Since M̃ ′ is compact dev is a
covering map. Hence M̃ ′ is a covering-space of RP3. But π1M̃ ′ is infinite,
which contradicts that it is isomorphic to a subgroup of π1RP3 ∼= Z2.

Observe that in π1M that c is conjugate to c−1 since

c−1 = (ab)−1 = b−1a−1 = ba = b(ab)b−1 = bcb−1.

– 1225 –



Daryl Cooper, William Goldman

It follows that for each eigenvalue λ of C the multiplicity of λ is the same
as that of λ−1.

Lemma 4.2.— We may assume C is diagonalizable over R and has posi-
tive eigenvalues.

Proof. — After passing to the double cover of M discussed above we may
assume that A and B are conjugate. Since [A]2 ∈ PGL(4, R) is the identity
it follows that after rescaling A we have A2 = ±Id, thus A is diagonalizable
over C. If A2 = Id then A has eigenvalues ±1. Since we are only interested
in [A] we may multiply A by −1 and arrange that the eigenvalue −1 has
multiplicity at most 2. Otherwise A2 = −Id and A has eigenvalues eigen-
values ±i each with multiplicity two. Thus A is conjugate in GL(4, R) to one
of the matrices:

A1 =

⎡

⎢
⎢
⎣

0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

⎤

⎥
⎥
⎦ , A2 =

⎡

⎢
⎢
⎣

−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤

⎥
⎥
⎦ ,

A3 =

⎡

⎢
⎢
⎣

−1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1

⎤

⎥
⎥
⎦

After conjugating hol we may further assume that A = Ai for some i ∈
{1, 2, 3}. Since A and B are conjugate there is P ∈ GL(4, R) such that
B = P · A · P−1. Then C = A · P · A · P−1. Changing P is a way to
deform hol. The first step is to show that when P is in the complement of a
certain algebraic subset then C has four distinct eigenvalues and is therefore
diagonalizable over C.

Given a homomorphism hol′ : π1M → PGL(4, R) sufficiently close to hol
by 2.1 there is a projective structure on M with this holonomy. Consider
the map

f : GL(4, R) −→ SL(4, R)

given by

f(P ) = A · P · A · P−1.

This is a regular map defined on GL(4, R). Define g : SL(4, R) → R2 by
g(Q) = (trace(Q), trace(Q2)). This is also a regular map.
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Case 1. A = A1 or A3. An easy computation shows that the image of
g ◦ f contains an open set:

A P g ◦ f

A1

⎡

⎢
⎢
⎣

0 1 0 0
y 0 0 0
1 0 0 x
0 0 1 1

⎤

⎥
⎥
⎦

x−2y−2(x2y + 2xy2 + x3y2 + x2y3,
x2 + 4y2 + 2x2y2 + x4y2 + x2y4)

A3

⎡

⎢
⎢
⎣

0 0 1 0
1 0 0 1

y + x 0 0 y − x
0 1 0 0

⎤

⎥
⎥
⎦ x−2(−2x2 − 2xy, 4y2)

The subset E ⊂ GL(4, R) consisting of all P for which C = f(P ) has a
repeated eigenvalue is the affine algebraic set where the discriminant of the
characteristic polynomial of C vanishes.

Subclaim. — E is a proper subset.

Let S be the set of eigenvalues of C. The map τ(z) = z−1 is an involution
on S because C is conjugate to C−1. Each orbit in S under this involution
contains at most 2 elements. An orbit of size one consists of either 1 or −1,
from which it follows that if P ∈ E then |S| < 4 and S ⊂ {±1,λ±1}. Thus
if P ∈ E either S ⊂ {±1} or

trace(C) = λ+ λ−1 + m or trace(C) = 2λ+ 2λ−1

where m ∈ {0,±2} and

trace(C2) = λ2 + λ−2 + 2.

In each case trace(C) and trace(C2) satisfies an algebraic relation. Thus
dim[g ◦ f(E)] = 1. The image of g ◦ f contains an open set therefore E is a
proper subset, proving the subclaim.

Since E is an algebraic subset of GL(4, R) which is a proper subset it
follows that GL(4, R)\E is open and dense in the Euclidean topology. Hence
there is a small perturbation of P and of hol so that C is diagonalizable over
C and has 4 distinct eigenvalues {λ±1

1 ,λ±1
2 }.

By suitable choice of P , we can arrange that the arguments of λ1 and λ2

are rational multiples of π. Furthermore passing to a finite covering-space
of M , we may assume all eigenvalues of C are real. Passing to a double
covering-space we may assume these eigenvalues are positive. However it is
possible that they are no longer distinct.
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We have shown in this case that the projective structure on (a finite cover
of) M may be chosen so that C is diagonal with real positive eigenvalues,
which completes case 1.

Case 2. A = A2. Then for every choice of P the +1 eigenspaces of A
and B intersect in a subspace of dimension at least 2. Since C = AB it
follows that there is a 2-dimensional subspace on which C is the identity,
and thus C has eigenvalue 1 with multiplicity at least 2. It is easy to see
that trace ◦ f is not constant, for example when

P =

⎡

⎢
⎢
⎣

1 0 0 1
0 1 1 0
1 1 0 0
0 x 0 1

⎤

⎥
⎥
⎦ trace(f(P )) = 4/(1 + x)

Thus on a dense open set f(P ) ̸= 4 so C has an eigenvalue λ ̸= 1.
As before, by replacing C by C2 if needed, we may assume λ ̸= ±1. Thus
λ−1 ̸= λ is also an eigenvalue giving 3 distinct eigenvalues λ,λ−1, 1, 1. Since
the +1-eigenspace of C has dimension two, C is diagonalizable over C. The
rest of the argument is as before.

Lemma 4.3.— We may assume that C is one of the following matrices
with λ2 > λ1 > 1.

C1 =

⎡

⎢
⎢
⎣

λ1 0 0 0
0 λ1 0 0
0 0 λ−1

1 0
0 0 0 λ−1

1

⎤

⎥
⎥
⎦ , C2 =

⎡

⎢
⎢
⎣

λ1 0 0 0
0 λ−1

1 0 0
0 0 1 0
0 0 0 1

⎤

⎥
⎥
⎦ ,

C3 =

⎡

⎢
⎢
⎣

λ1 0 0 0
0 λ2 0 0
0 0 λ−1

1 0
0 0 0 λ−1

2

⎤

⎥
⎥
⎦

Proof. — The result follows from Lemma 4.2 and the fact that C is conjugate
to C−1. Observe that Lemma 4.1 rules out all eigenvalues are 1.

There is a 1-parameter diagonal subgroup g : R → G ⊂ PGL(4, R) such
that g(1) = [C]. For example if C = C3 then this subgroup is:

g1(t) =

⎡

⎢
⎢
⎣

exp(ℓ1t) 0 0 0
0 exp(ℓ2t) 0 0
0 0 exp(−ℓ1t) 0
0 0 0 exp(−ℓ2t)

⎤

⎥
⎥
⎦ ℓi = log(λi).

– 1228 –



A 3-Manifold with no Real Projective Structure

This group G is characterized as the unique one-parameter subgroup
which contains the cyclic group H generated by C and such that every
element in G has real eigenvalues. Since H is normal in hol(π1M) it follows
from the characterization that G is normalized by hol(π1M).

Let N → M be the double cover corresponding to the subgroup of
π1M generated by c. Observe that N ∼= S2 × S1. Let π : Ñ → N be
the universal cover. Then N inherits a projective structure from M with
the same developing map devN = devM . The image of the holonomy for
this projective structure on N is generated by [C]. Let z ∈ gl(4, R) be an
infinitesimal generator of G so that G = exp(R · z). Thus for C3 we have

z =

⎡

⎢
⎢
⎣

ℓ1 0 0 0
0 ℓ2 0 0
0 0 −ℓ1 0
0 0 0 −ℓ2

⎤

⎥
⎥
⎦ .

There is a flow Φ : RP3 × R→ RP3 on RP3 generated by G given by

Φ(x, t) = exp(tz) · x.

Let V be the vector field on RP3 velocity of this flow. The fixed points
of the flow are the zeroes of this vector field. The vector field is preserved
by the flow, and thus by hol(π1N). It follows that V pulls back via the
developing map to a vector field ṽ on Ñ which is invariant under covering
transformations and thus covers a vector field v on N.

The subset Z ⊂ RP3 on which V is zero is the union of the eigenspaces
of C. Thus the possibilities for the zero set Z are:
(1) For C1 two disjoint projective lines.
(2) For C2 one projective line and two points.
(3) For C3 four points.

Lemma 4.4.— C = C1 is impossible.

Proof. — If C = C1 then Z is the union of disjoint two lines ℓ1, ℓ2 in RP3

which are invariant under hol(π1N). Then dev−1(ℓi) is a 1-submanifold in
Ñ which is a closed subset invariant under covering transformations. Hence

αi = π(dev−1(ℓi))

is a compact 1-submanifold in N. Furthermore α1 ∪ α2 is the zero set of v.
We claim α1 ∪ α2 is not empty; equivalently v must be zero somewhere in
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N. Otherwise
dev : Ñ → X ≡ RP3 \ (ℓ1 ∪ ℓ2)

covers an immersion

N → X/hol(π1(N)) ∼= T 3.

This is an immersion of one closed manifold into another of the same di-
mension and is thus a covering map. However N ∼= S1×S2 is not a covering
space of T 3 since the latter has universal cover Euclidean space and the
former has universal cover S2 × R.

Thus we may suppose α1 is not empty. Let β be the closure of a flowline
of v with one endpoint on α1. Now β is a compact 1-submanifold of N
because its pre-image in Ñ develops into a closed invariant interval in RP3

with one endpoint in each of ℓ1 and ℓ2. Thus β has the other endpoint in
α2 which is therefore also non-empty. We claim that α1 is connected and
isotopic in N = S2 × S1 to ∗ × S1. But this is impossible, for A = S2 × ∗
intersects α1 once transversely. But A lifts to Ã ⊂ Ñ and then dev(Ã)
is an immersion of a sphere into RP3 which meets ℓ1 = dev(π−1α1) once
transversely. However

[ℓ1] = 0 ∈ H1(RP3, Q)

and intersection number is an invariant of homology classes, so this is im-
possible.

It remains to show α1 is connected and isotopic to S1 × ∗. Let γ1 be
a component of α1. Let U be the basin of attraction in N of γ1. Now
dev(π−1γ1) ⊂ ℓ1 and an easy argument shows these sets are equal. Hence
dev(π−1(U)) contains a neighborhood of ℓ1. Thus U contains a small torus
transverse to the flow and bounding a small neighborhood of γ1. Since U is
preserved by the flow if follows that U ∼= T 2 ×R. The frontier of U in N is
contained in α1∪α2. Hence α1,α2 are both connected and N = α1∪U ∪α2.
Thus N = H1 ∪H2 where

Hi = αi ∪ T 2 × (0, 1] ∼= S1 ×D2.

This gives a genus-1 Heegaard splitting of N = S2 × S1. By Waldhausen
[30] such a splitting is standard. In particular this implies that α1 = γ1 is
isotopic to S1 × ∗.

We are reduced to the case that C is C2 or C3. In each case there is a
unique isolated zero of V which is a source and another which is a sink.

Lemma 4.5.— dev(Ñ) contains no source or sink.
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Proof. — By reversing the flow we may change a source into a sink. So
suppose p is a sink in the image of the developing map. Let Q be the
projective plane which contains the other points corresponding to the other
eigenspaces of C. Then Q is preserved by hol(π1N). There is a decomposition
into disjoint subspaces RP3 = p ∪ Ω ∪ Q where Ω ∼= S2 × R is the basin
of attraction for p. Furthermore each of these subspaces is invariant under
hol(π1N). Thus there is a corresponding decomposition of N into disjoint
subsets: π(dev−1(p)) is a finite non-empty set of points, π(dev−1(Q)) is a
compact surface, and π(dev−1(Ω)) an open submanifold.

Now Ω admits a foliation by concentric spheres centered on p which is
preserved by the flow induced by V and hence by hol(π1N). This gives a
foliation of RP3 \ p by leaves, one of which is Q ∼= P2 and the others are
spheres. Hence this induces a foliation of N \π(dev−1(p)). Since π(dev−1(p))
is not empty every leaf near it is a small sphere. Thus N has a singular
foliation where the singular points are isolated and have a neighborhood
foliated by concentric spheres. It follows from the Reeb stability theorem
[24] that if a compact connected 3-manifold has a foliation such that each
component of the boundary is a leaf and some leaf is a sphere, then the
manifold is S2×I or a punctured RP3. But this contradicts that the manifold
is S2 × S1 minus some open balls.

Lemma 4.6.— The flow on N given by v is periodic and the flow lines
fiber N as a product S2 × S1.

Proof. — Let λ be the closure of a flowline of V in RP3 which has endpoints
on the source and sink of V. Such flowlines are dense therefore we may choose
λ to contain a point in dev(Ñ). Then dev−1(λ) is a non-empty closed subset
of Ñ which is a 1-submanifold without boundary, since the source and sink
are not in dev(Ñ). Hence π(dev−1λ) is a compact non-empty 1-submanifold
in N. Let γ be a component. If γ were contractible in N then it would lift to
a circle in Ñ and be mapped by the developing map into λ. But this gives an
immersion of a circle into a line which is impossible. Thus [γ] ̸= 0 ∈ π1(N).

Let T > 0 be the period of the closed flow line γ. Let U be the subset
of N which is the union of closed flow lines of period T. We will show U is
both open and closed. Since U is not empty and N is connected, the claim
follows.

Choose a small disc, D ⊂ N, transverse to the flow and meeting γ once.
Let D̃ ⊂ Ñ be a lift which meets the component γ̃ ⊂ π−1(γ). The union,
Ỹ , of the flowlines in Ñ which meets D̃ maps homeomorphically by the
developing map into a foliated neighborhood of the interior of λ. Let τ be
the covering transformation of Ñ given by [γ] ∈ π1(N). Then τ preserves
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dev(Ỹ ) and preserves γ̃ therefore preserves Ỹ . Furthermore

Y = Ỹ /τ ∼= dev(Ỹ )/hol(γ) ∼= S1 ×D2

is foliated as a product. Thus Y is a solid torus neighborhood of γ in N
foliated as a product by flowlines. This proves U is open. The limit of
flowlines of period T is a closed flowline with period T/n for some integer
n > 0. But n = 1 since the set of flowlines of period T/n is open. Thus U is
closed.

Let X = RP3 \Z be the subset where V ̸= 0. Then X is foliated by flow
lines. Let L be the leaf space of the foliation of X. Then L is a connected 2-
manifold which may be non-Hausdorff. Since G is normalized by hol(π1M)
it follows that this group acts on L. Since hol(π1N) ⊂ G the action of
hol(π1N) on L is trivial so the action of hol(π1M) on L factors through
an action of Z2. Thus the holonomy gives an involution on L. Below we
calculate L and this involution in the remaining cases C2, C3.

Since dev(Ñ) ⊂ X there is a map of the leaf space of the induced foliation
on Ñ into L. By Lemma 4.6 the leaf space of Ñ is the Hausdorff sphere S2.
The induced map h : S2 → L is a local homeomorphism, which we shall call
an immersion. Since dev(Ñ) ⊂ RP3 is invariant under hol(π1M) it follows
that h(S2) ⊂ L is invariant under the involution. Below we determine all
immersions of S2 into L and show that the image is never invariant under
the involution. This means the remaining cases C = C2 or C = C3 are
impossible, proving the theorem.

Lemma 4.7.— Case C = C2 is impossible.

Proof. — The zero set of V consists of a point source, a point sink, and a P1

with hyperbolic dynamics in the transverse direction. Every flowline either
starts at the source, or ends at the sink, or does both. Let S1, S2 be small
spheres around the source and sink transverse to the flow. The quotient map
X → L embeds each of these spheres, and the union is all of L.

It is easy to check that L is obtained from S1 and S2 by the follow-
ing identifications. Regard each sphere as a copy of the unit sphere, S2,
in R3. Decompose this sphere into an equator and northern and southern
hemispheres:

S2 = D+ ∪ E ∪D−

where

E = S2 ∩ { x3 = 0 }
D+ = S2 ∩ { x3 > 0 }
D− = S2 ∩ { x3 < 0 }.
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Using the identifications of S1 and S2 with S2 identify D+ ⊂ S1 with
D+ ⊂ S2 using the identity map. Identify D− ⊂ S1 with D− ⊂ S2 using
the map (x1, x2, x3) 0→ (−x2, x1, x3).

Thus L may be regarded as a sphere with with an extra copy of the
equator. However one also needs to know a neighborhood basis for the points
on the extra equator. This is determined by the above description. We show
below that every immersed sphere in L is one of these two embedded spheres.
The involution swaps S1 and S2 and therefore swaps the two equators in L.
The embedded spheres each contain only one equator and therefore there is
no immersion of a sphere into L whose image is preserved by the involution.

It remains to determine the possible immersed spheres in L. There is
a decomposition of L into disjoint subsets, two of which are the points
(0, 0,±1) ⊂ D± and the other subsets are circles which foliate the comple-
ment. In particular each of the two equators is a leaf of this foliation.

Suppose A is a sphere and h : A → L is an immersion. Then the pre-
images of the decomposition give a decomposition of A. There are finitely
many decomposition elements which are points. Call the set of these points
P. Since h is an immersion, A \ P is decomposed as a 1-dimensional foli-
ation. Furthermore since A is compact and the 1-dimensional leaves in L
are closed, their pre-images in A are compact thus circles. Thus A \ P is
foliated by circles and thus an open annulus. Hence the quotient space of
A corresponding to the decomposition is a closed interval I ∼= [−1, 1]. The
endpoints correspond to center type singularities of a singular foliation on
A. The quotient space of the decomposition of L is a non-Hausdorff interval,
I∗ ∼= [−1, 1]∪{0′}, with 2 copies of the origin. The endpoints correspond to
the two decomposition elements that are points. The immersion h induces
a map h : I → I∗. Since h is an immersion h is also an immersion (local
homeomorphism). Thus h(±1) = ±1. The only such immersion is an embed-
ding which contains one copy of the origin. This implies h is an embedding
of the form claimed.

It follows from the preceding results that dev(Ñ) is disjoint from the
zeroes of the vector field.

Lemma 4.8.— Case C = C3 is impossible.

Proof. — The zero set of V consists of a 4 points. We label them as p+++,
p++−, p+−−, p−−−. The labelling reflects how many attracting and how
many repelling directions there are. The number of − signs is the number
of attracting directions. Thus p−−− is the sink, p+++ is the source.
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Every flowline starts at a point with a + label and ends at a point with
a − label. Every P2 containing three of these four points is invariant under
the flow.

Let ℓ− be the P1 containing p−−− and p+−−. Let ℓ+ be the P1 which
contains p+++ and p++−. The restriction of V to each of ℓ± has on source
and one sink and no other zeroes. There are thus two flowlines contained in
each of ℓ±.

Figure 1. — Flowlines for case C3.

Let T be a torus transverse to V and which is the boundary of a small
neighborhood of ℓ−. Then T intersects every flowline once except the 4
flowlines in ℓ±. Hence L may be identified with T plus 4 more points. Two
of these points come from ℓ+ and the other two from ℓ−.

Since aca−1 = c−1 it follows that hol(a) conjugates hol(c) to hol(c−1)
and thus hol(a) permutes the zeroes of V by reversing the sign labels. Thus
p−−− ↔ p+++ and p+−− ↔ p++−.

Observe that T can be moved by the flow to a small torus around ℓ+.
Thus the involution on L maps the subset corresponding to T into itself and
swaps the pair of points corresponding to ℓ+ with the pair corresponding
to ℓ−. We show below that every immersion of a sphere into L contains
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either the pair of points corresponding to ℓ+ or the pair corresponding to
ℓ− but not both pairs. As before the image of the developing map gives an
immersion of a sphere into L which is preserved by the involution. Thus no
such immersion exists and the remaining case C = C3 is impossible.

Figure 2. — Non-Hausdorff surface L for case C3

We first describe L in a bit more detail. Let S+ (resp. S−) be a small
sphere around p+++ (resp. p−−−) transverse to the flow. Then every flowline
meets T ∪ S− ∪ S+. We next describe the intersection of the images of T
and S± in L. We may choose S− to be a small sphere inside T. The two
flowlines in ℓ− meet S− but do not meet T. We call these points u−, v−
in S− and the corresponding points in L exceptional points. The remaining
flowlines that meet S− intersect T in the complement of the circle α− ⊂ T
where α− = T ∩ A− and A− is the P2 containing the four zeroes of V
except p−−−. A small deleted neighborhood in L of an exceptional point
corresponding to a flowline in ℓ− is an annulus on one side of α−, either
α− × (0, 1) or α− × (−1, 0), depending on which of the two exceptional
points corresponding to a flowline in ℓ− is chosen. Similarly the image of
S+ intersects the image of T in the complement of the circle α+ = T ∩A+

where A+ is the P2 containing the four zeroes of V except p+++. The circles
α− and α+ on T meet transversely at a single point w corresponding to the
flowline between p+−− and p++−.

Decompose L into subsets as follows. Decompose the image of T by cir-
cles given by a foliation of T by circles parallel to α− and that are transverse
to α+. The remaining 4 exceptional points in L are also decomposition el-
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ements. Let A be a sphere and h : A → L an immersion. As before we
deduce that there is a finite set P ⊂ A of decomposition elements which
are points. The remaining decomposition elements give a foliation of A \P.
There is a small deleted neighborhood U ⊂ A \ p of p ∈ P such that h(U)
is an open annulus β × (0, 1) ⊂ T whose closure consists of two disjoint
circles either parallel to α− or to α+. It follows that the foliation on the
subsurface A− ⊂ A with these small open neighborhoods of P removed
has the property that each component of ∂A− is either transverse to the
foliation or is a leaf of the foliation. By doubling A− along the boundary
one obtains a foliation on a closed surface. Hence A− is an annulus and the
behavior of the foliation on both components of ∂A− is the same. If the
boundary components are leaves then h(A) contains the two points corre-
sponding to ℓ−. Otherwise h(A) contains the two points corresponding to
ℓ+. This completes the proof of the final case, and thus of the theorem.

We remark that the above discussion is similar to the case the developing
map is injective discussed before the proof. We argued above that there is
S2 ⊂ Ñ ∼= S2 × R immersed in P3 by the developing map and with the
source on the inside (relative to the flow) and the other three critical points
on the outside. These three critical points lie on an P2 which is preserved
by the flow. Indeed they are the critical points of a Morse function on this
P2 given by the flow. In some sense the proof says this P2 is outside the
immersed sphere.
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