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A COMBINATION THEOREM FOR CONVEX HYPERBOLIC
MANIFOLDS, WITH APPLICATIONS TO SURFACES IN 3-MANIFOLDS

MARK BAKER and DARYL COOPER

Abstract

We prove the convex combination theorem for hyperbolic n-manifolds. Applications are given both in high
dimensions and in 3 dimensions. One consequence is that given two geometrically finite subgroups of a discrete
group of isometries of hyperbolic n-space, satisfying a natural condition on their parabolic subgroups, and
whose intersection is a separable subgroup, there are finite index subgroups which generate a subgroup that is
an amalgamated free product. Constructions of infinite volume hyperbolic n-manifolds are described by gluing
lower dimensional manifolds. It is shown that every slope on a cusp of a hyperbolic 3-manifold is a multiple
immersed boundary slope. If the fundamental group a hyperbolic 3-manifold contains a maximal surface group
not carried by an embedded surface then it contains a freely indecomposable group with second betti number
at least 2.

1. Introduction

The Klein-Maskit combination theorems [30] assert that under certain circumstances two
Kleinian groups, Γ1,Γ2 corresponding to hyperbolic manifolds M1,M2 are subgroups of another
Kleinian group Γ corresponding to a hyperbolic manifold M, diffeomorphic to that obtained
by gluing M1 and M2 along a boundary component. There is also an HNN version, and an
orbifold version.

We prove the convex combination theorem which allows the gluing of two convex hyperbolic
n-manifolds along isometric submanifolds which are not necessarily boundary parallel. There is
also an HNN version. One consequence is the virtual amalgam theorem which states that that
if G and H are two geometrically-finite subgroups of a discrete group in Isom(Hn), and if their
parabolic subgroups are compatible (defined in section 5), and if G ∩H is subgroup separable
in both G and H, then there are finite index subgroups G′ ⊂ G,H ′ ⊂ H, each containing
G ∩H, which generate a geometrically finite group in Isom+(Hn), that is the free product of
G′ and H ′ amalgamated along G ∩H.

One application is proving the existence of certain kinds of surface groups in hyperbolic
3-manifolds. For example we show that given any slope on a torus boundary component of
a compact 3-manifold, M, with hyperbolic interior, there is a compact, immersed, oriented,
geometrically-finite, π1-injective, surface not homotopic into the boundary of M whose bound-
ary consists of two components each of which wraps the same number of times, but in opposite
directions, around the given slope. In particular ∞ is a multiple immersed boundary slope of
every hyperbolic knot. The first author introduced this concept in [2] and gave an example
of a hyperbolic once-punctured torus bundle with infinitely many immersed boundary slopes.
Oertel [33] gave the first example of a hyperbolic manifold such that every slope is an immersed
boundary slope, and Maher [28] proved the latter holds for hyperbolic 2-bridge knots and
certain other cases.

Another application is that if the fundamental group of a non-Haken closed hyperbolic 3-
manifold contains a surface group then it contains the fundamental group of an irreducible,
boundary-irreducible, compact 3-manifold with arbitrarily large second betti number.
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The basic idea is to glue two convex hyperbolic manifolds together to obtain a hyperbolic
manifold which is not in general convex. It is well known that every 3-manifold that is not
closed admits a non-convex hyperbolic metric, thus such metrics are in general too abundant
to provide useful information. What is required is a condition which ensures that the result
of the gluing can be thickened to be convex. If this can be done then one obtains a discrete
subgroup of isometries of hyperbolic space.

The convex combination theorem asserts (roughly speaking) that there is a universal constant
κ, independent of dimension, such that if two convex hyperbolic manifolds can be glued together
in a way that is compatible with gluing their κ-thickenings, then the resulting manifold can be
thickened to be convex.

To deduce the virtual amalgam theorem from the convex combination theorem involves two
hyperbolic manifolds, A and B, which are isometrically immersed into a hyperbolic manifold
M. One wishes to glue the basepoints of A and B together and the requirement that the
identification space is a manifold forces further identifications to be made between A and B.
Subgroup separability arguments are used to ensure that certain finite covers of A and B can be
glued so that they embed in the resulting identification space. In order to satisfy the thickening
hypotheses of the convex combination theorem, one might need to take large finite covers of
the manifolds concerned.

The paper is organized as follows. In section 2 we discuss convex hyperbolic manifolds and
prove the convex combination theorem 2.9. In section 3 we study cusps of geometrically-finite,
convex hyperbolic manifolds. In section 4 we introduce the notion of induced gluing alluded to
in the preceding paragraph and prove the virtual simple gluing theorem 4.3 which ensures the
manifolds that are glued embed in the resulting space. In section 5 we prove the virtual amalgam
theorem 5.3 and the virtual convex combination theorem 5.1. In section 6 we construct some
higher dimensional convex hyperbolic manifolds of infinite volume by gluing lower dimensional
ones. In section 7 we show that certain groups are LERF and extend an argument of Scott’s
that finitely-generated subgroups of surface groups are almost geometric to the case of finitely-
generated separable subgroups of three-manifold groups. In section 8 we prove some new results
about surface groups in hyperbolic 3-manifolds as well as sketching new proofs of some results
of the second author and Long about virtually-Haken Dehn-filling and the existence of surface
groups in most Dehn-fillings. In section 9 we apply these tools to the study of immersed
boundary slopes.

The convex combination theorem is related to work of Bestvina-Feighn [4], Gitik [18]
and Dahmani [14] who proved various combination theorems for (relatively) word hyperbolic
groups. The convex combination theorem implies that certain groups are discrete groups of
isometries of hyperbolic space, a conclusion which does not follow from the group-theory
results mentioned. The work of Bowditch-Mess [6] contains many of the ingredients for the
non-cusp case. As is often the case, a lot of extra work is needed to handle cusps. This is
needed for the application to immersed boundary slopes. It seems possible that there is a
common generalization of the Klein-Maskit theorem and the convex combination theorem, but
this will have to await a mythical future paper.

The train of ideas in this paper originated with the work of B. Freedman and M.H. Freedman
[16] who constructed certain closed surfaces by a tubing operation. If the surfaces involved are
far enough apart in a certain sense (if the tube is long enough) then the resulting surface is
π1-injective. There are by now several proofs of this and related facts, and this paper provides
new ones.
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2. The Convex Combination Theorem.

In this section we prove the convex combination theorem. This requires a brief discussion
of non-convex hyperbolic manifolds. To do this we need to extend some ideas from the more
well-known context of convex to that of non-convex hyperbolic manifolds.

Definition. A hyperbolic manifold is a connected manifold with boundary (possibly empty)
equipped with a Riemannian metric which is hyperbolic i.e. constant sectional curvature −1.

Warning. We do not assume the holonomy of a hyperbolic manifold is a discrete group of
isometries of hyperbolic space.

We will primarily be interested in the case that the boundary is piecewise smooth, but has
corners. Let M̃ denote the universal cover of a hyperbolic manifold M. There is a local isometry
called the developing map and a homomorphism of groups called the holonomy

dev : M̃ → Hn hol : π1(M) −→ Isom(Hn)

such that for all x ∈ M̃ and all g ∈ π1M we have dev(g · x) = hol(g) · dev(x).

Definition. A hyperbolic manifold is convex if every two points in the universal cover are
connected by a geodesic.

In particular the quotient of hyperbolic space by a discrete torsion-free group of isometries
is convex. The following is easy to check:

Proposition 2.1 (characterize convex). Suppose that M is a hyperbolic manifold. Then
the following are equivalent.
(a) M is convex.
(b) Every path in M is homotopic rel endpoints to a geodesic in M.
(c) The developing map is injective with image a convex subset of hyperbolic space.

Proposition 2.2 (convex has injective holonomy). If M is a convex hyperbolic manifold
then the holonomy is injective. Furthermore M = dev(M̃)/hol(π1M).

Proof. It follows from 2.1(c) that the developing map is an isometry onto its image. Since
π1M acts freely by isometries on its universal cover, the holonomy is injective andM is isometric
to dev(M̃)/hol(π1M).

Proposition 2.3 (local isometry from convex is π1-injective). Suppose M and N are
hyperbolic manifolds, M is convex, and f : M → N is a local isometry. Then f∗ : π1M → π1N
is injective. In particular, if N = Hn then M is simply connected.

Proof. It is easy to check that holM = holN ◦ f∗. Since M is convex, holM is injective by
2.2. Thus f∗ is injective.

Consider two closed geodesics in a hyperbolic surface which intersect in two points. Let A
and B be small convex neighborhoods of these geodesics. Then A ∩ B is the disjoint union of
two discs each of which is convex. More generally we have:
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Lemma 2.4 (intersection of closed convex is convex union). Suppose {Mi : i ∈ I} are
metrically-complete, convex hyperbolic manifolds contained in a hyperbolic n-manifold M.
Then every component of ∩i∈IMi is a convex hyperbolic manifold.

Proof. Let p : M̃ → M be the universal cover and M̃i a component of p−1(Mi). Since Mi

is convex it follows from 2.3 applied to Mi ↪→M that p| : M̃i →Mi is the universal cover.
Let C be a component of ∩i∈IMi. Let C̃ be a component of p−1(C). Consider the components

M̃i ⊂ p−1Mi which contain C̃. Since devM embeds each M̃i it also embeds K = ∩iM̃i into Hn.
Thus devM (K) = ∩i devM (M̃i) is a closed (because metrically-complete) convex subset of Hn,
and therefore a manifold. Hence K is a convex manifold. Clearly C̃ ⊂ K. Choose x ∈ C̃ and
y ∈ K then, because K is convex, there is a unique geodesic segment [x, y] in K with endpoints
x and y. This segment is in every M̃i and therefore p([x, y]) is contained in every Mi and thus
in C. It follows that [x, y] is contained in C̃ hence y ∈ C̃. Thus C̃ = K. It follows that C is a
convex hyperbolic manifold.

Definition. Suppose M is a metrically-complete convex hyperbolic n-manifold and A is
a non-empty, connected subset of M. The convex hull, CH(A), of A is defined to be the
intersection of all convex manifolds in M which are closed subsets of M and which contain A.

Proposition 2.5 (convex hulls are convex). If M is a metrically-complete convex hyper-
bolic n-manifold and A is a non-empty, connected subset of M, then CH(A) is a convex
manifold of some dimension k ≤ n.

Proof. Since A is connected there is a unique component, C, of CH(A) which contains A.
By 2.4 C is a convex manifold which contains A and CH(A) = C.

There are many examples of non-convex hyperbolic manifolds. For example an immersion of
a punctured torus into the hyperbolic plane induces a pull-back metric on the punctured torus
with trivial holonomy. Every non-compact 3-manifold can be immersed into Euclidean space
and hence into H3. It follows that every such manifold has a hyperbolic metric.

We want to know when a non-convex manifold corresponds to a discrete group of isometries.
The preceding examples do not have this property. There are several equivalent ways to describe
the desired property, and one involves the notion of thickening.

Definition. A hyperbolic n-manifold N is a thickening of a hyperbolic n-manifold, M, if
M ⊂ N and incl∗ : π1M → π1N is an isomorphism. If, in addition, N is convex then we say
N is a convex thickening of M.

The following is easy to check:

Proposition 2.6 (convex thickenings). Suppose that M is a hyperbolic n-manifold. Then
the following are equivalent.
(a) The developing map dev : M̃ → Hn is injective.
(b) The holonomy of M is a discrete torsion-free group Γ ⊂ Isom(Hn) and there is an isometric
embedding f : M → N = Hn/Γ such that f∗ : π1M → π1N is an isomorphism.
(c) M has a convex thickening.

We will often use the developing map to identify the universal cover, M̃, of a convex manifold
with dev(M̃) ⊂ Hn. If M is a convex hyperbolic manifold and K ≥ 0 the K-thickening of M is

ThK(M) = NK(M̃)/π1M
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where NK(M̃) = {x ∈ Hn : d(x, M̃) ≤ K} is the K-neighborhood of M̃ in Hn. With this
notation Th∞(M) = Hn/hol(π1M) is the geodesically-complete manifold that is a thickening
of M. The following is immediate:

Proposition 2.7 (thickening). Suppose M is a convex hyperbolic manifold. Then:
(a) ThK(M) is a convex thickening of M.
(b) If x ∈M and y ∈ ∂ThK(M) then d(x, y) ≥ K.

The convex combination theorem 2.9 gives a sufficient condition to ensure that the union of
two convex hyperbolic n-manifolds has a convex thickening, and so has holonomy a discrete
subgroup of Isom(Hn). The following example shows that some additional hypothesis is needed
to ensure this.

Example. Suppose that S(`, θ,K) = M1∪M2 is homeomorphic to a punctured torus with
an incomplete hyperbolic metric and that M1 and M2 are hyperbolic annuli isometric to K-
neighborhoods of closed geodesics γ1, γ2 of length `. Suppose M1 ∩M2 is a disc and that the
angle between the geodesics γ1, γ2 is θ. Then given θ ∈ (0, π), the set of ` > 0 for which there
is K > 0 such that the developing map dev : S̃ → H2 is injective is an interval [`0(θ),∞). By
Margulis’s theorem there is µ > 0 such that `0 > µ for all θ. Also `0(θ)→∞ as θ → 0. On the
other hand it is easy to convince oneself that if K > 100 then the developing map is always
injective.

As discussed in the introduction, in the setting of geometric group theory there are combi-
nation theorems for word-hyperbolic groups where the conclusion is that the combination is
word hyperbolic. The next result holds even when the manifold M has no convex thickening.
This shows that the property of being a discrete subgroup is distinct from the structure of
the abstract group. The may be thought of as the difference is accounted for by the difference
between the intrinsic geometry of the word metric and the extrinsic geometry as a subgroup
Isom(Hn).

Corollary 2.8 (union of convex gives amalgamated free product). Suppose M = M1 ∪
M2 is a connected hyperbolic n-manifold which is the union of two convex hyperbolic n-
manifolds M1,M2 and suppose that M1 ∩M2 is connected. Given a basepoint x ∈ M1 ∩M2

then π1(M,x) = π1(M1, x) ∗G π1(M2, x) where G = π1(M1 ∩M2, x).

Proof. By 2.4 M1 ∩M2 is convex. It follows from 2.3 that M1 ∩M2 is π1-injective in M.
The result follows from Van Kampen’s theorem.

Definition. Suppose that N is a hyperbolic manifold and M ⊂ N is a submanifold. Given
K > 0 we say that N contains a K-neighborhood of M if for every p ∈ M and every tangent
vector v ∈ TpM with ||v|| ≤ K then expp(v) ∈ N.

Thus aK-thickening of a convex manifold is aK-neighborhood. However, for aK-neighborhood
we do not assume π1M ∼= π1N. An example is provided by any open subset M ⊂ Hn = N.

Notation. If X is a metric space the notation X denotes the metric (not geodesic)
completion of X. If a, b are two points in Hn we denote the geodesic segment with these
endpoints by ab.

The following theorem asserts, very roughly, that there is a universal constant, κ, such
that if M is a (probably non-convex) hyperbolic n-manifold which is the union of two convex
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Figure 1. The union of two convex manifolds which have thickenings.

hyperbolic submanifolds and if M has a κ-thickening with the same topology, then M has a
convex thickening. The intuition for this result is lemma 2.12 which says that if two convex sets
in hyperbolic space intersect then their convex hull is within a small distance of their union.
The fact one can thicken the submanifolds without bumping means that the universal cover is
made of convex sets (covers of the submanifolds) which are far apart in some sense. Then the
convex hull construction more or less only notices two of the convex sets at any one time and
so the convex hull is close to the union.

Theorem 2.9 (convex combination theorem). There is a universal constant, κ, called
the thickening constant with the following property. Suppose the following conditions are
satisfied:

(i) Y = Y1 ∪ Y2 is a connected hyperbolic n-manifold which is the union of two convex
n-submanifolds Y1 and Y2.

(ii) M = M1 ∪M2 is a connected hyperbolic n-manifold which is the union of two convex
n-submanifolds M1 and M2.

(iii) Yi is a thickening of Mi for i = 1, 2.
(iv) Y contains a κ-neighborhood of M.

No bumping:
(v) Yi contains a κ-neighborhood of Mi \ int(M1 ∩M2) for i ∈ {1, 2}.
(vi) Every component of Y1 ∩ Y2 contains a point of M1 ∩M2.

Then M has a convex thickening; in other words there is a hyperbolic n-manifold N = Hn/π1M
which contains M and incl∗ : π1M −→ π1N is an isomorphism. Furthermore, if Y has finite
volume then M is geometrically finite. Also κ ≤ 6.

Remarks.

(i) This theorem may be viewed as extending the generalized Thurston bending construction
of Bowditch and Mess [6].

(ii) For the statement of this theorem we have not assumed that the manifolds are metrically
complete. For example the boundary might be missing. This is why we write M i instead
of Mi in condition (v).

(iii) If Yi is a κ-thickening of Mi then conditions (iii),(iv) and (v)are satisfied.
(iv) Condition (v) implies that at all points, p ∈ Mi \ (M1 ∩ M2) the restriction of the

exponential map, expp|Tκp (M), to tangent vectors in Tp(M) of length at most κ is
injective.

(v) Conditions (v) and (vi) ensure that the copies of the universal covers of the Mi fit
together in hyperbolic space in a treelike way to create dev(M̃).
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(vi) If Y contains a rank-2 cusp which contains a rank-1 cusp C ⊂ M1 then Y does not
contain a κ-thickening of C. Attempting to thicken a lower rank cusp of M1 that is
contained in a higher rank cusp of Y causes the thickening to bump into itself within
the cusp of Y.

Proof of the Convex Combination Theorem. Here is a sketch of the proof that κ = 6 satisfies
the theorem; the details follow. We need to show that the developing map sends the universal
cover, M̃, of M injectively into hyperbolic space. To do this we will show that between any two
points in M̃ there is a geodesic in the universal cover, Ỹ , of Y connecting them. The image of
this geodesic under the developing map is then a geodesic in hyperbolic space and therefore
the endpoints are distinct.

We need to understand the universal cover of Y and its image under the developing map.
Convexity of Y1 and Y2 implies that Ỹ is a union of copies of the universal covers of Y1 and Y2.
We show π1M ∼= π1Y, and it follows that Ỹ contains the universal cover, M̃, of M and each
copy of the universal cover of Yi contains exactly one copy of the universal cover of Mi.

To show there is such a geodesic we take a shortest path, γ, in the 2-neighborhood (contained
in Ỹ ) of M̃ between the two points. Since Mi is convex, near any point of γ which is in the
interior of the 2-neighborhood of either M̃1 or M̃2, the path is a geodesic. Thus γ can only fail to
be a geodesic at corners that are on the intersection of the boundaries of the 2-neighborhoods.
So it suffices to show γ has no corners.

Condition (v) is used to show that the distance between corners is large (bigger than κ− 4).
Thus γ is a union of long geodesic segments each of which starts and ends within a distance
of 2 of some convex set, M̃i. It follows that the midpoint of such a segment is then very close
(less than 1) to M̃i. We deduce that near a corner of γ there is a sub-path, γ′, which consists
of two long geodesic segments that meet at that corner and one endpoint of γ′ is very close to
some M̃1 and the other to some M̃2.

By condition (vi) the convex sets M̃1, M̃2 intersect near the corner. In hyperbolic space the
union of two convex sets which intersect is nearly convex: every point in the convex hull of
the union lies within a distance 1 of the union of the convex sets. Thus the geodesic, δ, with
the same endpoints as γ′, stays less than a distance 2 from the union of M̃1 and M̃2. Since γ′

is length-minimizing in this set, it follows that γ′ = δ and thus γ′ does not have any corners.
This completes the sketch.

Claim 1. The inclusion incl : M ↪→ Y induces a π1-isomorphism.

Proof of Claim 1. First we show incl∗ is surjective. Suppose that γ is a loop in Y based at
a point in M. Then γ = γ1 · γ2 . . . γn with n ≥ 2 where each γi is a path contained either in
Y1 or in Y2. The endpoints of γi are in Y1 ∩ Y2. Using condition (vi) we can homotop γ so that
for all i the endpoints of γi are contained in M1 ∩M2. Suppose γi is contained in Yj . Since Yj
is a thickening of Mj we may homotop γi into Mj keeping the endpoints fixed. Thus we may
homotop γ keeping endpoints fixed into M. Hence incl∗ is surjective.

Now we show incl∗ is injective. By (iii) Yi is a thickening of Mi thus Mi ↪→ Yi induces a
π1-isomorphism. Suppose that γ is an essential loop in M which is contractible in Y. By 2.3 γ
is not contained in Mi. Thus γ = γ1 · γ2 . . . γn where each γi is a path contained in either M1

or M2 and n ≥ 2. Using convexity of M1 and M2 we may assume each γi is a geodesic and
has both endpoints in M1 ∩M2. We may suppose that γ is chosen so that n is minimal. This
implies that no γi is contained in M1 ∩M2.

Without loss of generality suppose that γi is contained in M1. We claim that γi is not
contained in Y2. Otherwise γi is a geodesic in the convex manifold Y2 with both endpoints in
the convex submanifold M2. Consider the universal cover p : Ỹ2 → Y2. Then M̃2 = p−1M2 is
the universal cover of M2, and in particular is connected. A lift, γ̃i, of γi is a geodesic in Ỹ2
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with both endpoints in M̃2. Since M̃2 is convex it follows that γ̃i is contained in M̃2 and thus
γi is contained in M2. This contradicts that γi is not contained in M1 ∩M2. It follows, that
for each i, that γi is contained in exactly one of Y1 and Y2.

By 2.3 Yi ↪→ Y is π1-injective. Thus the universal cover, Ỹ , of Y is a union of copies of
the universal covers, Ỹ1, Ỹ2, of Y1 and Y2. By 2.4 the components of Y1 ∩ Y2 are convex, thus
π1-injective into π1Y by 2.3. It follows that π1Y is a graph of groups. The copies of the covers
of Ỹ1 and Ỹ2 fit together in a tree-like way to give Ỹ . This is described in more detail in Serre,
[35]. It follows that a lift of the path γ to Ỹ does not start and end at the same point. Hence
γ is not contractible in Y. This proves claim 1.

For i ∈ {1, 2} after replacing Mi by its metric completion, we may assume that Mi is a
complete metric space. Condition (v) has the following consequence. Suppose that α is an
arc in Y which has both endpoints in M2 ∩ ∂M1. If length(α) ≤ 2κ then α is homotopic rel
endpoints into M2. A similar result holds with M1 and M2 interchanged.

Let π : Ỹ → Y denote the universal cover and dev : Ỹ → Hn the developing map. Claim
1 implies that M̃ = π−1M is the universal cover of M. As observed above, Ỹ is the union of
covering translates of the universal covers, Ỹ1 and Ỹ2 of Y1 and Y2. Since the inclusion induces
an isomorphism between π1Mi and π1Yi it follows that each component of π−1Mi is a copy of
the universal cover, M̃i, of Mi. Furthermore every covering translate of Ỹi contains exactly one
covering translate of M̃i. The following claim implies that the developing map dev : M̃ → Hn

is injective. The theorem then follows from proposition 2.6.

Claim 2. Suppose that P0, P1 are two points in M̃. Then there is a hyperbolic geodesic,
γ, in the interior of Ỹ connecting P0 and P1.

Proof of Claim 2. By condition (ii) Mi is convex, so there is a 2-thickening M+
i = Th2(Mi).

Thus each component, M̃i, of π−1(Mi) has a 2-thickening M̃+
i , which, by condition (iv), is

contained in Ỹ . The covering translates of M̃1 are pairwise disjoint (and similarly for M̃2)
however the covering translates of M̃+

1 need not always be disjoint. For example this will
happen if M1 contains a rank-1 cusp which is contained in a rank-2 cusp of M. Thus the
natural isometric immersion of M+

i into Y is not always injective; the thickening may bump
into itself inside M1 ∩ M2. However the no bumping condition implies that every point of
intersection of two different translates of M̃+

1 is contained in some M̃2 (and similarly with the
roles of M1 and M2 reversed).

Although M might not be convex we define

M̃+ = { x ∈ Ỹ : d(x, M̃) ≤ 2 }.

This is the union of covering translates of M̃+
1 and M̃+

2 . We are assuming that M1 and M2 are
complete metric spaces thus M̃+

1 , M̃
+
2 and M̃+ are all metrically complete.

Claim 3. Suppose M̃i is any component of π−1(Mi). If M̃+
1 ∩ M̃

+
2 6= φ then M̃1 ∩ M̃2 6= φ.

Proof of Claim 3. Choose a point x in M̃+
1 ∩M̃

+
2 . Let Ỹi be the component of π−1(Yi) which

contains M̃i. Since M̃i is complete there is a point ai ∈ M̃i which minimizes d(ai, x). It follows
that π(ai) ∈Mi \ int(Mi). By definition of M̃+

i we have d(ai, x) ≤ 2, hence d(a1, a2) ≤ 4.
The first case is that π(a1) /∈ int(M2) hence π(a1) ∈ M1 \ int(M1 ∩M2). Condition (v)

implies Nκ(a1) ⊂ Ỹ1. Since κ ≥ 4 it follows that a2 ∈ Ỹ1 thus a2 ∈ Ỹ1 ∩ Ỹ2 6= φ. Let C be
the component of Ỹ1 ∩ Ỹ2 which contains a2. By condition (vi) there is a point of M1 ∩M2

in π(C). Thus π−1(M1 ∩M2) contains a point, y, in C. However π−1(Mi) ∩ Ỹi = M̃i thus
y ∈ M̃1 ∩ M̃2 6= φ.
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The remaining case is that π(a1) ∈ int(M2). Since π(a1) /∈ int(M1) it follows that π(a1) ∈
M2 \ int(M1 ∩M2). Let Ỹ ′2 be the component of π−1(Y2) which contains a1. Condition (v)
implies Nκ(a1) ⊂ Ỹ ′2 . Since κ ≥ 4 it follows that a2 ∈ Ỹ ′2 thus Ỹ ′2 = Ỹ2, and a1 ∈ Ỹ1 ∩ Ỹ2 6= φ.
Let C be the component of Ỹ1 ∩ Ỹ2 which contains a1. By condition (vi) there is a point of
M1 ∩M2 in π(C). The rest of the argument is the same as the first case. This proves claim
3.

Since M̃+ is a complete metric space there is a length minimizing path γ : [0, 1] → M̃+

between the points P0 and P1.

Claim 4. γ is a geodesic except, possibly, at points in ∂M̃+
1 ∩ ∂M̃

+
2 .

Proof of Claim 4. Consider a point p in the interior of γ. If p is in the interior of M̃+ then,
since γ is length minimizing, γ is a geodesic in a neighborhood of p. Now suppose that p is not
in any translate of M̃+

2 . Thus p is in some M̃+
1 . Every point of intersection between distinct

copies of M̃+
1 is contained in some M̃2. Thus there is an open arc, α, in γ that contains p and

α is contained in a unique copy of M̃+
1 . Since M̃+

1 is convex, and α is length minimizing, it
follows that α is a geodesic. A similar conclusion holds if p is not in any translate of M̃+

1 . Thus
if γ is not a geodesic near p, then p is in the boundary of M̃+, and p is also contained in copies
of M̃+

1 and M̃+
2 . Hence it is in the boundaries of these copies. This proves claim 4.

We will call a point p on γ a corner of γ if γ is not a hyperbolic geodesic at p. The following
claim proves claim 2 and thus the theorem.

Claim 5. γ has no corners.

Proof of Claim 5. If p is a corner of γ then (by choosing notation for the covering translates)
we may assume p ∈ ∂M̃+

1 ∩ ∂M̃
+
2 . It follows that M̃1 ∩ M̃2 6= φ. This is because π(p) /∈ M1

but π(p) is a distance of 2 from some point x ∈ M2 so by condition (v) π(p) ∈ Y2. Similarly
π(p) ∈ Y1.

Let δ = pw ⊂ M̃+
2 denote the maximal subarc of γ in M̃2

+
which contains p.

p

M
~

M
~

M
~

γ

1
1

2

M
~

1

+

(M  )
~

1

+

M
~ +

2

w

δ

‘

~

x

y
a

b

2

2

‘

p‘

M
+

Figure 2. The developing image
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Claim 6. Either w ∈ M̃2 or length(δ) ≥ κ− 2.

Proof of Claim 6. First we consider the case that w is an endpoint of γ and in addition
π(w) /∈ M1. Then π(w) ∈ M2 thus w is in some translate, M̃ ′2, of M̃2. By definition of δ we
have that w is in M̃+

2 . Thus M̃ ′2 intersects M̃+
2 in the point w. Since w is not contained in any

translate of M̃1, condition (v) implies that M̃ ′2 = M̃2. Thus w is in M̃2 and we are done.
Otherwise w is in some translate, (M̃ ′1)+, of M̃+

1 . This is because either w is an endpoint of
γ and π(w) ∈M1 or else, by maximallity of δ, the point w is in the boundary of M̃+

2 and thus
in some (M̃ ′1)+ (since distinct translates of M̃+

2 can only intersect in a translate of M̃1.) Let
Ỹ1, Ỹ

′
1 be the components of π−1(Y1) which contain M̃1 and M̃ ′1 respectively.

We first consider the case that M̃1 6= M̃ ′1. Let p′ be the point in M̃1 closest to p thus
d(p, p′) = 2. If p′ was in the interior of M̃2 then d(p, M̃2) < d(p, p′) = 2 which contradicts that
d(p, M̃2) = 2. Hence p′ ∈ closure(M̃1) \ int(M̃1 ∩ M̃2). Since Ỹ1 and Ỹ ′1 are not equal they are
disjoint. The geodesic δ has one endpoint p ∈ Ỹ1 and the other endpoint w ∈ Ỹ ′1 thus w is not
in Ỹ1. From condition (v) it follows that d(p′, w) ≥ κ. Hence length(δ) = d(p, w) ≥ κ− 2.

The remaining case is that M̃1 = M̃ ′1 in which case Ỹ1 = Ỹ ′1 . If δ is contained in Ỹ1 then
δ is a geodesic in the convex set Ỹ1 with both endpoints in the convex subset M̃+

1 . But this
implies that δ is contained in M̃+

1 . This in turn means that there is an open interval in γ
which contains p, and is contained in M̃+

1 , and this open interval is therefore a geodesic. This
contradicts that p is a corner. Hence δ contains a point outside Ỹ1 and then as before we obtain
length(δ) ≥ κ− 2. This proves claim 6.

p
δ

δ‘

x

x

y

y
1

1

2

2

≤ 1

≤ 1

≤ 1
≤ ∆

M
~

1
M
~

2

Figure 3. The path stays close to the corners

Proof of claim 5, resumed. The geodesic segment δ has both endpoints, w, p within a distance
2 of M̃2 so we may choose points a, b ∈ M̃2 with d(a,w) ≤ 2 and d(b, p) ≤ 2. Since M̃2 is convex
there is a geodesic, ab, in M̃2. If length(δ) ≥ κ− 2 = 4 it follows from lemma 2.10 that there
is a point x2 ∈ δ and a point y2 ∈ ab with d(x2, y2) ≤ 1 hence d(x2, M̃2) ≤ d(x2, y2) ≤ 1.
Otherwise w ∈ M̃2 and we choose x2 = y2 = w and then d(x2, M̃2) = d(x2, y2) = 0 ≤ 1.

The same argument shows that, if δ′ is the maximal segment of γ in M̃+
1 which contains

p, then there are points x1 ∈ δ′ and y1 ∈ M̃1 with d(x1, M̃1) ≤ d(x1, y1) ≤ 1. Let Ỹi be the
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component of π−1Yi which contains M̃i. Using the convexity of Ỹ1 and Ỹ2 it is easy to see that
the developing map restricted to Ỹ1 ∪ Ỹ2 is an embedding. Thus we may regard Ỹ1 ∪ Ỹ2 as
a subset of Hn. By convexity of the distance function (proposition 2.11) it follows that every
point on the geodesic x1x2 is less than a distance of 1 from some point on the geodesic y1y2.
Since p ∈ (M̃1)+ ∩ (M̃2)+ it follows from claim 3 that M̃1 ∩ M̃2 6= φ. Now M̃1, M̃2 are both
convex and have non-empty intersection. Since y1 ∈ M̃1 and y2 ∈ M̃2 it follows from lemma
2.12) that every point on y1y2 is within a distance ∆ of M̃1 ∪ M̃2. Thus every point on x1x2 is
less than a distance 1 + ∆ of M̃1 ∪ M̃2.

The segment, δ′ ∪ δ, of γ between x1 and x2 is length minimizing among all paths with the
same endpoints in M̃+

1 ∪ M̃
+
2 . Since 1 + ∆ < 2 the hyperbolic geodesic x1x2 is contained in

M̃+
1 ∪ M̃

+
2 and is the unique length minimizing path in this set with these endpoints. Thus

δ′ ∪ δ = x1x2 but this contradicts that p is a corner. This proves claim 5, and thus completes
the proofs of claim 2 and the theorem.

Lemma 2.10. Suppose that Q is a (not necessarily planar) quadrilateral in hyperbolic
space with corners a, b, c, d and geodesic sides ab, bc, cd, da. Suppose that |ad| ≤ 2, |bc| ≤ 2 and
|ab| ≥ 4. Then there are points w ∈ ab and z ∈ cd such that d(w, z) ≤ 1.

Proof. The worst case is the symmetric one in the plane, see figure 4. A calculation then
gives the result.

b

≤ 2 ≤ 2

≥ 4
a

cd

z

w

≤ 1

Figure 4. The worst case.

Proposition 2.11 (distance function is convex [39], p91, 2.5.8). The distance function
d(x, y), considered as a map d : Hn × Hn → R, is convex. The composition d ◦ γ is strictly
convex for any geodesic γ in Hn ×Hn whose projections to the two factors are distinct.

Lemma 2.12 (convex unions). Suppose A and B are convex subsets of hyperbolic space
Hn which have non-empty intersection. Then the convex hull CH(A ∪ B) is contained in the
∆-neighborhood of A ∪ B. Here ∆ = log((3 +

√
5)/2) < 1 is the thin-triangles constant of

H2.

Proof. Let X be the union of all the geodesic segments, [a, b] with endpoints a ∈ A and
b ∈ B. We claim that X is the convex hull of A∪B. Clearly X is contained in this convex hull.
It suffices to show that X is convex.

Suppose that p1 ∈ [a1, b1] and p2 ∈ [a2, b2] are two points in X. Then we need to show that
every point, q, on the geodesic segment from p1 to p2 is also in X. Since q is in the convex
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hull of the four points a1, a2, b1, b2 there is a geodesic [a, b] with endpoints a ∈ [a1, a2] ⊂ A and
b ∈ [b1, b2] ⊂ B which contains q. Since [a, b] is in X it follows q ∈ X thus X is convex.

Given q ∈ X there is a ∈ A and b ∈ B such that q ∈ [a, b]. Choose a point p ∈ A ∩ B
and consider the geodesic triangle with sides [a, p], [p, b], [a, b]. By convexity [a, p] ⊂ A and
[p, b] ⊂ B. The point q on [a, b] is within a distance ∆ of some point in [a, p]∪ [p, b] and is thus
within a distance ∆ of A ∪B.

There is a version of the convex combination theorem which applies to the case of a convex
manifold, M, which is locally isometrically immersed by a map which identifies two disjoint
submanifolds of M and is otherwise injective:

Corollary 2.13 (HNN convex combinations). Suppose that :
(i) M is a convex connected hyperbolic n-manifold and Y is a convex thickening of M.
(ii) X is a hyperbolic n-manifold and f : Y → X is a locally isometric immersion with image
a submanifold f(Y ).
(iii) Y = Z0 ∪ Z1 ∪ Z2 is a decomposition into disjoint submanifolds.
(iv) f |Zi is injective for each i.
(v) f(Z1) = f(Z2) is disjoint from f(Z0).
(6) Define Ni = M ∩ Zi then f(N1) = f(N2).
(7) f(Y ) contains a κ-neighborhood of f(M).
(8) Y contains a κ-neighborhood of N0.
(9) Each component of f(Z1) contains a component of f(N1).
Then f(M) has a convex thickening. In addition if Y has finite volume then this thickening is
a geometrically finite manifold.

Proof. Set Q = f(Y ). There is a unique 2-fold cover Q̃ → Q with the property that f
has two distinct lifts f1, f2 : Y ↪→ Q̃ each of which is injective. Then Q̃ = Y1 ∪ Y2 where
Yi = fi(Y ). Define Mi = fi(M). The hypotheses of the convex combination theorem are
satisfied by M1,M2, Y1, Y2 and Y1 ∪Y2. It follows that M1 ∪M2 has a convex thickening. Since
f(M) is the quotient of this by an isometric involution it follows that f(M) also has a convex
thickening.

3. Cusps in Convex Hyperbolic Manifolds.

In this section we study the geometry of cusps in convex, geometrically-finite, hyperbolic
manifolds. The main result we need is 3.5(e) which states that every thin cusp of a convex
manifold is contained in a product cusp of some relative thickening. This is used in the proof
of the virtual simple gluing theorem 4.3.

If Γ ⊂ Isom(Hn) is discrete and torsion-free then M = Hn/Γ is a geodesically-complete
hyperbolic manifold. If the limit set of Γ contains more than 1 point then, given ε ≥ 0, we
define Cε to be the closed ε-neighborhood in Hn of the convex hull of the limit set of Γ. The
ε-thickened convex core of M is Coreε(M) = Cε/Γ and when ε = 0 this is called the convex
core of M and we write it as Core(M). The convex core is a convex hyperbolic manifold and
a complete metric space.

The manifold M and the group Γ are geometrically finite if for some (hence every) ε > 0 the
volume of Coreε(M) is finite. In dimension three this is equivalent to M having a finite sided
polyhedral fundamental domain. Bowditch gave several equivalent formulations of geometrical
finiteness in [5].

Definition. A cusp is a convex hyperbolic manifold with non-trivial parabolic holonomy.
The rank of a cusp is the largest rank of a free-abelian subgroup of its fundamental group.
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We need to distinguish three kinds of cusp: complete, thin and product. Suppose that D is a
closed horoball in Hn and Γ is a non-trivial, discrete, torsion-free subgroup of Isom(Hn) which
stabilizes D. Then the quotient C = D/Γ is called a complete cusp. It is a convex hyperbolic
manifold with boundary. The induced metric on the boundary of the horoball D is Euclidean,
and Γ acts by Euclidean isometries on ∂D, so the boundary of C is isometric to the Euclidean
(n−1)-manifold En−1/Γ. By a theorem of Bieberbach such a Euclidean manifold is a flat vector
bundle over a closed Euclidean manifold called the soul.

Suppose that N = Hn/π1N is a geodesically-complete hyperbolic n-manifold. A cusp in
N is a submanifold C+ of N which is isometric to a complete cusp. Now suppose that M is
a convex hyperbolic n-manifold and Th∞(M) = Hn/π1M is the corresponding geodesically-
complete manifold. Let C+ be a complete cusp in Th∞(M). A cusp in M is the intersection
C = C+ ∩M. We say that C+ is the complete cusp corresponding to C. Clearly π1C ∼= π1C

+.
For simplicity, in this section we will also assume that M is metrically complete. In addition
we assume that if M has parabolic holonomy, then a submanifold of M that is designated as
a cusp is never all of M. The cusp boundary of the cusp C in M is denoted by ∂cC and equals
(M \ int(C)) ∩ C = C ∩ ∂C+ and is a submanifold of ∂C+.

The horoball D has a codimension-1 foliation by horospheres Ht for t ≥ 0, such that ∂D = H0

and the distance between Hs and Ht is |s − t|. This foliation is preserved by Γ. Thus every
cusp has a codimension -1 foliation whose leaves are called horomanifolds which are covered
by submanifolds of horospheres. The induced metric on a horomanifold is Euclidean.

It follows from [5] that if M is a geometrically-finite hyperbolic manifold, ε > 0, and if C is
a maximal collection of pairwise disjoint cusps, then Coreε(M) \ int(C) is compact.

Lemma 3.1 (thinning cusps). Suppose M is a convex hyperbolic manifold and C is a cusp
of M. Then CH(M \ C) = (M \ C) ∪ CH(∂cC).

Proof. Since ∂cC ⊂ M \ C it follows that (M \ C) ∪ CH(∂cC) ⊂ CH(M \ C). Clearly
X ≡ (M \ C) ∪ CH(∂cC) is closed, thus it only remains to show it is also convex.

Let π : M̃ → M be the universal cover. Let X̃ = π−1(X). Given two points in X̃ the
convexity of M implies there is a geodesic, γ, in M̃ connecting them. This geodesic is made up
of segments; each segment is either contained in π−1(M \ C) or in a component of π−1(C).

Consider a segment, δ, which is a component of γ ∩ π−1(C). Each endpoint of δ is either
in π−1(∂cC) or is an endpoint of γ and thus in π−1(CH(∂cC)). Each component of π−1(C)
intersects (and contains) a unique component of π−1(CH(∂cC)). Thus both endpoints of δ are
contained in the same component, A, of π−1(CH(∂cC)). Since A is convex δ is contained in A.
Thus γ is contained in X̃. It follows from the definition of convex manifold that X is convex.

Definition. A product cusp is a cusp which has a 1-dimensional foliation by geodesic rays
orthogonal to the foliation by horomanifolds. Each geodesic ray starts on the cusp boundary
and has infinite length. Recall that the definition of cusp includes that the cusp is convex.

Proposition 3.2 (product cusps). Suppose C is a cusp. The following are equivalent:
(i) C is a product cusp.

(ii) ∂cC is a convex Euclidean manifold, possibly with non-empty boundary, and C =
CH(∂cC).

(iii) If we isometrically identify Hn with the upper half space xn > 0 of Rn equipped with
the metric ds/xn, then the universal cover of C is isometric to

Ω = { (x1, . . . , xn) ∈ Rn : (x1, x2, . . . , xn−1, 1) ∈ S and xn ≥ 1 }

where S is a convex (n− 1)-submanifold of the horosphere xn = 1.
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Furthermore, the leaves of the 1-dimensional foliation of C are covered by vertical line
segments in Ω which are parallel to the xn-axis.

Proof. The proof follows easily from the observation that ∂cC is a convex Euclidean man-
ifold iff it’s universal cover, S, is a convex (n− 1)-submanifold of the horosphere xn = 1 iff Ω
is a convex subset of Hn.

Definition. A cusp, C, is thin if there is a constant D such that for all t ≥ 0 the diameter
of the horomanifold Ht/π1C in the cusp is less than D exp(−t).

Remark. If C is a thin cusp then it has finite volume. The converse is not true in general.
For example a 3-dimensional rank-1 cusp for which the diameter of every horomanifold is 1
has finite volume.

Lemma 3.3 (thin cusps). Suppose C is a cusp.
(i) Every finite cover of C is a thin cusp.

(ii) If C is a complete cusp then it is thin iff rank(C) = dim(C)− 1.
(iii) If ∂cC has bounded diameter then CH(∂cC) is a thin cusp.
(iv) If C is a product cusp with compact cusp boundary then C is thin.
(v) If C is thin then it has a thickening which is a thin product cusp.

Proof. (i) is obvious. (ii) follows the observation that the rank of a cusp equals the dimension
of the soul of the cusp boundary. Thus rank(C) = dim(C)−1 is equivalent to the condition that
the cusp boundary is a closed manifold. For (iii), let C+ be the complete cusp corresponding
to C. Then ∂cC is a bounded subset of the Euclidean manifold W = ∂C+. Now W is a
vector bundle over a closed Euclidean manifold. Given r > 0 let Wr be the subset of vectors
of length at most r. Then Wr is a compact, convex, submanifold of W. Hence CH(Wr) is a
product cusp. Now ∂cC has bounded diameter thus for some r > 0 we have ∂C ⊂ Wr. Thus
CH(∂cC) ⊂ CH(Wr). Clearly CH(Wr) is thin, therefore CH(∂cC) is also thin. This proves
(iii), and (iv) follows from (iii).

For (v), let E be the subset of C+ consisting of all geodesic rays which intersect C and are
orthogonal to the horomanifolds. From the description of a cusp in part (iii) of 3.2 it is easy
to see that, since C is convex, E is also convex. It is also easy to see that since C is thin (with
constant D say) ∂cE = E ∩∂cC+ has diameter at most 2D. Thus ∂cE is contained in Wr for r
sufficiently large. Now E is contained in the product cusp CH(Wr) and, by part (iii), CH(Wr)
is thin.

Proposition 3.4 (GF cores have thin cusps). Suppose that N = Hn/Γ is a geometrically-
finite hyperbolic manifold. Then M = Core(N) has thin cusps.

Proof. If C is a cusp of M then ∂cC has bounded diameter. This is because otherwise the
ε-neighborhood of ∂cC in N has infinite volume. But N is geometrically finite so Cε(M) has
finite volume and contains the ε-neighborhood of ∂cC. Since M = Core(N) it follows that
CH(M \ C) = M and 3.1 implies C = CH(∂cC). The result follows from 3.3.

Although we won’t use this fact, in a geometrically-finite hyperbolic 3-manifold every cusp
contains a (possibly smaller) cusp which is a product cusp. For rank-2 cusps this is obvious.
For rank-1 cusps, see [40].

Definition. Suppose that M is a convex hyperbolic manifold and that C1, . . . , Cn is a
collection of pairwise disjoint cusps in Th∞(M). Given K ≥ 0 the K-thickening of M relative
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Figure 5. Relative Thickening.

to C =
⋃
i Ci is

ThrelK (M ; C) = CH(ThK(M) \ int(C)).

Since M is convex, ThK(M) is also convex and, as we shall see below, the difference between
it and ThrelK (M ; C) is to replace those cusps in ThK(M) contained in C by thin cusps. Usually
C is a maximal collection. In this case, although relative thickening depends on a particular
choice of a maximal family of cusps, usually the choice is unimportant. We will therefore use
ThrelK (M) to denote the result of a relative thickening with respect to some maximal set of
cusps .

Example. Suppose that F is a complete hyperbolic punctured torus. Isometrically embed
H2 into H3 then the holonomy of F gives a Kleinian group Γ ∼= π1F. We can regard F as a
degenerate hyperbolic 3-manifold of zero thickness. The quotient by Γ of the K-neighborhood
of H2 in H3 is the K-thickening M = ThK(F ). It is a convex hyperbolic 3-manifold with a
rank-1 cusp. The thickness of the cusp everywhere is 2K. This means that every point in F is
contained a geodesic segment in M of length 2K which is orthogonal to F. In particular this
is an example of a convex 3-manifold of finite volume which has a rank-1 cusp that is not a
product cusp. The relative K-thickening of F is the subset of ThK(F ) obtained by replacing
the rank-1 cusp of M by a product cusp whose thickness decreases exponentially.

Proposition 3.5 (relative thickenings contain product cusps).
Suppose that M is a metrically-complete convex hyperbolic manifold, and that C =

⋃
i Ci is a

maximal set of pairwise disjoint cusps in Th∞(M) and assume that all these cusps are thin.
Then:
(a) For K sufficiently large, ThrelK (M ; C) is a convex thickening of M.
(b) If M = Core(M) is geometrically finite then ThrelK (M ; C) has finite volume.
(c) ThrelK (M ; C)contains a K-neighborhood of M \ int(C).
(d) ThrelK (M ; C) has thin cusps.
(e) For K sufficiently large each cusp, M ∩Ci, of M is contained in a product cusp which is a
subset of ThrelK (M ; C).

Proof. Part (a) follows from (e). For (b) observe that ThrelK (M ; C) has finite volume because
it is a subset of the convex manifold ThK(M), and the latter has finite volume because M is
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geometrically finite. For (d) observe that by 3.1

ThrelK (M ; C) = (ThK(M) \ int(C)) ∪
⋃
i

CH(M ∩ ∂cCi).

Conclusion (d) now follows from 3.3.
For (c) consider the metric ball, B, of radius K in Th∞(M) centered on x ∈ M \ int(C).

Then B ⊂ ThK(M). Hence B \ ThrelK (M) ⊂ C. Suppose A is a component of B ∩ C. We will
show that A ⊂ ThrelK (M ; C). It then follows that B ⊂ ThrelK (M ; C) which implies (c).

Identify the universal cover of Th∞(M) with Hn. Let x̃ be a point in Hn which covers x and
let B̃ be the metric ball in Hn centered at x̃ and radius K. Thus B̃ projects onto B. Let C be
the component of C which contains A and identify Hn with the upper half-space model so that
the horoball xn ≥ 1 projects onto C. Then B̃ ∩ { xn = 1 } is a metric ball in the horosphere
xn = 1. It projects onto A ∩ ∂cC. The point, p, at infinity (xn = ∞) in the upper half space
model is a parabolic fixed point for M and so is in the limit set of M̃. Let Y be the subset of
Hn corresponding to the universal cover of ThrelK (M ; C). It follows that p is in the limit set of
Y. Now Y is convex and contains contains B̃ ∩ { xn = 1 } and limits on p. Hence Y contains
the solid cylinder, W, of points lying vertically above B̃ ∩ { xn = 1 }. Since x is not in the
interior of C it follows that x̃ is not in { xn > 1 }. Hence W contains Z = B̃ ∩ { xn ≥ 1 }, and
Z ⊂ Y. The projection of Z to ThrelK (M ; C) is A. This proves (c).

For (e) consider a cusp C in C. Since C is thin 3.3 implies it has a thickening which is
a thin product cusp E. For K sufficiently large ∂cE ⊂ ThrelK (M ; C). The latter is convex so
E = CH(∂cE) ⊂ ThrelK (M ; C) and this proves (e).

We do not know if every geometrically finite hyperbolic n-manifold has a convex thickening
with the property that every cusp disjoint from a sufficiently large compact set is a thin product
cusp. Part (e) of the above enables us to bypass this issue in the proof of the virtual simple
gluing theorem 4.3.

4. Induced gluing

The main result of this section is the virtual simple gluing theorem 4.3. Suppose that we
have two locally-isometric immersions of hyperbolic 3-manifolds equipped with basepoints into
a hyperbolic 3-manifold M

f : (A, a0)→ (M,m0) g : (B, b0)→ (M,m0).

We would like to use this information to glue A and B together. For example if both immersions
are injective then we might identify A with f(A) and B with g(B). The union f(A)∪g(B) ⊂M
may then be regarded as a quotient space of the disjoint union of A and B and it has a
hyperbolic metric.

However we will be interested in situations when the immersions are not injective. Further-
more, even when A and B are submanifolds of M, we want to do make the fewest identifications
subject to the requirements that the basepoints in A and B are identified and that the
identification space is a hyperbolic 3-manifold. Thus if A ∩ B is not connected we wish to
only identify A and B along the component, C, of A ∩ B containing the basepoint m0. In
certain circumstances the fundamental group of the identification space will be a free product
of the fundamental groups of A and B amalgamated along a subgroup corresponding to the
fundamental group of C.

We give below a very general way of forming an identification space. Even when the resulting
identification space is a hyperbolic manifold, it will usually not be convex and might not have
a convex thickening.
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Definition. Suppose that f : (X,x0) → (Z, z0) and g : (Y, y0) → (Z, z0) are continuous
maps of pointed spaces. Define a relation R on the disjoint union, X

∐
Y, of X and Y as

follows. If x ∈ X and y ∈ Y then xRy iff there are paths α : I → X and β : I → Y such that
α(0) = x0, α(i) = x, β(0) = y0, β(i) = y and f ◦ α = g ◦ β. We now define a topological
space called the induced gluing, denoted S(f, g), to be the quotient space X

∐
Y/ ≡ obtained

by taking the equivalence relation ≡ which is generated by R. It is clear that if two points are
identified then they have the same image in Z. Let πX : X → S(f, g) and πY : Y → S(f, g)
denote the natural projections. We say that the induced gluing is a simple gluing if both πX
and πY are injective.

Example (i) If f, g are both embeddings define Z0 to be the path component of f(X)∩g(Y )
containing the basepoint z0. Then S(f, g) is obtained from X

∐
Y by identifying f−1(Z0) with

g−1(Z0) using the homeomorphism g−1◦f : f−1(Z0)→ g−1(Z0). It is clear that this is a simple
gluing.

Example (ii) Suppose f, g : S1 × [0, 2]→ S1 × S1 are given by

f(ω, t) = ( ω , exp(2πit) ) and g(ω, t) = ( exp(2πit) , ω ).

Then S(f, g) can be naturally identified with the codomain S1 × S1. In this case the gluing is
not simple, in fact both projections are surjective.

Example (iii) Suppose now that p : S1 × [0, 2] → S1 × [0, 2] is the 3-fold cyclic cover and
f, g are as in example (ii). Then S(f ◦ p, g ◦ p) is homeomorphic to a torus minus an open disc.
It is easy to see that this is a simple gluing. Furthermore this is a modification of example (ii)
where the domains are replaced by certain finite covers. This phenomenon of taking a non-
simple gluing and making a simple gluing by replacing the spaces by finite covers is generalized
below.

Example (iv) Suppose that X = S1 and Y ∼= Z ∼= D2 and f(z) = z2 and g is a
homeomorphism. Then πY is a homeomorphism and πX is a covering map onto ∂D. The
gluing is not simple. Furthermore there are no finite covers of the domains which result in a
simple gluing as in example (iii).

It is routine to check the following:

Lemma 4.1 (induced gluing).
Suppose f : (X,x0)→ (Z, z0) and g : (Y, y0)→ (Z, z0) yield an induced gluing S(f, g).
(a) The induced gluing is simple iff for every x ∈ X there is at most one y ∈ Y with xRy and
vice versa.
(b) If the induced gluing is simple define subspaces X0 ⊂ X, Y0 ⊂ Y by x ∈ X0 and y ∈ Y0

if xRy. Define h : X0 → Y0 by h(x) = y if xRy. Then S(f, g) is the quotient space obtained
from X

∐
Y by identifying X0 with Y0 using h.

(c) If X,Y, Z are smooth n-manifolds with boundary and f, g are immersions, and if the
induced gluing is simple, and if f |∂X is transverse to g|∂Y, then S(f, g) is an n-manifold with
boundary.
(d) There is a unique continuous induced map h : S(f, g) → Z such that f = h ◦ πX and
g = h ◦ πY .
(e) If the induced gluing is simple then πX(X)∩πY (Y ) is a path connected subspace of S(f, g).

We are concerned with induced gluings of convex hyperbolic manifolds. In this case the gluing
of the manifolds is determined by the intersection of the images of their developing maps:

Lemma 4.2 (geodesic gluing). Suppose A,B,M are convex hyperbolic manifolds of the
same dimension and f : (A, a0) → (M,m0) and g : (B, b0) → (M,m0) are locally isometric
immersions. Let pA : Ã → A and pB : B̃ → B and pM : M̃ → M be the universal covers.
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Figure 6. Gluing Convex Manifolds.

Choose lifts of the base points and maps f̃ : (Ã, ã0) → (M̃, m̃0) and g̃ : (B̃, b̃0) → (M̃, m̃0)
covering f and g. Suppose a ∈ A and b ∈ B, then aRb iff there are ã ∈ Ã and b̃ ∈ B̃ covering a
and b respectively such that f̃(ã) = g̃(b̃). Furthermore, if aRb then the paths α, β used in the
definition of the R-relation can be chosen to be geodesics.

Proof. First suppose that aRb. Then there are paths α in A from a0 to a and β in B from
b0 to b with f ◦ α = g ◦ β. Let α̃, β̃ be the lifts that start at the respective basepoints ã0, b̃0 of
Ã, B̃. Then δ̃ = f̃ ◦ α̃ is a lift of f ◦ α and g̃ ◦ β̃ is a lift of g ◦ β which both start at m̃0 thus
f̃ ◦ α̃ = g̃ ◦ β̃. Setting ã = α̃(i) gives pA(ã) = a. Similarly b̃ = β̃(i) implies pB(b̃) = b. Since
f̃ ◦ α̃ = g̃ ◦ β̃ we get f̃(ã) = g̃(b̃) completing the proof in this direction.

For the converse, given ã, b̃ with f̃(ã) = g̃(b̃), the point m̃ = f̃(ã) is in both f̃(Ã) and
g̃(B̃). These are convex subsets of M̃ each of which may be identified with a convex subset of
hyperbolic space; thus their intersection is a convex set, C, that contains both m̃0 and m̃. By
convexity there is a geodesic γ̃ in C with endpoints m̃ and m̃0. Then α̃ = f̃−1γ̃ and β̃ = g̃−1γ̃
are geodesics in Ã and B̃ which project to geodesics α = pAα̃ ⊂ A and β = pBβ̃ ⊂ B. Set
a = α(i) and b = β(i) then since f̃ ◦ α̃ = g̃ ◦ β̃ it follows that f ◦ α = g ◦ β and hence aRb.

We now generalize the passage from example (ii) to example (iii). Example (iv) shows that
the convexity hypothesis is necessary.

Theorem 4.3 (virtual simple gluing theorem). Suppose thatM = Hn/π1M is a geodesically-
complete hyperbolic manifold. Suppose that A and B are geometrically-finite, convex, hyper-
bolic n-manifolds with finite volume and thin cusps. Suppose f : (A, a0) → (M,m0) and
g : (B, b0) → (M,m0) are local isometries. Let G = f∗π1(A, a0) ∩ g∗π1(B, b0) < π1(M,m0)
and suppose that GA = f−1

∗ (G) is separable in π1(A, a0) and GB = g−1
∗ (G) is separable in

π1(B, b0).
Then there are finite covers pA : (Ã, ã0) → (A, a0) and pB : (B̃, b̃0) → (B, b0) and maps

f̃ = f ◦ pA : (Ã, ã0) → (M,m0) and g̃ = g ◦ pB : (B̃, b̃0) → (M,m0) such that S(f̃ , g̃) is a
simple gluing of Ã and B̃ and so that GA ⊂ pA∗(π1(Ã, ã0)) and GB ⊂ pB∗(π1(B̃, b̃0)).

Proof. First we give a sketch of the proof, the details follow. To understand this outline it
may help to refer to the figure 7 below. In claim 1 we show that if A and B are compact there
is a constant L > 0 such that if a1 ∈ A is R-related to b1 ∈ B then there are two geodesics,
γ1 in A going from a0 to a1, and δ1 in B going from b0 to b1, each of length at most L, and
which are identified by f and g.
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Using separability there are finite covers Ã, B̃ of A and B such that the only loops of length
at most 2L which lift to these covers correspond to elements of G. In claim 2 we show that the
induced gluing of these covers is simple as follows.

Suppose two points ã1, ã2 in Ã are R-related to the same point b̃ in B̃. Then there are two
(possibly very long) geodesics α̃1, α̃2 in Ã each of which is identified to a geodesic β̃1, β̃2 in
B̃. The geodesic α̃i starts at the basepoint ã0 ∈ Ã and ends at ãi. The geodesics β̃i both
start at b̃0 and both end at b̃1 = b̃2. Projecting these geodesics gives geodesics α1, α2 ⊂ A
and β1, β2 ⊂ B. Claim 1 implies there are new geodesics, γi ⊂ A with the same endpoints as
αi, and δi ⊂ B with the same endpoints as βi, such that γi is identified to δi, and these new
geodesics all have length at most L. The loop αi · γ−1

i ⊂ A is identified to βi · δ−1
i ⊂ B. Thus

they represent elements in G and thus lift to the covers. Since b̃1 = b̃2 we deduce δ1 · δ−1
2 lifts

to a loop. Since δ1 · δ−1
2 has length at most 2L it therefore must lie in G. This implies γ1 · γ−1

2

is also a loop (ie. a1 = a2) and that it lifts to a loop in Ã which implies ã1 = ã2. Thus there
are no self-identifications, proving claim 2.

Finally, in the non-compact case, we first replace A and B by relative thickenings of A and
B so that each thin cusp of A or B is contained in a product cusp which in turn is contained
in a cusp of the thickenings. Then we truncate along cusp boundaries to obtain compact
submanifolds of the relative thickenings. This allows us to find a constant L that applies to
points in these submanifolds and the previous argument shows there are no self-identifications
in the submanifolds. The fact that thin cusps of A and B are contained in product cusps of
the thickenings means any self-identifications within a thin cusp propagate vertically within
the larger product cusp in a product like way to give identifications where the cusp meets the
compact submanifold at the cusp boundary. But such identifications have been ruled out. Thus
there are no self-identifications in the thin cusps of A or B either. This completes the sketch.

The first step is to replace A and B by thickenings so that the thin cusps of A and B are
contained in product cusps of the thickenings. We start by renaming A as A∗ and B as B∗. Let
C be a maximal collection of pairwise disjoint cusps in M . By choosing C sufficiently small we
may ensure that CA = f−1(C) and CB = g−1(C) is a maximal collection of pairwise disjoint
cusps in A∗ and B∗ respectively. We choose the cusps in C small enough so that A∗ 6= CA
and B∗ 6= CB and so the cusps CA and CB are thin. By 3.5(e) there is K > 0 such that
each component of CA and of CB is contained in a product cusp contained in A ≡ ThrelK (A∗)
or B ≡ ThrelK (B∗) respectively. The maps f, g have natural extensions to local isometries
f : A→M and g : B →M. Henceforth we shall use f and g to denote these extensions.

We now remove the cusps to obtain A− = A \ f−1(int(C)), and B− = B \ g−1(int(C)).
Then A−, B− are compact. Furthermore each component of CA is contained in a product cusp
contained in A \A− and similarly for B.

Claim 1. There is L > 0 such that if a1 ∈ A− and b1 ∈ B− and a1Rb1 then there are
geodesics α ⊂ A and β ⊂ B with length(α) = length(β) ≤ L and f ◦ α = g ◦ β and α has
endpoints a0, a1 and β has endpoints b0, b1.

Proof of Claim 1. Define

S = {(a1, b1) ∈ A×B : a1Rb1} and ` : S → R

by `(a1, b1) is the length of some shortest geodesic, α, as above. By 4.1(c) S(f, g) is Hausdorff
thus S is a closed subset of A × B. We first show that ` is continuous at points of S in the
interior of A×B.

If (a1, b1) ∈ S and a1 is in the interior of A and b1 is in the interior of B then ` is continuous
at (a1, b1). This is because there are small open balls U ⊂ A and V ⊂ B centered on a1 and
b1 with fU = gV. It is clear that each a ∈ U is R-related to a unique point b ∈ V. Since A and
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B are convex there are geodesics, α′, β′ close to α and β from the basepoints to a and b and
fα′ = gβ′. This proves continuity of ` at interior points.

By enlarging A and B to slightly larger convex manifolds, A+, B+ every point in S is in the
interior of A+ × B+ thus the corresponding function `+ defined on S+ is continuous at every
point in S. The function `+ is defined using geodesics in the enlarged manifolds. However if a
geodesic in A+ starts and ends in A then, since A is convex, the geodesic is contained in A. It
follows that `+|S = ` and thus ` is continuous on all of S.

Restricting the continuous function ` to the compact set S ∩ (A− × B−) we obtain the
required bound L on `. Observe that the shortest geodesics used above connecting a point in
A− to the basepoint a0 are not necessarily contained in A−, they may go into the cusp of A
some bounded distance. This proves claim 1.

Let S ⊂ π1(B, b0) be the set of elements represented by based loops of length at most 2L.
Since B is convex S is finite. Since A,B,M are all convex, the maps f∗, g∗ are injective by
proposition 2.3, and for notational simplicity we will identify G with GA and GB . Since G is
separable in π1(B, b0) there is a subgroup, H < π1(B, b0), of finite index which contains G and
contains no element of S \ G. It follows that if an element h ∈ H is represented by a based
loop of length at most 2L then h ∈ G.

Let pB : B̃ → B be the cover corresponding to this subgroup. Similarly define pA : Ã→ A.
Let f̃ = f ◦ pA and g̃ = g ◦ pB . Define Ã− = p−1

A (A−) and B̃− = p−1
B (B−). Then A−, B− are

compact. The following claim and lemma 4.1(a) imply the induced gluing, S(f̃ , g̃), of Ã− and
B̃− is simple.

Claim 2. If ã1, ã2 ∈ Ã− are both R-related to b̃1 = b̃2 ∈ B̃− then ã1 = ã2 and similarly
with the roles of Ã− and B̃− reversed.

Proof of Claim 2. Observe that ai = pA(ãi) ∈ A− and bi = pB(b̃i) ∈ B−.
For i ∈ {1, 2} because ãiRb̃i there is a geodesic α̃i ⊂ Ã starting at ã0 and ending at ãi and a

geodesic β̃i ⊂ B̃ starting at b̃0 and ending at b̃i such that f̃ ◦ α̃i = g̃ ◦ β̃i. Project these into A
and B to obtain geodesics αi = pA ◦ α̃i in A and βi = pB ◦ β̃i in B. Observe that f ◦αi = g ◦βi.
Thus there are geodesics γi ⊂ A and δi ⊂ B of length at most L with fγi = gδi such that the
endpoints of αi and γi are the same and the endpoints of βi and δi are the same as shown in
the diagram.

Consider the loop αi · γ−1
i in A. The image of this loop under f is the same as the image

under g of the loop βi · δ−1
i hence these loops give elements of G. It follows that the loops

αi · γ−1
i lift to loops in Ã based at ã0. Similarly the loops βi · δ−1

i lift to loops in B̃ based at b̃0.

Claim 3. The loop δ = δ1 · δ−1
2 lifts to a loop δ̃ in B̃ based at b̃0.

Proof of Claim 3. This is because

δ = δ1 · δ−1
2 = (δ1 · β−1

1 ) · (β1 · β−1
2 ) · (β2 · δ−1

2 ).

The loops δ1 · β−1
1 and β2 · δ−1

2 lift to loops based at b̃0 by the previous paragraph. The path
β̃i starts at b̃0 and ends at b̃i. Using the assumption that b̃1 = b̃2 we see that the β̃1, β̃2 have
the same endpoints thus β1 ·β−1

2 lifts to a loop based at b̃0. Thus all three loops in the product
lift to loops based at b̃0. This proves claim 3.

We continue with the proof of claim 2. In what follows ' denotes homotopy between maps
of an interval keeping endpoints fixed. Since length(δ) ≤ 2L, and using the definition of B̃, we
see that [δ] ∈ G. Since [δ] ∈ G there is a loop, η, in A based at a0 such that f ◦ η ' g ◦ δ. By
sliding one endpoint of η along γ1 one obtains a path ε in A with endpoints a0, a1 such that
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Figure 7. R-Related paths.

f ◦ (γ1 · ε−1) ' g ◦ δ. By changing basepoints it follows that

f ◦ (ε−1 · γ1) ' g ◦ (δ−1
2 · δ1).

Since A is convex we may homotop ε keeping its endpoints fixed to be a geodesic.
Combining this with:

f ◦ (ε−1 · γ1) = (f ◦ ε−1) · (f ◦ γ1)
g ◦ (δ−1

2 · δ1) = (g ◦ δ−1
2 ) · (g ◦ δ1)

f ◦ γ1 = g ◦ δ1

it follows that f ◦ ε−1 ' g ◦ δ−1
2 and thus f ◦ ε ' g ◦ δ2. Since f ◦ ε and g ◦ δ2 are geodesics in the

convex hyperbolic manifold M with the same endpoints, and are homotopic rel endpoints, it
follows they are equal. But f ◦γ2 is also equal to this geodesic. Thus γ2 and ε are two geodesics
in A which start at the same point and map under the local isometry f to the same geodesic.
It follows that ε = γ2.

We now have a loop γ1 · γ−1
2 ⊂ A such that f ◦ (γ1 · γ−1

2 ) ' g ◦ δ. Since the latter is in G it
follows that γ1 · γ−1

2 lifts to a loop based at ã0 and therefore ã1 = ã2. This proves claim 2.

We now finish the proof of the theorem. We have shown that the induced gluing of Ã− and
B̃− is simple. Suppose a1, a2 ∈ Ã∗ are identified by the induced gluing of the corresponding
covers Ã∗ and B̃∗. Since Ã∗ ⊂ Ã it follows that that a1, a2 are in the cusps C̃A of Ã∗ that cover
CA. A finite cover of a product cusp is also a product cusp. There are product cusps contained
in Ã which contain C̃A. A product cusp has a 1-dimensional foliation by rays starting on the
cusp boundary. Hence two of these rays are identified by the induced gluing. This implies two
point on the cusp boundaries are also identified. The cusp boundaries are in Ã− thus there are
two points in Ã− which are identified and this is a contradiction. Similar remarks apply to B′.
Hence the induced gluing of Ã′ and B̃′ is simple. This completes the theorem.

Here is an example that illustrates what the simple gluing theorem does. Suppose that A
and B are each a surface times an interval and are the convex cores of two quasi-Fuchsian
3-manifolds which are immersed into some convex hyperbolic 3-manifold M. By theorem 8.1
the intersection of geometrically finite subgroups is geometrically finite so G = f∗π1(A, a0) ∩
g∗π1(B, b0) is geometrically finite. By Scott’s theorem this group is separable in π1(A, a0) and
π1(B, b0).
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The virtual simple gluing theorem applied with G being this intersection produces finite
covers of A and B where the pre-image of this intersection group is embedded. It then identifies
the covers along submanifolds corresponding to these subgroups. We call these submanifolds
(and the subsurfaces of the quasi-Fuchsian surfaces they correspond to) the region of parallelism
between A and B.

Assume for simplicity that A and B are embedded and contain spines which are disjoint
surfaces SA, SB . Then the region of parallelism is the horizontal boundary of the maximal
I-bundle, J, between SA and SB for which some fiber connects the basepoints of SA and SB .
(J is a compact, connected, π1-injective product I-bundle in M that contains the basepoint
and has one horizontal boundary component in each of SA and SB . The interior of J is disjoint
from SA ∪ SB . Also π1J = π1A ∩ π1B. Possibly J is a disc times an interval, otherwise J is
unique up to isotopy fixing SA and SB .)

It should be pointed out that the hyperbolic manifold S(f̃ , g̃) produced by a simple gluing
is usually not convex, and in general the induced map S(f̃ , g̃) → M is not π1-injective. To
achieve π1-injectivity one needs some extra hypotheses, as in the convex combination theorem.

5. The virtual amalgam and virtual convex combination theorems.

In this section we give two results which have the same conclusion as the convex combination
theorem but with different hypotheses. The idea is that in some situations when one wishes
to glue two convex manifolds the hypotheses of the convex combination theorem are always
satisfied by certain finite covers of the manifolds in question.

Definition. Suppose that M = M1 ∪M2 is a hyperbolic n-manifold which is the union
of two convex hyperbolic n-submanifolds, M1,M2. Suppose that π : M̃ → M is a finite cover
and M̃i is a component of π−1(Mi) and C̃ is a component of π−1(M1 ∩M2). The hyperbolic
n-manifold obtained from the disjoint union of M̃1 and M̃2 by identifying the copy of C̃ in
each is called a virtual gluing of M1 and M2. This equals the simple gluing S(π|M̃1, π|M̃2)
with basepoints chosen in C̃.

Theorem 5.1 (virtual compact convex combination theorem). Suppose that M = M1∪M2

is a hyperbolic n-manifold, M1,M2 are compact, convex hyperbolic n-manifolds, and C is a
component of M1 ∩M2. Also suppose that π1C is a separable subgroup of both π1M1 and
π1M2. Then there is a virtual gluing, N, of M1 and M2 along C which has a convex thickening.
In particular N is isometric to a submanifold of Hn/hol(π1N).

Proof. Before starting, we remark that a short proof can be given if it is assumed that M is
contained in a convex hyperbolic manifold N. In this case one has locally isometric immersions
Yi = Threlκ (Mi) ↪→ N. The virtual simple gluing theorem then gives a simple gluing of finite
covers Ỹ1 ∪ Ỹ2, and the convex combination theorem now implies this has a convex thickening,
giving the result.

We will show that there is a virtual simple gluing of M1 and M2 which extends to a virtual
gluing of the κ-thickenings. The result then follows from the convex combination theorem (2.9.

By 2.4 C is convex and thus π1C injects into π1Mi by 2.3. Thus the universal cover, C̃u, of
C is a submanifold of the universal cover, M̃u

i , of Mi. Hence we may embed M̃u
1 and M̃u

2 in
Hn so that M̃u

1 ∩ M̃u
2 ⊇ C̃u. Convexity implies this is an equality. The action of π1C on Hn

preserves M̃u
1 and M̃u

2 . Let N = (M̃1 ∪ M̃2)/π1C. Thus N is a submanifold of Hn/π1C. Define
M̃1 ≡ M̃u

1 /π1C and M̃2 ≡ M̃u
2 /π1C then N = M̃1∪M̃2 and M̃1∩M̃2 = C̃ is a lift of C. Define

N+ = { x ∈ Hn/π1C : d(x,N) ≤ κ }.

Then N+ = Thκ(M̃1) ∪ Thκ(M̃2). Clearly there is a covering map Thκ(M̃i)→ Thκ(Mi).
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Let C̃+ be the component of Thκ(M̃1) ∩ Thκ(M̃2) which contains C̃. Since Thκ(M̃1) and
Thκ(M̃2) are convex, 2.4 implies C̃+ is convex. From 2.3 it follows that π1C̃

+ → π1(Hn/π1C)
is injective. Since C̃ ⊂ C̃+ it follows that the inclusion C̃ ↪→ C̃+ induces an isomorphism of
fundamental groups. Thus C̃+ is a convex thickening of C̃.

We now show that C̃+ is compact. Otherwise there is geodesic ray λ in C̃+ which starts at a
point p ∈ C̃ and leaves every compact set. Consider λi ≡ λ ∩ M̃i. Since p ∈ C̃ ⊂ M̃i it follows
that λi contains p. By considering the universal cover of the K-thickening of M̃i, and using
convexity of M̃i, it is easy to see that λi = λ. Hence λ ⊂ C̃. But this contradicts that C̃ is
compact, and proves C̃+ is compact.

Claim. There is a finite cover Yi → Thκ(Mi) such that the natural map pi : C̃+ →
Thκ(Mi) lifts to an injective map p̃i : C̃+ → Yi.

Assuming the claim, consider the hyperbolic manifold Y = Y1 ∪ Y2 obtained by gluing Y1

and Y2 along C̃+. Then Y contains N = M̃1∪M̃2 and Yi = Thκ(M̃1). The convex combination
theorem now gives the result.

Proof of Claim. Choose a basepoint x ∈ C and observe that x ∈ C ⊂Mi ⊂ Thκ(Mi). Under
the identification given by the lift, C ≡ C̃, the point x determines a basepoint x̃ ∈ C̃ ⊂ C̃+.
In what follows all fundamental groups are based at the relevant basepoint.

Let Si be the subset of π1Thκ(Mi) represented by loops of length at most 3 times the
diameter of C̃+. Since C̃+ is compact Si is finite. Since π1C is a separable subgroup of π1Mi

there is finite index subgroup of π1Mi which contains π1C and contains no element of Si \π1C.
Let Yi → Thκ(Mi) be the corresponding cover.

Clearly the natural map pi lifts to p̃i : C̃+ → Yi. We have a basepoint p̃i(x̃) ∈ Yi. If p̃i is not
injective there are distinct points x̃1 6= x̃2 ∈ C̃+ with p̃i(x̃1) = p̃i(x̃2). Then there is a geodesic
segment α̃ in C̃+ with endpoints x̃1 and x̃2, of length at most the diameter of C̃+. Observe
that α̃ maps to a loop p̃i ◦ α̃ in Yi. Thus p̃i ◦ α̃ projects to a loop, α, in Thκ(Mi) based at
the point x1 = pi(x̃1). Let β̃ be a geodesic segment of minimal length in C̃+ with endpoints
x̃ and x̃1. Then β = pi ◦ β̃ is a geodesic segment in Thκ(Mi) starting at x and ending at x1.
Thus γ = β.α.β−1 is a loop in Thκ(Mi) based at x of length at most 3 times the diameter of
C̃+. Thus [γ] is an element of Si. It is easy to see that γ lifts to a loop in Yi based at p̃i(x̃) so
[γ] ∈ Im[π1C → π1Thκ(Mi)]. This implies γ lifts to a loop in C̃+ based at x̃, which contradicts
that α̃ has distinct endpoints. This proves the claim and the theorem.

Proposition 5.2 (increasing the rank of a cusp). Suppose that M is a convex hyperbolic
n-manifold and C is a thin cusp of M. Suppose that Γ < Isom(Hn) is a discrete group of
parabolic isometries which contains hol(π1C). Then there is a finite-index subgroup Γ′ < Γ
which contains hol(π1C) and a horoball D ⊂ Hn stabilized by Γ′ with the following property.
Set Q = D/Γ′ then there is a hyperbolic n-manifold N = M ∪ Q such that M ∩ Q = C.
Furthermore N has a convex thickening.

Proof. Let π : M̃ → M be the universal cover. Use the developing map to isometrically
identify M̃ with a subset of Hn. Let C̃ be a component of π−1C. Let D be the horoball which
contains C̃ and so that ∂D contains C̃ ∩ π−1(∂cC). Let D− ⊂ D be the smaller horoball such
that D is a κ-neighborhood of D−. Then C− = (C̃∩D−)/hol(π1C) is a smaller cusp contained
in C. The cusp W = D/Γ has boundary ∂W which is a Euclidean manifold. There is also a
smaller cusp W− = D−/Γ.

By 3.5(e), for K sufficiently large, Y1 = ThrelK (M ;C−) contains M. We regard the universal
cover Ỹ1 as a subset of Hn so that it contains M̃ in the natural way. Let C1 be the image
of D ∩ Ỹ1 under projection to Y1. This is a cusp in Y1 and by choosing K sufficiently large
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Figure 8. Gluing on a rank-k cusp.

(and K ≥ κ) we may arrange that C1 contains C and so ∂cC ⊂ ∂cC1. Thus C1 is the cusp in
Y1 which naturally corresponds to the cusp C in M1. Since hol(π1C) < Γ there is a natural
local-isometry f : C1 →W.

Claim. There is a finite cover W̃ →W so that f lifts to an embedding f̃ : C1 → W̃ .

Assuming this claim, since C− ⊂ C ⊂ C1 it follows that f̃ | : C− → W̃− is injective. In
order to fit with the notation used in the convex combination theorem we now use M1 to
denote M and M2 to denote W̃−. We use f̃ to identify C− ⊂M1 with its image in M2 and set
M = M1 ∪M2 thus M1 ∩M2 = C−. Similarly let Y2 = Thκ(M2) = W̃ and use f̃ to identify
C1 ⊂ Y1 with its image in Y2 then Y = Y1 ∪ Y2 and Y1 ∩ Y2 = C1.

We now check the 6 hypotheses of the convex combination theorem are satisfied. Using
the fact that a relative thickening of a convex manifold is convex, it is easy to check that
M1,M2, Y1, Y2 are all convex which gives conditions (i) and (ii). Condition (iii) is immediate.
Since K ≥ κ, by 3.5(c), Y1 contains a κ-neighborhood of M1 \M2. Also Y2 = Thκ(M2)
contains a κ-neighborhood of M2. This implies conditions (iv) and (v) are satisfied. Finally,
C− = M1 ∩M2 is contained in C1 = Y1 ∩ Y2, and both are connected, so condition (vi) is
satisfied. The convex combination theorem implies that M has a convex thickening Th∞(M).
This contains Y and thus contains M ∪Y2. Now M ∩Y2 = C and this proves the theorem with
Q = Y2.

Proof of Claim. Since C is a thin cusp C1 is also a thin cusp. By 3.5(e) we may assume
K was chosen large enough that there is a product cusp, P, with C ⊂ P ⊂ C1. Clearly the
local isometry f has an extension to a local isometry f : P →W. Thus it suffices to prove this
extension is injective. A product cusp has a 1-dimensional foliation by rays orthogonal to the
cusp boundary. If two distinct points in P have the same image under f then the rays through
these points have the same image under f. It follows that if f is not injective there are two
points in the cusp boundary ∂cP which have the same image under f. Thus it suffices to show
there is a finite cover of ∂W so that f | : ∂cP → ∂W lifts to an embedding.

Since W is a cusp π1W ∼= π1∂W. The manifold ∂W is Euclidean and so has a fundamental
group which is virtually free-abelian. Thus π1W is subgroup separable. Since P is a product
cusp ∂cP is compact. Since f is a local isometry and ∂cP is compact and convex it follows from
a standard argument there is a finite cover as in the previous paragraph. This proves claim.

The convex combination theorem sometimes enables one to glue geometrically finite mani-
folds together to obtain a geometrically finite manifold. This corresponds to forming an amal-
gamated free product of two geometrically finite groups, amalgamated along their intersection.



THE CONVEX COMBINATION THEOREM WITH APPLICATIONS 25

Definition. Two subgroups A,B of a group G can be virtually amalgamated if there are
finite index subgroups A′ < A and B′ < B such that the subgroup, G′, of G generated by A′

and B′ is the free product of A′ and B′ amalgamated along A′ ∩B′. We also say that G′ is a
virtual amalgam of A and B.

Definition. Two non-trivial parabolic subgroups Γ1,Γ2 < Isom(Hn) are called compati-
ble if either:
(i) Γ1 and Γ2 stabilize distinct points on the sphere at infinity, or
(ii) Γ1 ∩ Γ2 has finite index in at least one of the groups Γ1 or Γ2.

The second condition is equivalent to saying that, up to taking subgroups of finite index, that
one group is a subgroup of the other. Two discrete groups Γ,Γ′ < Isom(Hn) have compatible
parabolic subgroups if every maximal parabolic subgroup of Γ is compatible with every maximal
parabolic subgroup of Γ′.

Theorem 5.3 (GF subgroups have virtual amalgams). Suppose that Γ is a discrete sub-
group of Isom(Hn). Suppose that Γ1 and Γ2 are two geometrically finite subgroups of Γ which
have compatible parabolic subgroups. Suppose that Γ1 ∩ Γ2 is separable in both Γ1 and Γ2.
Then Γ1 and Γ2 can be virtually amalgamated and the result is a geometrically finite group.

Proof. We first reduce to the torsion-free case. Since Γ is linear there is a torsion-free
subgroup, G, of finite index in Γ. We now replace Γ1,Γ2,Γ by the finite index subgroups
G ∩ Γ1, G ∩ Γ2, G. It is routine to show that the separability hypothesis is satisfied by these
new groups. Thus we may assume that Γ is torsion-free. The next step if to produce convex
manifolds, each containing the basepoint, corresponding to these groups

Let N = Hn/Γ. Choose a basepoint x̃ ∈ Hn and let x be the image in N of x̃. This choice
determines an identification π1(N, x) ≡ Γ. Let Hi = CH(Γi · x̃) then Mi = Hi/Γi is a convex
hyperbolic manifold which, because Γi is geometrically finite, has finite volume. It is easy to
see that Mi has thin cusps. Let xi be the image of x̃ in Mi. The choice of x̃ determines an
identification π1(Mi, xi) ≡ Γi. The inclusion Hi ⊂ Hn covers a local isometry ρi : Mi → N.
Then ρi∗ maps π1(Mi, xi) into a subgroup of π1(N, x) and under the identifications π1(N, x) ≡
Γ and π1(Mi, xi) ≡ Γi the map ρi∗ is inclusion Γi ⊂ Γ. The result now follows from 5.4.

Theorem 5.4 (Immersed Virtual Convex Combination Theorem). Suppose that N =
Hn/Γ is a hyperbolic manifold and M1,M2 are geometrically-finite convex hyperbolic manifolds
with thin cusps. Suppose that ρi : Mi → N is a locally isometric immersion. Suppose that
x = ρ1(x1) = ρ2(x2) and choose an identification π1(N, x) ≡ Γ. This yields identifications
π1(Mi, xi) ≡ Γi ⊂ Γ. Assume that Γ1 and Γ2 have compatible cusps. Set Γ0 = Γ1 ∩ Γ2.
Suppose that Γ0 is a separable subgroup of both Γ1 and of Γ2. Then there are finite covers
pi : M̃i → Mi and a connected hyperbolic manifold M̃1 ∪ M̃2 which has a convex thickening.
Furthermore M̃1 ∩ M̃2 is connected and contains a point covering m1.

Proof. The strategy is to construct certain convex thickenings of M1 and M2 and show
that there are finite covers of these thickenings which have a simple gluing. We then apply the
convex combination theorem to obtain a convex thickening of this gluing.

Throughout this proof all the convex manifolds we consider are submanifolds of covering
spaces of N, and are thus equipped with isometric immersions into N. We wish to choose a
consistent system of cusps in all these manifolds. Let C be a maximal collection of disjoint
cusps in N. If ρ : X →M is an isometric immersion by a cusp in X we will mean (until stated
otherwise) a non-simply connected component of ρ−1(C). It is possible that some components
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of ρ−1(C) are balls. When we construct relative thickenings of X it will be relative to these
cusps. We shall avoid mentioning these choices of cusps whenever possible.

We fix K ≥ κ which will be chosen later and consider the relative thickenings Yi = ThrelK (Mi).
By 3.5 these are convex and have thin cusps. Since π1(Yi, xi) ∼= π1(M1, xi) the map ρi extends
to an isometric immersion ρi : (Yi, xi) → (N, x). The separability hypothesis enables us to
apply the virtual simple gluing theorem 4.3 to these extensions of ρ1, ρ2. Thus there are finite
covers Ỹi → Yi and a simple gluing Ỹ = Ỹ1∪ Ỹ2. Let M̃i ⊂ Ỹi be the corresponding cover of Mi.
Clearly Ỹi = ThrelK (M̃i). By 4.1(e) Ỹ1∩Ỹ2 and M̃1∩M̃2 are both connected. By 2.8 π1(M̃1∪M̃2)
is an amalgamated free product. Since Γi is geometrically finite, Ỹi has finite volume. If we
can verify the hypotheses for the convex combination theorem for M̃1 ∪ M̃2 ⊂ Ỹ1 ∪ Ỹ2, then
M̃1 ∪ M̃2 has a convex thickening which is geometrically finite, and this proves the theorem.

We now attempt to verify the hypotheses of the convex combination theorem. Conditions
(i),(ii),(iii) are obviously satisfied. Since M̃1 ∩ M̃2 and Ỹ1 ∩ Ỹ2 are both connected, and both
contain the basepoint, condition (vi) holds. However conditions (iv) and (v) are not always
satisfied.

Special Case. Every cusp of M1 and of M2 has maximal rank n− 1.

Proof of special case. Observe that if M is a convex manifold with all cusps of maximal
rank then thickening and relative thickening coincide: T relK (M) = TK(M). Furthermore this
condition is preserved by finite covers. Thus in this case Ỹi contains a κ-neighborhood of M̃i.
Hence conditions (iv) and (v) are satisfied, and the theorem follows in this special case. This
proves the special case.

Returning to the general case, the convex combination theorem requires a κ-neighborhood.
The obvious way to produce a κ-neighborhood is to use κ-thickenings, but in general this
produces cups that are not thin. The virtual simple gluing theorem requires thin cusps, so
we can’t use it to produce a simple gluing of κ-thickenings. In the general case the proof is
necessarily a bit more involved, since it must utilize the hypothesis of compatible cusps.

A generalized cusp, C, of Ỹ is a component of the pre-image of a cusp of N under the natural
isometric immersion Ỹ → N. Since Ỹ is not convex, C need not be convex. In what follows we
will use Ci to denote a cusp in M̃i and C∗i to denote the corresponding (relatively) thickened
cusp in Ỹi. Since M̃i ⊂ Ỹi it follows that Ci ⊂ C∗i .

The strategy is the following. We will construct certain convex thickenings Ỹ +
1 and Ỹ +

2 by
selectively thickening certain cusps of Ỹ1 and Ỹ2. This is done in such a way that the simple
gluing Ỹ = Ỹ1 ∪ Ỹ2 extends to a simple gluing Ỹ + = Ỹ +

1 ∪ Ỹ
+
2 . The crucial property is that

Ỹ + now contains a κ-neighborhood of M̃. We now sketch how this is done before giving the
proof.

We construct Ỹ +
i by taking a K-thickening of M̃i relative to a carefully chosen subset, Ci,

of the cusps of Th∞(M̃i). Those cusps of Ỹ +
i corresponding to cusps in Ci are the same as

the corresponding cusps of Ỹi and are thus thin. The other cusps of Ỹ +
i are thickenings of the

corresponding cusps in Ỹi and contain K-neighborhoods of the cusps in M̃i.
We will show if K is sufficiently large and the cusps C are sufficiently small, then every

generalized cusp in Ỹ is the union of at most one cusp C∗1 ⊂ Ỹ1 and one cusp C∗2 ⊂ Ỹ2. A cusp
of Ỹ that is disjoint from either Ỹ1 or from Ỹ2 is called a mono cusp. A cusp of Ỹ containing
a cusp of Ỹ1 and also a cusp of Ỹ2 is called a double cusp.

The defining property for the set of complete cusps Ci is the following. There is a cusp
in Ci corresponding to C∗i unless the generalized cusp of Ỹ containing C∗i is a double cusp
which is the union of two cusps C∗1 ⊂ Ỹ1, C

∗
2 ⊂ Ỹ2 (one of which is C∗i ); and rank(C∗i ) <

max(rank(C∗1 ), rank(C∗2 )). Thus a cusp will not be thickened (is in Ci) only if it is glued in Ỹ
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to a cusp of strictly larger rank. For example a rank-1 cusp embedded in a rank-2 cusp will
not be thickened.

We denote by C+
i the cusp in Y +

i corresponding to the cusp C∗i ⊂ Yi. If K is sufficiently
large we show that, for every double cusp, if rank(C∗2 ) ≤ rank(C∗1 ), then C2 ⊂ C+

1 (and the
corresponding statements with the subscripts 1 and 2 swapped.) Because C2 ⊂ C+

1 we can glue
C+

1 onto C∗1 in a way that is metrically compatible with the gluing of C∗1 and C∗2 . We then
argue directly that this gives a simple gluing of Ỹ1 ∪C+

1 to Ỹ2. Doing this to each cusp of Ỹ in
turn shows that the simple gluing Ỹ = Ỹ1 ∪ Ỹ2 extends to a simple gluing Ỹ = Ỹ +

1 ∪ Ỹ
+
2 . Now

we give the details.
How to choose K. By 8.1 Γ0 = Γ1 ∩ Γ2 is geometrically finite. The manifold Ñ = Hn/Γ0 is
a cover of N. Since Γ0 ⊂ Γi there is a corresponding cover Ri → Mi. Because Mi is convex,
the map ρi : Mi → N is covered by an isometric embedding Ri ↪→ Ñ and Ñ = Th∞(Ri) is a
thickening of Ri.

Since Ñ is geometrically finite it has finitely many cusps. Fix a cusp P ⊂ Ñ . Since Ri is a
convex submanifold of Ñ it follows from 2.4 that each component of Ri∩P is convex. Since Ñ is
a thickening of Ri it follows that π1Ñ ∼= π1Ri. Thus there is a unique component, Pi ⊂ Ri∩P,
which is a cusp of Ri and, if there are any other components, they are balls.

Now Pi is a cover of some cusp Ci ⊂ Mi. If we relabel so that rank(C2) ≤ rank(C1) then
compatibility of cusps implies that P2 is a finite cover of C2. Since M2 has thin cusps, P2 is
a thin cusp. For i ∈ {1, 2} we choose a geodesic ray γi ⊂ Pi, starting on the cusp boundary
and exiting the cusp Pi, and that is orthogonal to the foliation of P by horomanifolds. Thus
the distance between γ1 and γ2 decreases exponentially as they go out into the cusp P. Since
P2 is thin the distance of every point in P2 from γ2 (and therefore from γ1) also decreases
exponentially as the point goes out into the cusp.

It is now easy to see that ifK is sufficiently large then P2 ⊂ Threl(K−κ)(P1). The same argument
shows we may choose an even larger thickening constant,K+, such that ThrelK (P2) ⊂ ThrelK+(P1).
We choose K and K+ large enough that this (or the corresponding statement with 1 and 2
switched) holds for each of the finitely many cusps of Ñ . In particular, if rank(C1) = rank(C2),
both inclusions are satisfied.
How to choose C. Observe that as k is increased Yi = Threlk (Mi) gets larger. A large choice
of k fattens Yi a lot, and so its image under ρi spill might out into the cusps of N. If k is very
large then there are probably many components of ρ−1

i (C) ⊂ Yi which are balls. However, by
making the cusps of C small enough, we arrange that for k = K+ (and hence for k = K also)
every component ρ−1

i (C) ⊂ Threlk (Mi) is a cusp of Threlk (Mi).
Making the cusps C smaller does not affect our choices of K or K+. This is because K,K+

just have to be chosen large enough that a certain relative thickening contains certain cusps.
But as cusps are made smaller, relative thickenings get bigger. Thus K and K+ continue to
have the defining property as the cusps are made smaller.

With these choices of K,K+ and C we now define the virtual simple gluings we will use. Let
Yi = ThrelK (Mi) and Zi = ThrelK+(Mi). There is a virtual simple gluing Z̃ = Z̃1 ∪ Z̃2. Let Ỹi
be the cover corresponding to Z̃i. Then Z̃i is a thickening of Ỹi. We thus also obtain a virtual
simple gluing Ỹ = Ỹ1 ∪ Ỹ2 ⊂ Z̃. Notice that the Ỹ gluing involves larger covers of Yi than
would be obtained by just applying the virtual simple gluing theorem to Y1 and Y2.

Let C∗ be a generalized cusp of Ỹ . Suppose that C∗i is a component of Ỹi∩C∗. By our choice
of the cusps C, it follows that C∗i is a cusp of Ỹi. Since C∗i is convex we may regard π1C

∗
i as

a subgroup of π1C
∗. Since Ỹi is convex, distinct cusps of Ỹi correspond to disjoint π1Ỹi-orbits

of parabolic fixed points. The holonomy of Ỹi ∩ C∗ factors through the holonomy of C∗. The
holonomy of C∗ fixes a unique point at infinity. Thus Ỹi can’t have two cusps contained in C∗.
Hence C∗ is either a mono cusp or a double cusp as asserted in the sketch. The next step is to
thicken certain cusps. It is easy to thicken a mono cusp. We must study double cusps.
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Claim. Every double cusp in Ỹ can be isometrically embedded into a complete cusp.

Proof of Claim. Suppose that C∗ = C∗1 ∪ C∗2 ⊂ Ỹ is a double cusp. Without loss assume
that rank(C∗2 ) ≤ rank(C∗1 ). Let C̃∗1 , C̃

∗
2 denote universal covers. Since they are convex we may

identify them with their images under the developing map in Hn. These images can be chosen
to have the same parabolic fixed point in such a way that they are covers of the isometric
immersions C∗i ↪→ N. Let C2 ⊂ C∗2 be the corresponding cusp in M̃2; thus C̃2 ⊂ C̃∗2 . By
taking universal covers one sees that the choice of K implies that C̃2 ⊂ C̃∗1 . It follows that
C2 ⊂ C∗1 . Let D denote the cusp in Z̃1 containing C∗1 . Then by choice of K+ we have C∗2 ⊂ D.
We thus obtain a locally isometric immersion ρ : C∗ → D. Restricting this gives embeddings
ρi : C∗i ↪→ D. We now argue that ρ is injective.

If ρ is not injective then there are xi ∈ C∗ \ (C∗1 ∩ C∗2 ) with ρ1(x1) = ρ2(x2). Since D
is a thickening of C∗1 we get that π1C

∗
2 ⊂ π1D = π1C

∗
1 . Taking universal covers we get a

locally isometric immersion ρ̃ : C̃∗ → D̃ ⊂ Hn covering ρ. Since π1C
∗
1 = π1D it follows that C̃∗

contains only one copy of C̃∗1 . Also by convexity, for each copy of C̃∗2 ⊂ C̃∗, we get ρ̃(C̃∗2 )∩ρ̃(C̃∗1 )
is convex. It follows that ρ̃(C̃∗1 ∩ C̃∗2 ) = ρ̃(C̃∗1 )∩ ρ̃(C̃∗2 ). Thus there are no x1, x2 as above. This
implies C∗1 ∪ C∗2 is embedded in D. This proves claim.

To complete the proof we now thicken certain generalized cusps of Ỹ as described in the
sketch. This is can be done by thickening one generalized cusp, C∗ ⊂ Ỹ , at a time. If C∗ is a
mono cusp, after relabeling, we may assume it is a cusp C∗1 ⊂ Y1. The thickening consists of
replacing C∗1 by another cusp with the same boundary. Since this is disjoint from Ỹ2 the simple
gluing clearly extends over this thickening. Otherwise we have a double cusp C∗ = C∗1 ∪ C∗2 .
By the claim this is embedded in a complete cusp, D. After relabeling we assume rank(C∗2 ) ≤
rank(C∗1 ). We also saw that D is a thickening of C∗1 . Let C1 ⊂ M̃1 be the cusp corresponding
to C1. Then ThrelK (C1) ⊂ D. We replace C∗1 by C+

1 = ThK(C1) ⊂ D. Since C∗ ⊂ D we can
glue C+

1 isometrically onto Y to obtain a hyperbolic manifold. This manifold is the result of
the simply gluing of Ỹ1 ∪ C+

1 and Ỹ2.
Finally we must check that Ỹ + contains a κ-neighborhood of the cusps of M̃. For a cusp of

M̃ contained in a mono cusp of Ỹ this is clear. For a double cusp it follows from the fact that
Thκ(C2) ⊂ ThK(C1).

6. Some Constructions of Hyperbolic Manifolds.

In this section we use the convex combination theorem to give constructions of geometrically
finite hyperbolic manifolds in dimensions bigger than 3. The basic idea is to take two hyperbolic
manifolds of dimensions m,n each of which contains a copy of the same totally geodesic
submanifold of dimension p and then glue the manifolds along the submanifold and thicken to
get a convex hyperbolic manifold of dimension m+n−p. The case that m = n = p+1, and the
submanifold in question is the boundary of the given manifolds, was described by Bowditch
and Mess in [6] using their generalization of Thurston’s bending construction.

Consider a hyperbolicm-manifold,M = Hm/G, whereG is a discrete subgroup of Isom(Hm).
We first describe a way to thicken M to obtain a hyperbolic n-manifold with n > m. Choose an
isometric embedding of Hm as a totally geodesic subspace of Hn. Let stab(Hm) ⊂ Isom(Hn)
be the subgroup which preserves Hm. Let O(n−m) ⊂ Isom(Hn) denote the subgroup which
acts trivially on Hm. Then there is a splitting:

stab(Hm) ∼= Isom(Hm)⊕O(n−m).

We may thus regard Isom(Hm) (and thus G) as a subgroup of Isom(Hn). Given R > 0 let

N = { x ∈ Hn : d(x,Hm) ≤ R }.
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Define T (M ;n,R) = N/G. This is a convex hyperbolic n manifold with strictly convex
boundary. There is a projection π : Hn → Hm given by the nearest point retraction. This
map is G-equivariant thus we get a map p : N/G→M which is a Riemannian submersion and
is a disc bundle over M.

Example 1. For i ∈ {1, 2} suppose thatMi is a closed hyperbolic 3-manifold which contains
a simple closed geodesic Ci of length ` such that the holonomy around Ci is a pure translation.
We suppose that Ci has a tubular neighborhood Vi in Mi of radius κ, the thickening constant.

Consider the hyperbolic 5-manifoldsM+
i = T (Mi; 5, κ) = Ni/Gi whereNi is a κ-neighborhood

of a hyperbolic 3-space H3
i ≡ M̃i in H5. We may choose H3

1 to be orthogonal to H3
2 and intersect

along a geodesic which covers C1 in M1 and C2 in M2. Then Ṽ = N1 ∩N2 is a neighborhood
of H3

1 ∩ H3
2. Let Vi ∼= S1 × D4 denote the image of Ṽ in M+

i . Let M+ be the non-convex
hyperbolic 5-manifold obtained by gluing M+

1 to M+
2 by identifying V1 with V2 in a way which

is covered by the identifications between N1 and N2. By the convex combination theorem M+

has a convex thickening.

Example 2. For i ∈ {1, 2} suppose thatMi is a closed hyperbolic 3-manifold which contains
a totally-geodesic 2-sided surface Fi and assume that F1 is isometric to F2. Also assume that
Mi contains a tubular neighborhood of Fi of radius the thickening constant κ. Now consider
the hyperbolic 4-manifolds M+

i = T (Mi; 4, κ). These may be glued by isometrically identifying
neighborhoods of F1 and F2 to obtain a hyperbolic 4-manifold, W = M+

1 ∪M
+
2 . This is done

in such a way that M1 and M2 are orthogonal in W. Clearly W has a spine which is obtained
by gluing M1 to M2 by identifying F1 with F2. By the convex combination theorem W has a
convex thickening.

Example 3. This time we will construct a hyperbolic 4-manifold by gluing a hyperbolic
surface with geodesic boundary component, C1, along C1 to a geodesic, C2, of the same length
in a closed hyperbolic 3-manifold and thickening. In order that the resulting 4-manifold have
a convex thickening it suffices that C1 and C2 both have tubular neighborhoods of radius κ in
their respective manifolds. In addition C2 should be a pure translation.

This example may be modified to allow the holonomy along C2 to have a small non-zero
rotational part, by deforming the holonomy of the surface from a subgroup of Isom(H2) into
a nearby subgroup of Isom(H4) so that C1 and C2 have the same holonomy.

Definition. We now generalize the idea that the holonomy along a geodesic is a pure
translation. Suppose that P is a geodesically-complete totally-geodesic p-submanifold of a
hyperbolic m-manifold M. We say that the normal bundle of P in M has trivial holonomy
if, whenever a tangent vector in M (based at an arbitrary point in P and orthogonal to P )
is parallel translated around an arbitrary loop in P, then the the vector returns to itself. An
equivalent formulation is that if we identify the universal cover of M with Hm and some pre-
image of P with a subspace Hp ⊂ Hm then the holonomy of P is contained in the subgroup
Isom(Hp) ⊂ stab(Hm).

Theorem 6.1 (gluing hyperbolic manifolds along isometric submanifolds). For i ∈ {1, 2}
suppose that Mi is a convex hyperbolic mi-manifold. Suppose that p < min(m1,m2) and Pi
is a closed, hyperbolic, totally-geodesic p-submanifold in Mi. Suppose that Pi has a tubular
neighborhood in Mi of radius at least the thickening constant κ, and the normal bundle of Pi
in Mi has trivial holonomy. Suppose that f : P1 → P2 is an isometry. Let M be the path-
metric space obtained by gluing M1 to M2 by using f to identify P1 with P2. Then M has an
path-isometric embedding onto a spine of a convex hyperbolic n = (m1 +m2 − p)-manifold.
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Proof. Let Hi ≡ Hmi ⊂ Hn be a totally geodesic subspace with H1 orthogonal to H2.
We can identify the universal cover of P with H1 ∩ H2 in a way that is compatible with
identifications of the universal cover of Mi with Hi. Then Yi = T (Mi;n, κ) is a thickening
whose universal cover, Ỹi, is identified with the κ-neighborhood of Hi. Since the normal bundle
of P has trivial holonomy in M1 and M2 it follows that π1P preserves both H1 and H2. Then
Q = (Ỹ1 ∩ Ỹ2)/π1P embeds isometrically in Yi as a thickening of P. Let Y = Y1 ∪ Y2 be the
simple gluing obtained by identifying the two copies of Q. The convex combination theorem
applied to M1 ∪M2 ⊂ Y1 ∪ Y2 then gives the result.

Theorem 6.2 (virtual gluing hyperbolic manifolds along isometric submanifolds). For i ∈
{1, 2} suppose that Mi is a convex hyperbolic mi-manifold. Suppose that p < min(m1,m2) and
Pi is a closed, hyperbolic, totally-geodesic p-submanifold in Mi, and suppose that the normal
bundle of Pi in Mi has trivial holonomy. Finally, suppose that f : P1 → P2 is an isometry.
Then there are finite covers M̃i of Mi and lifts P̃i of Pi to M̃i with the following property. Let
M̃ be the space obtained by gluing M̃1 to M̃2 by using f to identify P̃1 with P̃2. Then M̃ has
a convex thickening which is a hyperbolic (m1 +m2 − p)-manifold.

Proof. By 7.5 π1Pi is a separable subgroup of π1Mi. It follows there is a finite cover, M̃i

of Mi and a lift of Pi to M̃i which has a tubular neighborhood of radius κ. The result follows
from the previous theorem.

7. Subgroup Separability.

Two groups G1 and G2 are commensurable if there is a group H which is isomorphic
to finite index subgroups of both G1 and G2. Two path-connected topological spaces X,Y
are commensurable if there are finite sheeted covers X̃, Ỹ which are homeomorphic. Clearly
commensurable spaces have commensurable fundamental groups.

A subgroup H of a group G is separable in G if for every g ∈ G \H there is a subgroup of
finite index K < G such that H ≤ K and g /∈ K. The group G is subgroup separable if every
subgroup is separable and is LERF if every finitely generated subgroup is separable.

Definition. Suppose that F is a compact, connected, surface with non-empty boundary
and χ(F ) < 0. Let {∂iF}1≤i≤n denote the boundary components of F and let {Ti}1≤i≤n
denote a collection of distinct tori. The tubed surface, X, obtained from F is the 2-complex
X obtained obtained by homeomorphically identifying each component ∂iF with an essential
simple closed curve on the torus Ti.

Observe that π1X is a topological realization of a graph of groups with cyclic edge groups
and with vertex groups that are either Z2 or finitely generated free groups. It follows that X
is a K(π, 1).

Lemma 7.1 (tubed surface is LERF). If X is a tubed surface then π1X is LERF.

Proof. We first show that all tubed surfaces are commensurable. Let A denote the compact
surface obtained by deleting the interior of a disc from a torus. It is easy to check that up
to commensurability every compact, connected, surface with negative Euler characteristic and
non-empty boundary is commensurable with A. Let Y denote the tubed surface obtained from
A. It follows that every tubed surface is commensurable with with Y. Thus all tubed surfaces
have commensurable fundamental groups.

R. Gitik proved in theorem (4.4) of [17] that an amalgam of a free group, F, and a LERF
group, H, is again LERF, provided the amalgamating subgroup is a maximal cyclic subgroup
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of F . It is easy to see that Z ⊕ Z is LERF and that π1∂A is a maximal cyclic subgroup of
π1A. It follows that π1Y is LERF. Scott shows in lemma (1.1) of [34] that the property of
being LERF is a commensurability invariant and it follows that the fundamental group of every
tubed surface is LERF.

Definition. If X is a path connected topological space and G is a subgroup of π1(X)
we say that G is embedded in X if there is a path-connected subspace Y ⊂ X such that
incl∗ : π1Y → π1X is injective with image G. We say that G is virtually embedded in X if it
is embedded in some finite cover of X. This means there is a finite cover p : X̃ → X and a
path-connected subspace Y ⊂ X̃ such that incl∗ : π1Y → π1X is injective with image G.

If n ≥ 5 and X is an n-manifold then it follows from general position that every subgroup
is embedded. In [34] Scott introduced the notion of virtually embedded for surface subgroups
(but he used the term almost geometric which, in the context of 3-manifolds, has certain
connotations we prefer to avoid) and used subgroup separability to prove that finitely gener-
ated subgroups of surface groups are virtually embedded. Scott’s result extends to separable
subgroups of 3-manifolds:

Theorem 7.2 (virtually embedded subgroups). Suppose that M is a connected irreducible
3-manifold and G < π1M is a finitely generated separable subgroup. Then G is a virtually
embedded subgroup.

Proof. The following argument is standard. Let pG : M̃G →M be the cover corresponding
to G. By Scott’s compact core theorem, [25], there is a compact submanifold Y ⊂ M̃G such
that the inclusion, ι : Y → M̃G, induces an isomorphism of fundamental groups. We may
choose a triangulation of M such that Y is a finite sub-complex of the induced triangulation
of M̃G. We will show how to construct a tower of finite covers (as in the proof of the loop
theorem)

pn : M̃n+1 → M̃n

with M̃0 = M and such that the map f0 = pG ◦ ι : Y → M lifts to each cover fn : Y → M̃n.
The singular set of fn is

S(fn) = { x ∈ Y : #|f−1
n (fn(x))| > 1 }.

Observe that S(fn) is a sub-complex of Y and S(fn+1) ⊂ S(fn). We claim if S(fn) 6= φ
then the cover pn may be chosen such that S(fn+1) is a proper sub-complex of S(fn). Since
Y is a finite complex it then follows that for some n ≥ 0 that S(fn) is empty. Then fn is a
π1-injective embedding of Y into the finite cover M̃n which proves the theorem.

To prove the claim, suppose that a, b ∈ Y are distinct points and fn(a) = fn(b). Let γ be
a path in Y from a to b. Then α = [fn ◦ γ] ∈ π1(M̃n) ≤ π1(M), and since Y is a subspace
of a covering of M it is clear that α is non-trivial. Since G is separable there is a finite index
subgroup H < π1(M) which contains G but does not contain α. The subgroup H ∩ π1M̃n has
finite index in π1(M̃n). Let pn+1 : M̃n+1 → M̃n be the cover corresponding to this subgroup.
It is clear that fn : Y → M̃n lifts to fn+1 : Y → M̃n+1 and, since α does not lift, that
fn+1(a) 6= fn+1(b). Thus S(fn+1) is a proper subset of S(fn). This proves the claim.

From this one recovers the following well-known result:

Corollary 7.3 (separable surface subgroups). Suppose that f : S → M is a continuous
map of a closed surface with χ(S) ≤ 0 into an irreducible 3-manifold M and suppose that
f∗ : π1S → π1M is injective. Suppose that f∗(π1S) is a separable subgroup of π1M. Then
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there is a finite cover p : M̃ → M and an embedding g : S → M̃ such that p ◦ g is homotopic
to f.

Proof. By the theorem f∗(π1S) is virtually embedded so there is a finite cover p : M̃ →M
and an incompressible compact submanifold Y ⊂ M̃ such that p∗(π1Y ) = f∗(π1S). Since π1Y
is a surface group Y must have non-empty boundary. By the equivariant sphere theorem, M̃
is also irreducible. Thus we may cap off any sphere components in the boundary of Y by balls.
It then follows that Y is irreducible. It is now a theorem of Waldhausen that Y ∼= S × [0, 1].
Since M is irreducible it is a K(π1M, 1), hence the maps p|S × 0 → M and f : S → M are
homotopic.

Corollary 7.4. Suppose that M is a 3-manifold which is homotopy equivalent to a tubed
surface. Then every finitely generated subgroup of π1M is virtually embedded.

Theorem 7.5 (totally geodesic is separable). Suppose that M is a totally geodesic hyper-
bolic k-manifold immersed in a convex hyperbolic n-manifold N with k < n. Also suppose that
π1N is finitely generated. Then π1M is a separable subgroup of π1N.

Proof. This can be proved by an extension of the method Long used in the case k = 2, n = 3
see [27].

8. Surfaces in 3-Manifolds.

We start with two results that will be needed for some of the 3-manifold applications.

Theorem 8.1 (intersections of GF are GF). If Γ1 and Γ2 are geometrically finite subgroups
of a discrete subgroup of Isom(Hn) then Γ1 ∩ Γ2 is geometrically finite.

Proof. This result is theorem 4 in Susskind and Swarup, [37]. In dimension at most 3
it is well known, see for example theorem (3.15) of [32]. In dimensions 4 and higher there
are examples of two geometrically finite groups (which generate a non-discrete group) whose
intersection is not finitely generated, see [36].

A group G has the finitely generated intersection property or FGIP if the intersection of two
finitely generated subgroups is always finitely generated. The following result in this form is
due to Susskind [38]; see also Hempel [24] and [32] corollary (3.16).

Theorem 8.2 (GF infinite covolume implies FGIP). If G is a geometrically finite Kleinian
group of infinite co-volume then G has the FGIP.

The fundamental group of a hyperbolic surface bundle does not have FGIP, so the hypothesis
of infinite co-volume is necessary.

The hypothesis of the convex combination theorem that one can thicken without bumping
means that there are restrictions on the cusps of the manifolds to be glued. In particular two
rank-1 cusps in the same rank-2 cusp of a 3-manifold cannot be thickened without bumping
unless they are parallel.

Here is an algebraic viewpoint. Rank-1 cusps give Z subgroups, and two non-parallel cusps
in the same rank-2 cusp will generate a Z ⊕ Z group in the group, G, generated by the two
subgroups. Thus G is not an amalgamated free product of the subgroups.

Suppose M1 and M2 are 3-manifolds with rank-1 cusps which intersect in M. We may first
glue rank-2 cusps onto each rank-1 cusp of M1 and M2.



THE CONVEX COMBINATION THEOREM WITH APPLICATIONS 33

glue

rank-2 cusp
Quasi-Fuchsian surface with rank-1 cusp

λ

C
2

C
1

Figure 9. Gluing on a rank-2 cusp.

This corresponds to an amalgamated free product of a Z⊕Z with π1Mi. This produces two
new geometrically finite manifolds M+

1 ,M
+
2 which may now be glued. The process of gluing a

rank-2 cusp onto a rank-1 cusp can be done with the convex combination theorem:

Theorem 8.3 (adding a rank-2 cusp). Suppose that M is a convex hyperbolic 3-manifold
and that f : N → M is a locally-isometric immersion of a geometrically finite hyperbolic 3-
manifold N. Suppose that C2 is a rank-2 cusp of M and C1 is a component of f−1(C2) which
is a thin rank-1 cusp of N. Then there is a finite cover C̃2 of C2 and a geometrically finite
3-manifold N+ = N ∪ C̃2 with a convex thickening. Furthermore N ∩ C̃2 = C1, where C1 ⊂ N
is identified with a subset of C̃2 using a lift of f |C1.

Proof. This follows from 5.2.

Remark. It is easy to extend this result to the setting where one has immersions of finitely
many geometrically finite manifolds, fi : Ni → M, and finitely many rank-2 cusps C2,j ⊂ M,
and it is required to glue some of the rank-1 cusps in f−1

i (∪jC2,j) ⊂ Ni to cyclic covers of C2,j

in such a way that if more than one rank-1 cusp is glued onto the same rank-2 cusp then the
rank-1 cusps are glued along parallel curves sufficiently far apart in the boundary of the rank-2
cusps.

Corollary 8.4 (GF tubed surfaces). Suppose M is a compact 3-manifold whose interior
admits a complete hyperbolic metric. Suppose that S is a compact, connected surface with
χ(S) < 0 and f : S →M is π1-injective such that each component of ∂S is mapped into some
torus boundary component of M. Suppose that f∗(π1S) is a geometrically-finite subgroup
of π1M. Let S+ denote the tubed surface obtained by gluing one torus onto each boundary
component of S. Then f extends to a π1-injective map f : S+ → M such that such that
f∗(π1S

+) is a geometrically-finite subgroup of π1M.

Proof. Let N be the convex core of H3/f∗(π1S). Then N is geometrically finite and there is
an isometric immersion N →M coming from the fact that π1N ⊂ π1M. We apply the previous
theorem to add rank-2 cusps to the boundary components of S one at a time.

Definition. Suppose that N is a convex hyperbolic 3-manifold of finite volume which
equals its convex core and that N has spine a tubed surface S+. In what follows we will the
use of the term tubed surface to refer to either the 2-complex S+, or to the geometrically finite
hyperbolic 3-manifold N and write this as Core(S+).

Suppose that Ñ → N is a finite cyclic cover to which S lifts, then Ñ contains a closed
surface, 2S, homeomorphic to the double of S along its boundary. If the cover has degree
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bigger than 1 then this surface may be chosen such that it is not homotopic into the boundary
of a compact core of Ñ . Clearly 2S is π1-injective in Ñ . In particular 8.4 implies that π1M
contains a non-peripheral surface group.

Let N = Core(S+). In [7] it was observed that given a rank-2 cusp, C, of N every sufficiently
large Dehn-filling of C can be given a Riemannian metric of negative sectional curvature which
agrees with the original metric outside C. Suppose f : N →M is a local isometry and N+ is a
Dehn-filling of N along C. The same filling done on the corresponding cusp of M then gives a
local isometry N+ → M+ of Dehn-filled manifolds. If this is done to all the cusps of N then,
since N+ is convex, this map is π1-injective. This was the main step in the proof of the main
theorem of [7]. It also leads to a quick proof of a virtual-Haken Dehn-filling result of the type
in [8].

The following is the main tool we need for studying immersed boundary slopes.

Theorem 8.5 (gluing tubed surfaces). Suppose that W is a convex hyperbolic 3-manifold
and for i ∈ {1, 2} that Mi hyperbolic 3-manifold which is a tubed surface and fi : (Mi,mi)→
(W,w0) is a local isometry. Set Γi = π1(Mi,mi). Then there are finite covers pi : M̃i → Mi

and a simple gluing M̃ = S(f1 ◦ p1, f2 ◦ p2) of M̃1, M̃2 such that M̃ has a convex thickening.
Furthermore Γ−i = pi∗(π1(M̃i, m̃i)) contains Γ = f1∗(Γ1)∩ f2∗(Γ2). Also π1M̃ is a free product
of Γ−1 and Γ−2 amalgamated along Γ.

Proof. Since tubed surfaces are geometrically finite then, by theorem 8.1, the group Γ is
geometrically finite and thus finitely generated. By lemma 7.1 Γ1 and Γ2 are LERF. Thus Γ
is separable in both Γ1 and Γ2. Define Ni = Thκ(Mi) then fi extends to a local isometry
fi : Ni →W. Applying the virtual simple gluing theorem to N1, N2 mapped into W, it follows
that there are finite covers pi : Yi → Ni which have a simple gluing Y. Let pi| : M̃i → Mi

be the restriction of the covering pi. We can now apply the convex combination theorem to
M̃1 ⊂ Y1 and M̃2 ⊂ Y2 and deduce that M̃ has a convex thickening.

The next result is similar to, but has a stronger conclusion than, a special case of corollary
5 of Gitik’s paper [19], and also (with a little work) to the combination theorem of Bestvina-
Feighn [4].

Corollary 8.6 (amalgamating QF subgroups). Let N be a closed hyperbolic 3-manifold.
Suppose Γ1,Γ2 are two quasi-Fuchsian subgroups of π1N each isomorphic to the fundamental
group of a closed surface with negative Euler characteristic. Suppose Γ0 = Γ1∩Γ2 is not trivial,
and has infinite index in both Γ1 and in Γ2. Then there is a compact, convex, hyperbolic 3-
manifold M and a locally isometric immersion of M into N. Furthermore M has incompressible
boundary, and for every n > 0 there is a finite cover, M̃, with β2(M̃) ≥ n.

Proof. By 8.2 Γ0 is finitely generated, thus separable in both Γ1 and Γ2 by Scott’s theorem
[34]. We can now apply the virtual amalgam theorem. Thus there are finite index subgroups
Γ′i ⊂ Γi such that the subgroup Γ ⊂ π1N generated by Γ′1 and Γ′2 is their amalgamated free
product Γ = Γ′1 ∗Γ′

0
Γ′2. The hypotheses imply that Γ′0 has infinite index in both Γ′1 and Γ′2.

Furthermore, Γ′0 = Γ′1 ∩ Γ′2 has finite index in Γ0. Since Γ0 is torsion-free and non-trivial,
it follows that Γ′0 is non-trivial. Therefore this is a non-trivial amalgamated free product
decomposition. The groups Γ′1,Γ

′
2 are surface groups and therefore freely indecomposable.

A free product of freely indecomposable groups, amalgamated along a non-trivial subgroup,
is freely indecomposable. Define M to be the convex core of H3/Γ. It follows that M has
incompressible boundary. The proof of the virtual amalgam theorem shows that M is a
thickening of a simple gluing M1 ∪M2, where Mi is a thickening of the convex core of H3/Γ′i.
Now Mi

∼= Si × [−1, 1] and M1 ∩M2 does not separated the two boundary components of
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Mi, for otherwise π1Mi ⊂ π1(M1 ∩M2), which contradicts we have a non-trivial amalgamated
free product. Thus there is a properly embedded arc γi ⊂ Mi \ (M1 ∩M2) which intersects
Si ≡ Si× 0 ⊂ Si× [−1, 1] once transversely. It follows that S1 and S2 are linearly independent
in H2(M). Hence β2(M) ≥ 2. Given n > 0 it follows from [10] that there is a finite cover M̃
with β2(M̃) ≥ n.

Corollary 8.7. Suppose that M is a closed hyperbolic 3-manifold and S is a closed,
connected surface with χ(S) < 0. Suppose that f : S → M is π1-injective and not homotopic
to an embedding. Also suppose that f∗(π1S) is a maximal surface subgroup of π1M. Then for
all n > 0 there is a subgroup G ⊂ π1M which is a geometrically finite subgroup of π1M and
such that β2(G) > n and G is freely indecomposable.

Proof. Thurston showed in [40] that a surface subgroup of a closed hyperbolic 3-manifold
is either geometrically finite, hence quasi-Fuchsian, or a virtual fiber. First we reduce to the
case that S is quasi-Fuchsian. We are indebted to the referee for pointing out the following
argument, which is shorter than the original. Suppose that S is a virtual fiber. There is a
finite cover M̃ → M and a pre-image, S̃, of S which is homotopic to a fiber of a fibration of
M̃ over the circle. By [31] there is a quasi-Fuchsian surface, S′, immersed in M̃ transverse
to the suspension flow and k 6= 0 with [S′] = k[S̃] ∈ H2(M̃). We may choose a maximum
quasi-Fuchsian subgroup containing the given one. Suppose this surface is homotopic to an
embedded surface. Then, since it’s homology class is a multiple of the homology class of a fiber
and it is embedded, it is isotopic to the fiber. This contradicts that it is quasi-Fuchsian. Thus
we are reduced to the case that S is quasi-Fuchsian.

Since S is not homotopic to an embedding there are two conjugates, A 6= B of f∗(π1S)
such that C = A ∩ B 6= 1. Given a Kleinian group H we denote its limit set by Λ(H). Since
A is quasi-Fuchsian Λ(A) ∼= S1. The subgroup of π1M which stabilizes Λ(A) is a surface
group. By maximallity this group is A. Since A 6= B it follows that Λ(A) 6= Λ(B). By [37]
Λ(A ∩ B) = Λ(A) ∩ Λ(B). This is therefore a proper non-empty subset of Λ(A) and therefore
not homeomorphic to a circle. Hence C = A ∩ B is not the fundamental group of a closed
surface. Thus C has infinite index in A and in B. The result now follows by applying 8.6 to
the groups A and B.

Theorem 8.8 (gluing two rank-1 cusps: algebraic version). Suppose that G is a torsion-
free Kleinian group. Suppose that H is a geometrically finite subgroup of G and that P, P ′

are two maximal parabolic subgroups in H each of which is infinite cyclic. Suppose that T is
a maximal rank-2 parabolic subgroup of G which contains P and there is γ ∈ G such that
P ′ = γPγ−1. Then there is n > 0 with the following property. Suppose that α ∈ T and the
subgroup of T generated by P and α has finite index at least n. Set β = γα then the subgroup
of G generated by H and β is the HNN extension H∗P amalgamated along P and P ′ given by
< H, β : βPβ−1 = P ′ > . Furthermore this group is geometrically finite.

Proof. This follows from 8.9 by taking convex hyperbolic manifolds corresponding to the
given groups.

A geometric formulation of this result involves a generalization of the notion of spinning an
annulus boundary component of a surface around a torus boundary component of a 3-manifold
that contains the surface. This idea was introduced in [16] and used in [7], [8]. We recall the
construction. Suppose S is a compact surface immersed in a 3-manifold M and that ∂S has
two components, α and β, which both lie on a torus T ⊂ ∂M. We suppose the immersion maps
α and β to the same loop on T. Attach an annulus A to the boundary of S and choose an
immersion of the annulus into M so that it wraps some number n ≥ 0 times around T. We
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Figure 10. Gluing two rank-1 cusps after spinning.

describe this process by saying the two boundary components α and β have been glued using
an annulus that spins n times around the torus T.

This operation can be extended to the case where we are given an immersion f : N → M
of a 3-manifold N into M and there are two annuli A0, A1 ⊂ ∂N which both map m times
around the same annulus in some torus T ⊂ ∂M. To be more precise, if f : N → M is the
immersion we require there is a homeomorphism h : A1 → A0 such that f |A1 = (f |A0) ◦ h.
Then we glue A× [0, 1] to N to obtain a 3-manifold N+ by identifying A× i with Ai for i = 0, 1
and choose an extension of the immersion f over A × [0, 1] which spins A round T a total of
n times. The meaning of this last statement is the following. Identify A0 with S1 × [0, s] and
T with S1 × S1 in such a way that f |A0 is given by the map f(eiθ, x) = (eimθ, eix). Then
define f : A × [0, 1] → S1 × S1 by f((eiθ, x), y) = (eiθ, ei(x+2nπy)). We describe N+ and the
resulting immersion f : N+ →M as obtained from the immersion of N into M by gluing two
annuli in ∂N together after spinning n times around the torus T. We can now state a geometric
reformulation of the preceding result:

Theorem 8.9 (gluing two rank-1 cusps: geometric version). Suppose that M is a geodesi-
cally complete hyperbolic 3-manifold. Suppose that N is a convex hyperbolic 3-manifold with
thin cusps and f : N → M is a locally isometric immersion. Suppose that C is a rank-2
cusp of M and C1, C2, are two components of f−1(C) which are thin rank-1 cusps. Suppose
that f∗π1C1 and f∗π1C2 are the same subgroup of π1C. Then for n > 0 sufficiently large, the
result of gluing C1 to C2 after spinning n times around C gives an isometric immersion of a
geometrically finite 3-manifold P into M.

Proof. Let C− ⊂ C be a smaller cusp such that C contains a κ-neighborhood of C−. Let
C−i be the component of f−1(C−) contained in Ci. Set Q = Threlκ (N ; {C−1 , C

−
2 }). There is an

extension of f to an isometric immersion f : Q→M. Let C+
i be the cusp in Q which contains

C−i and is a component of f−1(C). Then C+
i is a thin cusp.

Choose α ∈ π1C such that the subgroup of π1C generated by α and f∗π1Ci has finite index
and this index is minimal. Given n > 0 let Gn be the finite index subgroup of π1C generated
by f∗π1Ci and αn. Let D → C be the cover corresponding to Gn. Observe that there is a lift
gi : C+

i → D of the map f | : C+
i → C. Since C+

i is thin, for n sufficiently large, we may choose
the lifts g1 and g2 to have disjoint images.

Let R = Q∪D be the hyperbolic 3-manifold obtained by using g1 and g2 to identify C+
1 and

C+
2 with their images. This is a simple gluing of convex manifolds. It contains a κ-neighborhood
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of the simple gluing N ∪D− where C−1 , C
−
2 are glued to D− by the restrictions of g1, g2. The

convex combination theorem applied to these gluings implies N ∪D− has a convex thickening
R.

Topologically we have glued two rank-1 cusps of N to T 2 × [0,∞). Let H be the subgroup
of π1R generated by π1N, together with a loop consisting of an arc in N running from C1 to
C2 and an arc in D. Let P be the cover of Q corresponding to this subgroup. Then P is the
required manifold.

For example, if N is a quasi-Fuchsian 3-manifold then P is just a thickened version (regular
neighborhood) of the surface obtained by spinning two boundary components of the surface
round T. The manifold P contains an accidental parabolic.

9. Multiple Immersed Boundary Slopes.

Definition. An immersed slope α on a torus T is an element of (H1(T ; Z)−0)/(±1). Thus
α is uniquely represented by the homotopy class of an unoriented loop, also denoted α, in T
which is not contractible. If α is homotopic in T to a simple closed curve then α is called a
slope.

Suppose M is a compact 3-manifold and T is a torus boundary component of M . An
immersed boundary slope is an immersed slope α on T such that there is a compact, connected,
orientable surface S with non-empty boundary and a π1-injective map f : S →M such that:

(i) for every boundary component β ⊂ ∂S we have f∗([β]) = [α].
(ii) f is not homotopic rel ∂S to a map into ∂M.

If S is embedded we say that α is a boundary slope. If S does not lift to a fiber of a fibration
of a finite cover M̃ then α is a strict boundary slope. If α is a boundary slope which is not a
strict boundary slope and S is embedded then either S is a fiber of a fibration of M or else S
separates M into two components each of which is a twisted I-bundle over a surface. In this
case we say that S is a semi-fiber. If α is a slope and for some n > 0 the immersed slope n ·α is
an immersed boundary slope we say that α is a multiple immersed boundary slope or MIBS.

Hatcher showed [23] that if M is compact and has boundary a torus then there are only
finitely many boundary slopes. In [3] it was shown that if M is Seifert fibered then every
immersed boundary slope is also a boundary slope and there are only two boundary slopes; the
longitude (rationally null-homologous slope) and the slope of a fiber. The same result holds
for MIBS. In this section we will show that if the interior of M admits a complete hyperbolic
metric then every slope is a MIBS.

Here is an outline of what follows. Suppose S, S′ are two quasi-Fuchsian surfaces each with
two boundary components which correspond to different boundary slopes α, β. One would like
to cut and cross join these surfaces along an arc connecting the two boundary components in
each surface to produce a surface with boundary components α + β and α − β. Finally one
would like to tube two copies of this surface together using the α − β slopes to obtain an
immersed surface with two boundary components both with slope α+ β.

There are many problems with trying to do this directly, the most obvious one being that
in general one can’t expect to produce a π1-injective surface this way. Instead we first add
rank-2 cusps to the surfaces. Then finite covers of these tubed surfaces can be glued to give
a geometrically finite manifold with a torus boundary component having the property that
every slope on this torus is homologous to a cycle on the union of the other torus boundary
components. This 2-chain is represented by an incompressible surface. Finally two copies of
this surface are glued by spinning and gluing all the boundary components except those on the
chosen torus. This gives the desired immersion.
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Culler and Shalen [11],[13] used character varieties to show:

Theorem 9.1. Suppose that M is a compact, orientable 3-manifold with boundary a torus
T and that the interior of M admits a complete hyperbolic structure of finite volume. Then
there are two strict boundary slopes on T.

Combining this with lemma (2.3) of [7] yields the following:

Addendum 9.2. There are two incompressible, ∂-incompressible, quasifuchsian surfaces
S1, S2 in M with boundary slopes α1 6= α2.

The existence of the following cover is perhaps independently interesting.

Theorem 9.3. Suppose that M is a compact, orientable 3-manifold with boundary a torus
T and that the interior of M admits a complete hyperbolic structure of finite volume. Suppose
that ∂M = T is a torus. Then there is an infinite cover p : M̃ → M such that π1M̃ is finitely
generated and there are distinct tori T1, . . . , Tn ⊂ ∂M̃ with the property that

0 = incl∗ : H1(T1; Q)→ H1(M̃,∪ni=2Ti; Q).

Proof. We will use the same notation for a manifold and for its interior. By addendum
9.2 there are two quasi-Fuchsian surfaces S1, S2 in M with distinct boundary slopes α1, α2.
By corollary 8.4 we may construct two geometrically finite manifolds M1,M2 with spines that
are the tubed surfaces obtained from them. Choose basepoints mi ∈ Mi which map to the
same point in the cusp of M. Then apply theorem 8.5 to π1(M1,m1) and π1(M2,m2). This
gives a geometrically finite manifold, N, obtained by gluing finite covers of M1,M2 along a
submanifold. The manifold N has a thickening, N ⊂ M̃, which is a covering p : M̃ →M.

There is a torus T1 ⊂ M̃ which corresponds to the rank-2 cusp obtained by gluing the rank-2
cusps of M1 and M2 that contain the basepoints. Hence for i ∈ {1, 2} there is a component
S̃i ⊂ p−1Si such that T1 ∩ S̃i 6= φ. Each component of T1 ∩ S̃i is a loop α̃i that covers αi.
Clearly α̃1, α̃2 generate H1(T1; Q). The result follows from consideration of the algebraic sum
of m copies of S̃1 and n copies of S̃2.

Theorem 9.4 (All slopes are MIBS). Suppose that M is a compact, orientable 3-manifold
with boundary a torus T and that the interior of M admits a complete hyperbolic structure of
finite volume. Then there is a subgroup of finite index in H1(T ; Z) such that every non-trivial
element in this subgroup is an immersed boundary slope for a geometrically finite surface with
exactly two boundary components. Thus every slope on T is a MIBS.

Proof. We apply 9.3 to obtain a cover p : M̃ →M and a torus T1 ⊂ ∂M̃ with the property
stated. Set K = ker[incl∗ : H1(T1; Z)→ H1(M̃,∪ni=2Ti; Z)], then K has finite index in H1(T1).
Let n be the index of p∗(K) in H1(T ). Given an essential loop α on T representing some slope,
then n · α lifts to a loop β on T1 with [β] ∈ K. Thus there is a compact, connected, 2-sided,
incompressible surface S properly embedded in M̃ such that S ∩ T1 = β. For i = 0, 1 let Si
be a copy of S and βi ⊂ ∂Si the boundary component corresponding to β. For each boundary
component γ0 ⊂ ∂S0 with γ0 6= β0 attach the boundary components of an annulus to γ0 and
γ1 to obtain a surface R with two boundary components β0, β1. Immerse R into M̃ identifying
the two copies Si with S and by spinning each annulus around the appropriate torus in ∂M̃
enough times to ensure the resulting immersed surface is π1-injective and geometrically finite.
That this can be done follows from 8.9. The composition R→ M̃ →M is the desired surface.
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