THE VOLUME OF A CLOSED HYPERBOLIC 3-MANIFOLD IS BOUNDED BY π TIMES THE LENGTH OF ANY PRESENTATION OF ITS FUNDAMENTAL GROUP

DARYL COOPER

(Communicated by Ronald A. Fintushel)

Theorem 0.1. Suppose M is a closed hyperbolic 3-manifold. Given a presentation of $\pi_{1} M$ let L be the sum of the word-lengths of the relations and n the number of relations of length at least 3 . Then volume $(M)<\pi(L-2 n)$.

Proof. A pleated disc is a map covered by a map of a disc into \mathbb{H}^{3} such that there is a triangulation of the disc with vertices only on the boundary of the disc and with the property that the image of each 2 -simplex is a geodesic 2 -simplex in \mathbb{H}^{3}. A presentation of M gives a set of generators and relations. For simplicity, we will assume every relation has word length at least 3 . This may be realized geometrically by a map $f: S \longrightarrow M$ of a 2 -complex S which induces an isomorphism of $\pi_{1} S$ onto $\pi_{1} M$. The map f may be homotoped so that edges map to geodesics and f restricted to each 2 -cell is a pleated disc. The area of a pleated disc is at most π times the number of 2 -simplices. The boundary of a 2 -cell, D, in S represents a relation, and the number of 2 -simplices in D is the number of edges in ∂D minus 2 . The number of edges in ∂D is the word length of the relation represented by ∂D. Thus the total surface area of $f(S)$ is at most $\pi(L-2 n)$.

Let X be the closure of a component of $M-f(S)$; then X lifts to \mathbb{H}^{3}. For otherwise, there is a loop γ in X which is not contractible in M. Since S is mapped into $M-\gamma$, the isomorphism $f_{*}: \pi_{1} S \longrightarrow \pi_{1} M$ factors through $\pi_{1}(M-\gamma)$. Thus the composite

$$
\pi_{1} M \cong \pi_{1} S \longrightarrow \pi_{1}(M-\gamma) \longrightarrow \pi_{1} M
$$

is the identity, where the second map is induced by inclusion. Now M is aspherical, hence $\pi_{2}(M-\gamma)=0$ because otherwise, by the sphere theorem, γ would be contained inside a ball and thus contractible in M. Hence $M-\gamma$ is a $K(\pi, 1)$ and thus the first homomorphism is induced by a continuous map $M \longrightarrow(M-\gamma)$. Thus the composite

$$
M \longrightarrow(M-\gamma) \longrightarrow M
$$

is a π_{1}-isomorphism, hence a homotopy equivalence. Consideration of the induced map on H_{3} gives a contradiction:

$$
H_{3}(M) \longrightarrow H_{3}(M-\gamma) \longrightarrow H_{3}(M)
$$

since the composite is an isomorphism and M is closed.

[^0]The isoperimetric inequality (for example [1], p. 283) for \mathbb{H}^{3} states that, for a given volume, the smallest ratio of surface area divided by volume is attained by a sphere. Computation shows that this ratio is always greater than 2 . This asymptotic ratio is attained by a horosphere. Thus the surface area of the polyhedron X in \mathbb{H}^{3} is at least 2 times its volume. Now S may be subdivided so that each 2-cell appears in exactly two such polyhedra, thus the total surface area of S is greater than 1 times the volume of M. Putting this together with the first part gives the result.

In his thesis, Matt White [2] has obtained (a much deeper result) an explicit bound on the diameter of M in terms of the sum of the lengths of the relations. He also extends these results to the finite volume case.

References

[1] I. Chavel. Riemannian Geometry: A Modern Introduction. Cambridge University Press (1993). MR 95j:53001
[2] M. White. UCSB Thesis, to appear.
Department of Mathematics, University of California at Santa Barbara, Santa Barbara, California 93106-0001

E-mail address: cooper@math.ucsb.edu

[^0]: Received by the editors August 3, 1998.
 1991 Mathematics Subject Classification. Primary 30F40, 57M50.
 The author's research was supported in part by the NSF.

