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Abstract

This paper reviews the two variable polynomial invariant of knots defined
nsing representations of the fundamental gronp of the knot complement into
SLsC. The slopes of the sides of the Newton polygon of this polynomial are
boundary slopes of incompressible surfaces in the knot complement. The
polynomial also contains information about which surgeries are cyclic, and
about the shape of the cusp when the knot is hyperbolic. We prove that
at least some mutants have the same polynomial, and that most untwisted
doubles have non-trivial polynomial. We include several open questions.
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1 Introduction

In this paper we review the two-variable A-polynomial for a knot which was intro-
duced in [3]. Many interesting features concerned with the geometry and topology
of the knot complement are reflected in this polynomial. For example the boundary
slopes of some, or possibly all, of the incompressible embedded surfaces are coded
by it. In the case that the knot is hyperbolic, information about the cusp shape
is in this polynomial. Under certain conditions one may deduce that a knot has
property P from this polynomial, and more generally which surgeries are cyclic.
This polynomial seems to be unconnected with the various combinatorially defined
invariants descended from the Jones polynomial. In what follows we survey some
known results, discuss some new ones [(6.3),(7.1),(7.3).(8.2),(9.4), (9.6),(11.3)], and

pose some open questions concerning this polynomial.

2  Definition of the A-polynomial

We will give a definition of the A-polynomial slightly different from that in [3].
But first some background. Due to Thurston’s pioneering work we know that a
knot complement, X, has a hyperbolic structure if and only if it is not a satel-
lite or a torus knot. Now a hyperbolic structure determines an action of w1 X



by isometries on hyperbolic 3-space H?. Actually this representation is only deter-
mined up to conjugacy corresponding to a choice of a base point and frame in H®.
Now IsomyH? = PSLsC = SLyC/ £ I thus the hyperbolic structure determines a
homomorphism

pPo 7T]X — PSLQC

It is know that this lifts to a representation, also denoted pg, into SLoC and the
lifts are parameterized by H(X,Zs) = Zo.

Thurston showed that pg can be deformed to give a one complex parameter fam-
ily of non-abelian representations of 7y X into S'7.5C all inequivalent up to conjugacy.
However even non-hyperbolic knots may have such families of representations, for
example it 1s easy to see that torus knots do, and perhaps all knots do. Now a
representation can be thought of as an assignment of matrices to each element of
a generating set of 71X and thus a point in C* where n is the number of gener-
ators. The relations in the group place restrictions on which points correspond to
representations. In fact a relation requires that a certain product of matrices equals
the identity and this in turn imposes four polynomial equations between the matrix
entries. Thus the subset of C*" corresponding to representations is precisely the set
of common zeroes of a finite set of polynomials, and is thus an affine algebraic set
which is called the representation variety of the knot complement. Actually this set
18 not usually a variety in the sense of algebraic geometry since it is not irreducible
but typically contains various components of different dimensions. In section 8 we
show that there are (hyperbolic) knots with arbitrarily large dimensional compo-
nents.

In particular every knot group abelianizes to Z and thus every representation
of 7 into ST.5C induces a representation of the knot group. These are called the
abelian representations of the knot. They carry no useful information. The abelian
representations form a component of the representation variety isomorphic to SLsC.

Invariants of the representation variety are invariants of the knot. For exam-
ple the number of components of the variety, the dimension of the variety. its
(co)homology are all subtle invariants. Tn general the topology of this variety is
likely to be complicated, however there is some extra structure we can exploit to
produce something more manageable. The longitude and meridian of the knot pro-
vide a way of projecting the representation variety into C? and the image is easier
to understand. The image of a component of the representation variety is either a
single point, or else is a complex curve minus finitely many points, see 10.1. Tn the
latter case, the curve is the zero set of some irreducible polynomial in two variables
which is unique up to scaling. It turns out that this polynomial carries a lot of
information about the topology and geometry of the knot complement.

Let M be a compact 3-manifold with boundary a torus 7. Pick a basis A, g of
711" which we will refer to as the longitude and meridian. Consider the subset Ry of
the affine algebraic variety R = Hom(m M, STLyC) having the property that for p in
Ry that p(A) and p(y) are upper triangular. This is an algebraic subset of R since
one just adds equations stating that the bottom left entries in certain matrices are
zero. Furthermore, since every representation can be conjugated to have this form,
we are not losing any information. The reason for considering only this subset of the
representation variety is that it makes 1t technically easier to define the eigenvalue



map. There is a well-defined eigenvalue map
E= (6 x &) Ry — C°

given hy taking the top left entries of p(A) and p(u) (which are thus eigenvalues of
p(A) and p(p)). Thus the closure of the image £(C) of an algebraic component C' of
Ry is an algebraic subset of C2. In the case that £(C') is a curve, there is a polynomial
F¢, unique up to constant multiples, which defines this curve. The product over all
components of Ry having this property of the Fi¢ is the A-polynomial. It is shown
in [3] that the constant multiple may be chosen so that the coefficients are integers.
The additional requirement that there is no integer factor of the result means that
the A-polynomial is defined up to sign.

Thus, with finitely many exceptions (see section 5), a pair of complex numbers
L, M satisfy A(L, M) = 0if and only if there is a representation p for which:

=0 ) =)

We have adopted a different convention to [3] in that we count curves with multi-
plicities here, so that the A-polynomial may have repeated factors. We often ignore
the abelian representations which, for the complement of a knot in a homology

sphere, contributes a factor of L — 1.

3 Calculations

Calculations are ultimately based on using polynomial resultants, which we briefly
review. Let I be any ideal in Clay, @5, - , 2, y], we call the set of common zeroes

V={(X1,Xg, -, X,,Y)eC"! s VpeTl p(X1,Xs, . Xn,Y)=0}

the variety defined by the ideal 7. In algebraic geometry it is conventional to require
that T be irreducible, but we will not do this. Consider coordinate projection

a.Ct—n

onto the first n coordinates. The image 7V has closure (in the classical topological
sense, and also in the Zariski topology) a subset 7V of C” which is a variety defined
by some ideal .J.

In general 7V contains points not in 7V, for example consider the variety in C?
defined by zy = 1. The projection of this variety onto the first coordinate is C — 0.
Since varieties are closed subsets of Euclidean space, in general a point of 7V — 7V
is the limit of the image of a sequence of points in V going to infinity. In the case
that 7V is a curve 7V — 7V consists of finitely many points.

In our context, V will typically be a (projection of a) representation variety,
and this naturally leads to the consideration of sequences of representations which
are going to infinity. Generally, such a sequence yields an incompressible surface in
the knot exterior, a situation discussed in section 5. Thus points of 7V — 7V give
incompressible surfaces.



Choose a set of generators for the ideal I, and for each pair form the resultant
polynomial. Assume that for each such pair that case (2) of the theorem 3.1 below
does not happen. Then this set of resultant polynomials generates the ideal J. This
is based on the following well known property of resultants.

Theorem 3.1 [16],[13] If f,g are polynomials in variables x1,22, - ,x,,y then
the resultant polynomial h is obtained from f, g by eliminating y and is a polynomial

m the vartables w1, 29, - 2, with the following property. If X1, Xo,--- , X, are
compler numbers for which h(Xy,Xa, -+, X,,) = 0 then one of lwo possibililies
happens

case 1 there is a complex number Y such thai

f(XlaXZa"' :XnaY):OIg(XlaXQa'” aXnaY)'

case 2 the coefficients of the highest power of y in both f and g simultaneously
vanish for the specialization X1, Xs, -, X,.

Suppose that case 2 does not happen, then the theorem implies that the projection
of the variety in C"t! where f, g both vanish has closure in C" equal to the variety
where i vanishes.

To calculate the A-polynomial, one starts with a finite presentation of the fun-
damental group in which the meridian is one of the generators and assigns matrices
to each of the generators. It is computationally convenient to use the observation
in section 2 that one may conjugate so that the meridian is upper triangular. This
makes one of the variables in the meridian matrix zero. The entries in the matri-
ces are variables xq,xs, -+ ,2,, M where M is the upper left entry in the meridian
matrix. The relations give polynomials whose vanishing is equivalent to the require-
ment that the matrices determine a representation. Thus these polynomials define
the representation variety. Now one adjoins a new variable L together with a new
polynomial relation:

L —l(z1,22, ) =0.

The polynomial £ is the upper left entry in the matrix obtained by multiplying out
the matrices corresponding to the word in the generators that gives the longitude.
Thus it is an eigenvalue of the longitude. One now views this enlarged set of
polynomials as defining the representation variety as the subset V' C C*t2,

The goal now is to find the image of V under coordinate projection into C? given
by the coordinates I, M. More precisely one wants to find, for each component of
V, the irreducible polynomial in two variables ., M which defines the image curve
(in the case that the image has complex dimension one). One uses resultants to do
this, repeatedly eliminating variables until only L, M remain.

The calculations have been done for the knots from 3; up to 8; together with
85,91, 92, pretzel(—2,3,7), the untwisted double of the trefoil knot. and a few others.
See [3]. For example

Az, =1+ LM% Ay =-M"4+ L(M® = M° —2M"* = M? 4+ 1) - L’ M".

Often the calculation of a resultant in the above process will take too long. One
may try to manipulate the defining polynomials in an effort to shorten them and



sometimes this helps. For example, instead of setting a product of matrices equal
to the identity and obtaining polynomial equations from this, it 1s usually better to
move half the matrices to the other side of the equals sign so that one is equating two
words of half the length. This will usually reduce the degree of the polynomials one
obtains by a factor of two in each variable. Also the order in which one eliminates
variables can affect the computation time. It seems better to eliminate the variables
which occur with lowest degree first.

In view of the fact that the coefficients in the corners of the Newton polygon
(defined below) are 41, see (11.3), it suffices to do these calculations mod 2 if the
goal is to find the Newton polygon and hence the boundary slopes.

4 Basic Properties

Standard questions about knot invariants are: when 1s the invariant non-trivial,
how good is it at distinguishing knots, how does it behave under connect sum, what
relations does it have to other invariants, what values can the invariant take. The
A-polynomial of the unknot 1s L — 1 due to the abelian representations. We call an
A-polynomial non-trivial if 1t is distinct from that of the unknot.

Proposition 4.1 [3] The A polynomial of a hyperbolic knot, or a torus knot is
non-trivial.

Proposition 4.2 [3]

(1) For every knot A(L,M) = +A(L=*, M=) up to powers of L and M.

(2) If K is a knotl in a homology sphere, then A(L, M) involves only even powers
of M.

(3) Reversing the orientation of K does not change A.

(4) Reversing the orientation of the ambient manifold changes A(L, M) to

A(L, M~1).

Proof. These statements are immediate consequences of the fact that (except
finitely often) zeroes of the A-polynomial are the eigenvalues of the longitude and
meridian for some representation. [J

Proposition 4.3 If K1 and K5 are two knots and Ki#Ks is their connecl sum
then Ag, 2k, ts divisible by A, Ag,(L —1)"".

Proof. Let X; be the exterior of K; and X the exterior of Ki# K5 then m X
surjects onto 71 X1 thus a representation p; of m; X1 pulls back to a representation
p of m; X. Note that p restricts to an abelian representation on the subgroup 7 X5
of m X. Let € be the eigenvalue map for K and &; that for K;. Then &p = &1 p1 and
it follows that Ax, divides Ax, #xk,.

The reason for the (L — 1)~! factor is that our argument glues an arbitrary
representation of one knot complement to an abelian representation of the other,
and this method counts the abelian representations of the composite knot twice. [

The reef and granny knots have different A-polynomials, and provide an example
where equality does not hold in the above. One can say rather more than this. Given



two representations pq, p2 of w1 X1, m1 X5 respectively there is a representation p of
m1 X which restricts to p; if and only if p1, ps agree on the meridian. Thus if
E(pi) = (Ls, M) then £(p) = (L1 Lo, M). In particular, if both knots have no factors
of the A polynomial which do not involve 7., then the number of factors of Ag 1s
at least the product of the number of factors of Ag, and Ag,.

Proposition 4.4 Suppose that in the complement of a knot K every closed in-
compressible surface is a boundary parallel torus. Suppose that L., M are complex
numbers with LIMP = +1 and that Ax(L, M) = 0. Suppose that either L # +1
or M # +1. Then Dehn filling K along A4 p? produces a closed manifold with non-
cyclic fundamental group.

Proof. If Ax(L, M) = 0 then either there is a representation p with L, M
as eigenvalues or there is a closed incompressible surface which is not boundary
parallel, see section 5. In the first case, the element A?u? of 71 (7') has eigenvalues
LIMP = +1.

Suppose that p(A9uP) is parabolic, then it commutes with both p(A) and p(u)
and one of these is loxodromic which contradicts parabolicity. Hence p(A9pf) = +1d
thus the representation, thought of as mapping into PSLoC, kills AuP. Thus we
have a representation of the Dehn-filled manifold. Typically this representation
will have non-cyclic image, for example if p # 0 and the eigenvalue M is not a
root of unity. In general one argues that there is another representation with the
same eigenvalues L, M and with non-cyclic image, see [9] or [2] proposition (2.1) for
details. O

In his thesis [19], Shanahan gives a necessary condition based on the New-
ton polygon for a Dehn-filling to give a manifold with cyclic fundamental group.
Shanahan defines, for each rational direction, a width of the Newton polygon in that
direction. For a cyclic filling, this width must be minimal over all possible direc-
tions. He also shows that there are at most three such minimal-width directions, in
agreement with the cyclic surgery theorem [8].

In section (2.8) of [3] a somewhat stronger version of the following is incorrectly
asserted.

Corollary 4.5 Suppose that in the complement of a knot K every closed incom-
pressible surface is a boundary parallel torus, then A(L,1) = (L4 1)*(L —1)° LY.

Proof. By 4.4, we have that A(1,1) = C(L+1)*(L.— 1P LY, and (11.3) implies
that C = £1. 0

Question 4.6 Do the integers o, 3,7 have any topological significance?

Question 4.7 Is the hypothesis on closed incompressible surfaces necessary in (4.4)

and (4.5)¢

Proposition 4.8 [3] A knotl has property P if there is no closed incompressible
surface in its exterior and the degree of the A-polynomial in M is more than twice
the degree in L.



For example either of the above suffice to show that many knots (eg. the figure
eight knot) have property P. There is a relation between the A-polynomial and the
Alexander polynomial but as it is somewhat technical we refer the reader to [3].
However it is shown in [7] that if the Alexander polynomial of a knot is non-trivial
then the A-polynomial is non-trivial.

Question 4.9 Is there a crossing change formula for the A-polynomial? guess: no.

5 Boundary Slopes

In [3] it is shown that the slopes of edges of the Newton polygon of the A-polynomial
are the boundary slopes of incompressible surfaces in the knot complement. We will
now give a brief review of this. Tf p(x, y) is a polynomial in two variables the Newion
polygon of p is the convex hull of the finite set of points in the plane:

Newt(p) = { (i,§) : the coefficient of x'y’ in p(x,y) is not zero }.

The sides of the Newton polygon describes the geometry of the curve ' defined
by p = 0 when at least one of the coordinates is near zero or infinity. To see
this, suppose that (X,V) is a point on C' and that at least one of the variables,
for example X, has large modulus. The polynomial p is a linear combination of
monomials of the form z%y® and the logarithm of the modulus of this monomial
at (X,Y) is ¢(a,b) = alog|X| + blog|Y]. Since p(X,Y) vanishes there cannot be
a single monomial which is far larger in modulus than all the other monomials.
One thinks of ¢ as a linear map defined on B2 and in particular on the Newton
polygon. The level sets of ¢ are straight lines with slope —log |X|/log|Y|. By the
previous discussion there is a side of Newt(p) which is nearly parallel to these lines.
Similar considerations hold if X is very close to zero. From this one sees that to
each topological end of the curve C' one may assign an edge e of Newt(p) consisting
of those terms of p of approximately largest modulus for points on C' near the given
end.

Let X be the exterior of a knot, 7'= 90X, and R = Hom(m X — SL,C) the
representation variety. A sequence p, in R is said to blow up if there is an element «
in w1 X such that trace(ppa) — oo. We will assume that all these representations lie
on a curve in R. In this situation, after passing to a subsequence, the representations
converge in a certain sense to an action on a simplicial tree [9], for a more geometric
proof see [1] and also [4]. There are two possibilities.

Type 1 There is an element « associated to the blow up in 77T such that
trace(ppa) — oc. In this case there is a unique, up to taking inverses, primitive
element § in m T such that trace(p,B) remains bounded as n — oo. Then § is
parallel to the boundary components of a properly embedded, non-boundary parallel
incompressible surface in X. Thus 3 is a boundary slope.

Type 2 For every « in mT we have that trace(p,a) remains bounded. In this
case there is a closed incompressible surface in X.



We briefly explain the connection between sides of the Newton polygon and
boundary slopes. Suppose that p, blows up and that both M, L — co. There is an
edge, e, of Newt(A(L, M)) containing the terms of largest magnitude. If L*M® and
LM% both lie on e then LM =~ L°M? and so M*=41%=% a5 1. Thus p, ("~ 4X7=)
has bounded eigenvalues and therefore trace as n — oc and thus p®~9X%~¢ is the
boundary slope. The slope of this curve on 7' is z:i which equals the slope of e. A
similar analysis applies if M, L — 0, co.

In section 8 we show that type 2 degenerations can occur. We saw in section 3
that £C'1s a curve minus finitely many points. These missing points are due to blow

ups. To see this, consider a sequence p,, such that &p,, converges to a point. (Lg, My)
in £C —£C. The sequence p, must be going to infinity in the representation variety
otherwise there would be an accumulation point which maps by £ onto (Lg, My).
It can be shown (see [4] corollary (2.1)) that this means the sequence is blowing
up. The traces of the longitude and meridian remain bounded if and only if both
Lo, My are non-zero. In this case we say that Ly, My is a hole.

Question 5.1 Do holes exist? ie. is there a knot K in S® and a point (Lg, My) on
Ag (L, M) =0 with non-zero coordinates and a component C of Ry such that £(C)
contains a deleted neighborhood of (Lo, My) but not (Lo, My).

We will call the boundary slope of an incompressible surface strongly detected
if it appears in a type 1 degeneration. In all the known examples, every boundary
slope of a surface in the knot complement is strongly detected. The known examples
comprise two-bridge knots, see [18], plus a handful of other examples. The curve of
abelian representations, for example, produces the slope zero of a spanning surface.

Question 5.2 Is the slope of every incompressible surface in a knot complement
strongly detected?

Error. The main result, Theorem (1.5), claimed in [5] is wrong. In that paper it is
claimed that a certain boundary slope, 1/6, of a knot in a certain rational homology
sphere is not (strongly) detected. The error is in the proof of (1.4) which asserts
the existence of such a slope. In fact there is no incompressible, d-incompressible
surface with this slope in the given manifold. We thank Alan Lash for pointing this
out to us.

One might attempt to phrase a similar question for links. However the situation
is more complicated here because the natural invariant of a link is not a polynomial,
but an ideal. Consider a link of n components in the 3-sphere, and let X be its
exterior. The restriction of a representation p € R = Hom(m X — SL,C) to the
group of one of the n torus boundary components m7; for 1 < < n is an abelian
representation which gives rise to a pair of pairs of eigenvalues (L;, Mi)il, as in
section(2).

These n pairs of pairs of eigenvalues determine 27 points in C?*. Thus one
obtains a 2"-valued map

£ R— C™,

The image of a component of R has closure an affine algebraic set of complex
dimension at most n. Thus there 18 an ideal T for each component of R, and the



product of these ideals over all components of R is the invariant. In the case n = 1
one obtains a principal ideal and hence a polynomial unique up to scaling by an
element of C, and this is the A-polynomial. For a hyperbolic link; Thurston has
shown that the component corresponding to the complete representation has image
under £ of complex dimension n, thus this ideal is different to the ideal for the
unlink.

The relation between boundary slopes in the link exterior and this ideal 1s more
complicated. Some work has been done by Lash in his Ph.D. thesis [14]. Roughly
speaking Lash shows that every boundary slope in the Whitehead link complement is
strongly detected. Floyd and Hatcher [10] used combinatorial methods to determine
all incompressible surfaces in two-bridge link complements. First Lash extends their
procedure to calculate the boundary slopes of these surfaces. Then the delicate part
is to show that these are all strongly detected. The work is made easier by the fact
that R is a hyper-surface in C? and is thus defined by a single polynomial.

6 Cusp Polynomials

A hyperbolic knot has a single torus cusp and associated to this cusp is a complex
number called the cusp constant. The fundamental group of the torus is represented
as a parabolic subgroup and thus acts by Fuclidean isometries on a horosphere.
Different choices of horospheres change the action by rescaling. Thus the quotient
Euclidean torus is unique up to homothety. Identify the horosphere with C in such
a way that the holonomy of the meridian of the knot corresponds to a translation
by 1 then the longitude corresponds to a translation by some complex number «
and the torus is C/T where T is the lattice generated by 1 and «. The cusp constant
18 «, and the cusp polynomialis the minimum polynomial for « over Q.

We can obtain information about the cusp constant from the A-polynomial for
the following reason. Geometric considerations show that there are representations
near to the complete one such that the longitude and meridian are loxodromic with a
common axis. The ratio of their complex translation lengths approximates the cusp
constant. Thus a Taylor series expansion of the A-polynomial near the complete
representation gives this ratio. We give some more details:

Lemma 6.1 Suppose that x.y are a basis for 7. 7. and that p; is a sequence of
representations of this group for which pi(x) and p:(y) are lozodromics converging
to the parabolic representation

. 11 . 1 «
v 0 1 Y 0 1
Then if ¢ denotes complex translation length, we have limy_ . ((pry)/¢(p1) — a.

Proof. After a one parameter family of conjugacies we may assume that

NS
ptr = 0 /\—1 .



The fixed points of this are oo and (A=* —A)~!. Since « and y commute, y also fixes

oc thus
c
Py = ( g /1—1 )
-1

Now y must also fix the other fixed point of 2 which implies that ¢ = (7' —
1) /(A7 — X). We must have that ¢ — « as A — 1. Writing A = 1 + €, and
p = 14 ¢, this implies that ¢, /ex — a. The complex translation length is given by
C(prx) = 2log(A). So Taylor’s theorem gives that

Clpey)/C(prw) = €ufex + o(ey, €3)
as required. O

Question 6.2 The complete hyperbolic structure on a hyperbolic knot determines
a unique holonomy representation into PSLoC and hence two representations into
SLsC, (see [3] for a proof that the representaiion lifts). The trace of the longilude
and meridian are £2 for the complete representation. One of these has trace of
the meridian +2. Thus there are two cases depending on whether the trace of the
longitude is +2. Does this sign have any significance?. (Does anyone know an
example when the longitude has trace +2T.)

Theorem 6.3 Suppose that K is a hyperbolic knot with holonomy pg and cusp
constant «. Suppose that F(L, M) is the factor of A(L, M) corresponding to the
curve containing this representation. The terms of lowest total degree in

7 (L 3 traceQ(pOA) M- traceQ(pou))

can be viewed as a polynomial in one variable, f(t). Then f(a) = 0.

Proof. We will discuss the case that both longitude and meridian have trace 2
at the complete representation, the other case is similar.

Write A(14 €x,1+¢€,) =0 as a sum of homogeneous polynomials in €3, ¢, and
let g(ex, €,) be the homogeneous polynomial of lowest total degree, n, say. This
amounts to taking the lowest order terms in the Taylor expansion around (1,1).
Then for €y, ¢, close to 0 we have that

AN+ ex. T 4+e,)=g(l,e,/ex) +olex, eu).
Since €, /ey — « we see in the limit that g(1,«) = 0.0

Corollary 6.4 If K is a hyperbolic knot in S then the contribution o the A-
polynomaial from the component containing the complete structure is not of the form
e L —d.M°.

Proof. Putting M = 1 gives Ag(L,1) = (L — 1)*(L + 1)¥2 L%, by (4.5).
Thus a =1 and ¢ = &d or @ = 2 and ¢ = d. In both cases the cusp polynomial has
only real roots, but the cusp constant is not real, a contradiction. O



This can be used to show that no hyperbolic knot has the same A-polynomial
as any torus knot. The idea is that the Seifert fibration of a torus knot meets the
torus boundary in a curve of slope pq. Now the fiber is central in the fundamental
group of the knot, and so any non-abelian representation of the group into S7.,C
must kill the fiber. See [3] (2.7) for more of a discussion.

7 Mutation

Most knot invariants are unchanged by mutation. We do not know in general if
the A-polynomial is always unchanged by mutation. However in some cases 1t is.
A consequence of Theorem (7.3) is that the polynomial of a hyperbolic knot and a
mutant of it always have at least one Z-irreducible factor in common.

The relation between the A-polynomial and boundary slopes leads to a purely
topological corollary:

Corollary 7.1 A hyperbolic knot and a mutant of © always have at least one
nonzero boundary slope mm common.

We do not know a topological proof of this corollary, and the following 1s open:

Question 7.2 Do a knot and a mutant of it always have the same set of boundary
slopes?.

Now suppose that K is a knot in S2 which contains an incompressible four punctured
sphere F' meeting the knot in meridians. This is the situation in which we may
perform a mutation, defined below. Our main result may then be stated:

Theorem 7.3 Suppose that X is a component of the character variety of S3\ N(K)
with the property that there is at least one representation whose character lies on X
whose restriction to w1 (F) is irreducible.

Then the Z-wrreducible factor of the A-polynomaial corresponding to X appears
m both K and its mutant.

In particular, the component which contains the complete structure contains a
faithful representation of m1(S*\ N(K)) so that there is always at least one factor
in common between the knot and a mutant of it. This suffices to deduce Corollary
7.1. It is of course well known that all the skein invariants of a knot are preserved by
mutation; however Theorem (7.3) leaves open the possibility that the A-polynomial
can distinguish mutants.

In examples one can often check whether all components of the character variety
satisfy the hypothesis of Theorem (7.3). For example one finds easily that the
Kinoshita-Teresaka knot cannot have an irreducible representation which restricts
to a reducible representation on the mutating sphere; so that this knot and its
mutant have identical polynomial. We remark in passing that this does not suffice
to show that these two knots have identical sets of boundary slopes, due to question
(5.2).

Consider the knot exterior X = CI(S2\ N(K)), we can cut X open along F
and this yields two manifolds M; and M,;. We will refer to M, as the inside of



the mutation sphere. We identify F' with the unit sphere in such a way that the
punctures are equally spaced points on the equator. Thus they form two antipodal
pairs. The identification 1s chosen so that antipodal punctures are connected by
the knot inside the mutation sphere. The closed genus-2 surface F™ = M, is
obtained by adding to F' two annuli connecting paired punctures. The mapping
class group of the 4-punctured sphere has center Zs X Zs generated by half-turns
around orthogonal axes. Choose a mapping-class 7 in the center and define X7
to be the 3-manifold obtained by glueing My to My using 7. Thus one obtains 4
possible 3-manifolds, one of which is X and the others are the exteriors of the 3
knots obtained by mutation of K. The involution 7 of F' extends to an involution
7t of FT.

We shall base all fundamental groups at one of the fixedpoints of 7. Notice that
we have a decomposition

T (SP\ N(K)) = wy (M) #r, 5y 71 (M)

Let p be a representation of 71 (S?\ N (K)) which satisfies the hypotheses of Theorem
7.3. Observe that the property that a representation of a group 1is irreducible can
be characterized by the property that there is at least one commutator in the group
whose trace is not 2 and it follows from this that all representations which are
sufficiently near to p also satisfy the hypotheses of the theorem. The key feature of
irreducible representations which we use is that such representations are determined
up to STeC conjugacy by their character [9]. The following lemma is well known:

Lemma 7.4 The map % does not change the character of a representation of

m (F1).

Proof. Since characters are class functions, there is no necessity to be concerned
with basepoints. Then one easily sees using the arguments of for example [9] that
the character is completely determined by its values on a (finite set of) simple closed
curves. Since it is well known that 71 carries every such curve on F'T either to itself
or its inverse (up to conjugacy) and neither of these changes ST,C trace, the result

follows. O

We may use this lemma to construct a representation of the mutant manifold as
follows. Define ppy: on m1(My) to be p | #(M7). Now we use the lemma to see that
pT is conjugate to p when restricted to w1 (F); that is to say, there is an element C
in SToC so that p and C.pr.C~" agree on m(F). (Observe that this proof shows
that actually they agree on m((F1).) Then on the mutant manifold we define the
representation on the piece corresponding to M to be C.p7.C~1. These agree on the
amalgamating subgroup and yield a representation of the mutant knot complement.

Our claim is that this construction does not change the curve of eigenvalues on
a small open (classical) neighborhood of p so that since this neighborhood is Zariski
dense in the relevant component of the eigenvalue variety, the eigenvalue varieties
are the same, whence they contribute the same polynomial to Ax and Ag(mu)-
This will complete the proof of Theorem 7.3. First notice that p and pm.: agree on
the meridian. The claim will follow if we show that they agree on the longitude.
However this follows since the longitude can clearly be written as a product of



elements which lie entirely either in 71 (M;) or in w1(F*) and by construction p
and pp,y; agree on these subgroups.

Question 7.5 Do mutants always have the same A-polynomial?.

8 High Dimensional Representation Varieties

For each integer n we give an example of hyperbolic knot in S for which there is
a component of the representation variety of dimension bigger than n. The idea 1s
the following. One may obtain a non-hyperbolic knot with a representation variety
of large dimension by taking the connect sum of a large number of knots. To
obtain a hyperbolic knot, express this connect sum as a braid £ such that removing
both # and the braid axis A from S gives a 2-cusp hyperbolic 3-manifold. Now
Thurston tells us that for p large the orbifold obtained by killing the p’th power of
the meridian of the braid axis A is hyperbolic. Thus the pre-image 5 of 3 under
the p-fold cover of S* branched over A is a knot (provided p is suitably chosen) in
52 with hyperholic complement. Tt has a component of representations of the same
dimension as the one we construct for 5. We will now fill in the details.

Lemma 8.1 Let K be a knot in S with hyperbolic complement, and K,, the connect
sum of n copies of K. Then there is a component of Hom(m(S® — K,,), SLyC) of
dimension at least n.

Proof. The proofis by induction on n. For n = 1 since K is hyperbolic the result
follows from Thurston’s deformation argument. The process of taking a connect
sum may be viewed as taking two knot complements and identifying an annulus
neighborhood of the meridian in one knot complement with such an annulus in
the other. Let p, be a representation of 71'1(53 — K,) and p a representation of
71(S? — K) such that they both send a generator u of the annulus to the same
element A of ST,C. We may suppose that A is a loxodromic element with axis v
in H3. Let B be any other loxodromic with axis v thus B commutes with 4. Now
let p?2 = B=!pB be a conjugate representation, then p? (1) = p(u) = pn(p). Thus
there is a well defined representation p,y1 of

(S — Kpy1) = m(S® — K,) *<ps m(S? = K)

which is given by p, on m (5% — K,) and p” on 7(S® — K). The freedom in
choosing B is given by trace(B) and so the complex dimension of the component of
the representation variety containing pp41 is at least 1 greater than that for p,. O

We will apply the lemma with K the figure 8 knot. This knot is given as a braid
(0102_1)2 and the connect sum K, is given as a braid by

-1 -1 -1 -1 -1 -1
B =010, 010, 030, 030, - - Cap_105, Oop_105, .

et A be the axis of this braid then N = 5% —(AUg@) is a bundle over the circle with
fiber a disc punctured 2n + 1 times and monodromy 3. By results contained in [15]
this monodromy is pseudo-Anosov and so the bundle is hyperbolic. By Thurston



any sufficiently large Dehn filling of one of the components yields a hyperbolic
manifold or orbifold with one cusp. Thus for p large there is a hyperbolic orbifold
M with cone angle 27/p on the braid axis A and a cusp along 3. Thus the p-fold
cyclic cover of M branched over A

T M — M

gives a hyperbolic 3-manifold M which is topologically the result of removing the
braid g = 7~1(3) from S3. It is easy to see that this braid is alternating. In order
to arrange that G is connected it suffices to choose p coprime to 2n + 1. This is
because the braid 3 is connected and so defines a permutation of the 2n + 1 strings
of B which is transitive on the strings. Thus (P is transitive on strings if and only
if p is coprime to 2n + 1.

By lemma 8.1 there is a component C of Hom(m1(S® — K,,), SL2C) of dimension
at least n. The branched covering 7 : S — 3 — $3 — 3 can be used to pull-back
these representations to 71(S? — K,).

Theorem 8.2 Given n there is an alternating hyperbolic knot K, in S® and a
component, C, of Hom(m(S® — K,),SLsC) with dimeC > n.

Corollary 8.3 There s a hyperbolic knot for which a type 2 degeneration occurs.

Proof. If the dimension of the space of representations mod conjugacy is at least
2, the pre-image of some point in (L, M) space contains at least a curve. Going to
infinity on this curve gives a type 2 degeneration. [

9 Satellites

It is known that if K is a hyperbolic knot ([3](2.6)) or torus knot ([3](2.7)) then
the A-polynomial is non-trivial. Here non-irivial should be interpreted as distinct
from the A-polynomial for the unknot which is I.— 1 due to abelian representations.
There is no known example of a non-trivial knot in §2 with trivial A-polynomial.
The question of whether there 1s a non-trivial knot with trivial polynomial may be
attacked using a torus decomposition of the knot complement into pieces. There
is one piece with a single torus boundary component. It is either a torus knot or
hyperbolic knot complement. One would like to take the representations of this piece
and extend them over the rest of the 3-manifold. The remaining pieces are compact
3-manifolds with 2 torus boundary components. This leads to the following:

Question 9.1 Let M be a compact 3-manifold with boundary consisting of two
wmcompressible tori. When does a representation of the group of one torus extend
to a representation of the 3-manifold ¢. When is this representation non-trivial on
the other torus boundary?

Theorem 9.2 Let K be a satellite knot with a non-zero winding number n around
a knot K'. Then Ag has a factor F' such that F(L", M) = Ag/(L, M™).



Proof. The exterior X of K is W U X’ where X’ is the exterior of the knot
K’ and W has two torus boundary components. The winding number hypothesis
means that the inclusion of either boundary torus into W induces an isomorphism on
rational homology. This in turn means that every representation of one boundary
torus of W extends as an abelian representation of W into SL,C. Let A pu be
the longitude and meridian of K and X, p’ those for K’. Then if L, M, L', M’ are
the respective eigenvalues of an abelian representation of #1 W then L = L'® and
M’ = M™. Thus there is a factor F(L, M) of Ax(L, M) such that F(L'" M) =
AKI(L/7 M“) O

Let W be a compact 3-manifold with boundary consisting of two tori T4, T and
call a representation p : m177 — SL,C forbidden if it does not extend to a rep-
resentation of m1W. The closure of the set of forbidden representations i1s an affine
algebraic set. To see this, the representation variety of 71 W is mapped by a poly-
nomial map into the representation variety of 717" and so has image a constructible
set, [16]. Thus the complement has closure an affine algebraic set. We will assume
that every torus in W is boundary parallel, so that W is either Seifert fibered or
hyperbolic. If W 1is Seifert fibered then W is a cable space and the discussion in
the previous theorem applies. Thus we assume that W is hyperbolic. Thurston’s
deformation argument implies that we may deform the complete representation so
that on each boundary torus it is non-hyperbolic. Thus there 1s at least a curve of
representations on each boundary torus which extends. There is an example [17]
showing that the restriction of representations on the component containing the
complete representation yields only a curve of representations of either boundary
torus. However it is not known if that example has other components of representa-
tions which yield a set of complex dimension 2 of representations of either boundary
torus.

Question 9.3 If W s a compact 3-manifold with boundary consisting of two in-
compressible tori, and & is the map defined in section (2) for one of the torus
boundary componenis of W does & (Hom(m W, SLoC)) C (C — 0)? have complex
dimension 2 always?.

By a forbidden curve for (W, Ty) we mean an affine algebraic curve in

& (Hom(m Ty, SLyC)) = (C — 0)? of non-conjugate representations such that only
finitely many of them extend over @ W. Suppose that W is a solid torus with a
knot K removed. If the winding number of K round the solid torus is zero, then
killing the meridian of K in myW gives 7Z and in particular this kills the longitude
of K. Let 77 be the torus boundary corresponding to K and M the eigenvalue of
the meridian of K then M = =£1 are forbidden curves for such examples. We call
such examples trivial.

Lemma 9.4 Let W be the exterior of the Whitehead link and M, L eigenvalues of
the meridian and longitude of one of the components of the Whitehead link. Let T
be the boundary torus of W corresponding to this component of the Whitehead link.
A representation of mT extends over miW wunless 1t lies on one of the forbidden
curves:

{M=1M=-1,L+M*=0}.



o

Figure 1

Proof. Refer to Figure 1 where the labels next to the components of the White-
head link should be interpreted as generators in the Wirtinger presentation, thus
z, z are meridians of the two components. The fundamental group of W has pre-
sentation

11,1 =1 S [ U P
<wmzlzez 'wTlzeT z 'z =xz ' lzx oz 'mz > .

We may conjugate an irreducible representation so that

e [P 1 P M 0
0 p! t M

The relation is satisfied if and only if a certain polynomial f(p, M 1) = 0. The
highest power of ¢ is 3 and it has coefficient p®M 2.

The longitude of the component of the Whitehead link labelled z is
A =z"le7 2z 2z~ which has eigenvalue L and using resultants one deduces
that:

0=Lp*+1)(M - 1)(M+1)(L+M*)+p*(L+ L* —2LM* 4+ 2L*M? — M* — L* M*).

Given I,, M # 0 there is p # 0 making this expression zero, unless the first term is
zero. Furthermore, given such p, M there is ¢ such that f(p, M 1) = 0 because the
coefficient of the highest power of ¢ in f is p?M? hence not zero. Thus there is a
representation with the given L, M. O

Question 9.5 Whal are the possible forbidden curves for knots in solid tori?. Are
there any non-trivial examples other than the Whitehead link?

An interesting feature of this example is that the forbidden curve, L + M? = 0,
is given as the eigenvalue of A='u? is —1. Thus the simple closed curve A="u? on



T has a forbidden eigenvalue. Attempts to construct other examples of non-trivial
forbidden curves have been unsuccessful.

Corollary 9.6 Suppose that K s a knot with A-polynomial having a factor other
than L £ 1 and M + L?. Then the untwisted double DK of K has a non-trivial
A-polynomial.

Proof. Let X(K) be the exterior of K and W the Whitehead manifold used
above. Let T'C W be a torus boundary component of the Whithead link exterior
corresponding to a component, 4 say, of the Whitehead link. The exterior X (DK) of
the untwisted double of K is formed by glueing X (K) to T so that the longitude
(resp. meridian) of K goes to the meridian (resp. longitude) of v. Let C be a
component of Ry (K) (defined in section (2)) such that £C is a curve other than
L =41 or M+ L? = 0. Then except for finitely many choices of p in C there is
a representation p’ of w1 (W) such that p|x1 (90X (K)) coincides with p'|71(T) under
the identification of 9X (K) with T used in forming X(DK). Thus we may glue the
representations p, p’ to obtain an irreducible representation ¢ of the (X (DK)).
One checks that £o traces out a curve as o varies. O

10 The Volume Form

Tn [3] (4.5) it is shown that given a representation of p of ;M into SLyC there
is an associated volume, and this defines a function V' : Hom(m M, SL,C) — R,
Briefly, the idea is that given a representation p, one chooses a nice p-equivariant
map of the universal cover M of M into H3. Use this map to pull-back the volume
form on H? to a my M-equivariant 3-form on M. This descends to a form on M and
integrating this over M gives the volume of the representation.

Using a basis A, p for @7 let L, M be the eigenvalues of the longitude and
meridian ie &(p) = (L, M) and set

logM = ¢, + 10, logL = €5 + 10,.

Then define a 1-form w on (C — 0)? by the formula w = £,df, — £,df,. This form
is not exact since dw = d¢, A df, — dly A df,. However pulling back to a curve
C in Hom(m M,SL,C) gives the form &*w which is exact since it equals dV. This
formula is due to Hodgson, [12] see also [3]. Since w is not exact on (C — 0)? we
obtain:

Corollary 10.1 /3] dime(E(Ry)) < 1.

This leads to an obstruction to a polynomial arising as the A-polynomial of a knot.
Let v be a loop on the curve A = 0 which lies in the image of £ then the integral of
w around 7 must be zero. The polynomial of the figure eight knot is:

AL,M)==24+M*+ M —M*-M?*—L—-L"
Changing this slightly gives a different polynomial:

F(LM)y=-24+M 4+ M S M> - M 2T -T1"



We will use the volume form to show this is not the A-polynomial of any knot.
However it does satisfy every other condition that we know of to be a knot polyno-
mial.

Let S be the affine curve in C2 where f vanishes and consider the coordinate
projection 7 : C? — € which sends (L, M) — M. Then 7|s : S — C is a 2-fold
cover of the complex plane branched over a subset of the set where Dys f vanishes.
Given a path v in C which misses the image of this set, one may uniquely lift it to
a path 7 in S given the start point. Certain paths lift to closed paths representing
non-zero homology classes. In this way a computer can calculate

fo

Experimentation reveals that with v consisting of small loops linking the points
57/ counterclockwise and e37/4 clockwise together with two copies of a straight
line connecting these two loops that the integral is approximately —0.956. Since this

is not zero f is not the A-polynomial of a knot. [

Question 10.2 Which affine curves C in (C—0)? satisfy the condition that w is
ezact on CT.

11 Further Results

We mention two more results concerning the A-polynomial. The terms of the A-
polynomial appearing along an edge e of its Newton polygon may be viewed as a
polynomial called an edge polynomial f.(t). The variable ¢ may be identified with
an eigenvalue of the loop # on the boundary torus which is the boundary slope of
an incompressible surface in the knot complement. Thus £ = LY MP if the slope of

Bis p/q.
Theorem 11.1 [3].[4],[6] The edge polynomial f.(t) is a product

C A1) fo(t) - fult)

where C' is an integer and fi(t) is a cyclotomic polynomial. If w is a p’th root of
unity which is a zero of f(t) then p divides the number of boundary components
of every component of an incompressible surface associated to the action on a tree
arising from a degeneration corresponding to the edge e.

Definition 11.2 A corner of a polynomial p(x,y) in two variables is a term ap-
pearing in a corner of the Newton polygon of p.

One might view corners as analogous to the first and last term in a polynomial in
a single variable, then the following says that in a certain sense the A-polynomial
18 monic.

Theorem 11.3 [6] The coefficients of terms in the corners of the A-polynomial are
+1.



Corollary 11.4 The constant C' appearing in theorem (11.1) is £1.

Corollary 11.5 The edge polynomials of a 2-bridge knot are all £(t — 1)%(t + 1)".

Proof. It is shown in [11] that an incompressible surface in a 2-bridge knot has one
or two boundary components. The above theorems now give the result. [J

It is shown in [1] that if a Conway sphere is strongly detected then the corre-

sponding edge polynomial is C.(t? 4+ 1)* and again by the above C' = +1.
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