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1 Introduction 

Consider a compact 3-manifold M with boundary consisting of a single torus. 
The papers [CS1, CS2, CGLS] discuss the variety of characters of SL2(C) 
representations of zl(M), and some of the ways in which the topological 
structure of M is reflected in the algebraic geometry of the character variety. 
We will describe in this paper a certain affine algebraic curve DM which is 
naturally associated to the character variety of M. A basis B = {~, 9.1/} for the 
peripheral subgroup of M determines an embedding P8 of DM into C* x C* 
with coordinates l and m. The closure in C 2 of ps(DM) is a plane algebraic 
curve and therefore is defined by a polynomial AM,n0, m) that, after certain 
normalizations, is uniquely determined up to multiplication by constants. The 
polynomial AM, B is effectively computable and is an invariant of the manifold 
M together with the choice of basis B. The results in this paper describe how 
geometric properties of the character variety, and hence topological proper- 
ties of M, are reflected by the polynomial AM, B. 

In the case that M is the complement of a knot K in a homology 3-sphere 
we may take the basis B to consist of the longitude and meridian of K. With 
the usual orientation conventions this basis is well-defined modulo the involu- 
tion which inverts both the longitude and meridian. It will follow from the 
construction of DM that if the basis B' is obtained from B by inverting both 
generators then the regular maps PB and PB, have the same image. Thus 
Ar:= AM, s = AM, B, is an invariant of the knot. 

The polynomial AM, B displays, in a striking way, information about the 
incompressible surfaces in M. This involves the Newton polygon of AM.B, 

* Partially supported by the Sloan Foundation and the National Science Foundation 
** Partially sunoorted bv the National Science Foundation 



48 D. Cooper et al. 

which is the convex hull of the integer lattice points in the plane whose 
coordinates arise as degrees of monomials in AM.B. Using the main result of 
[CS1] we show (Theorem 3.4) that "boundary slopes are boundary slopes," 
that is that the slope of each side of the Newton polygon of AM, B equals the 
boundary slope of an incompressible surface in M which is associated to an 
action of ~I(M) on the affine building of SLz(F) for a certain function field F. 
To say that an incompressible surface S is associated to the action means that 
S is produced by a transversality construction using a 7zl (M)-equivariant map 
from the universal cover of M to the building, which is a tree in this case. Such 
a surface is not unique, but has a well-defined boundary slope. We will 
consider surfaces which have the minimal number of boundary components 
among all incompressible surfaces associated to the action. These are called 
reduced surfaces. 

To describe the proof of Theorem 3.4, we consider the following projective 
embedding of D~t. Embed C* • C* in p2 as the set { (l: m : z) ] 14: 0, m 4: 0, z = 1 }. 
Le t / )u  denote the closure of the image of DM in p2. By a point at infinity of/3 M 
we mean a point lying on one of the three axes I=0,  m = 0  or z=0.  It follows 
from the construction of DM that each local branch of/)M through a point at 
infinity determines an ideal point of a curve of SL2(C) characters of ~1 (M). The 
technique of [-CS1], which constructs an incompressible surface for each ideal 
point of a curve of characters, extends to provide an incompressible surface for 
each local branch of/)M through a point at infinity. Moreover, each local 
branch determines a discrete valuation v on the function field of the component 
of/)M containing it. The boundary slope of the incompressible surface asso- 
dated to the branch can be expressed in terms of v as -v(I)/v(m). 

Theorem 3.4 is thus a consequence of the following statement. Given 
coprime integers p and q there exists a local branch of DM through a point at 
infinity, for which the associated valuation v satisfies v(1)=p and v(m)= q, if 
and only if the Newton polygon of AM, B has a side of slope -p/q. The link 
between the valuation and the Newton polygon is provided by the notion of 
a Puiseaux parametrization of a local branch of a curve. Each side of the 
Newton polygon determines a Puiseaux parametrization of some local branch 
of /)M through a point at infinity. This parametrization provides a local 
coordinate with respect to which a function on the local branch can be 
expanded as a Laurent series. The valuation assigns to a function the degree of 
the leading term of its Laurent series. 

We construct our Puiseaux parametrization of a local branch of/)M SO 
that m is a power of the local coordinate. It then turns out that the leading 
coefficient of the Laurent series that represents I carries topological informa- 
tion about  the reduced surface associated to the local branch. This coefficient 
can be described in terms of the valuation. In general, i f f and  9 are elements of 
a field F with a discrete rank 1 valuation v, and if s is the greatest common 
divisor of v(f) and v(9), then the element gv~S)l~f-v~o)/, determines a well- 
defined element of the residue field. We will denote this element by %(f, 9). 
When v is the valuation determined by a local branch of/)M through a point at 
infinity we have %0, m)=  a~ ~). We show (Theorem 5.7) that %(l, m) is always 
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a root of unity and that the order of z~(l, m) divides the number of boundary 
components of each component of S. As corollary we have that the leading 
coefficient ao is a root of unity. 

In fact, we give two different proofs that zv(l, m) is a root of unity with 
order dividing the number of boundary components of S. Both proofs begin 
by producing a representation of nl(M) into SLa(F), where F is a finite 
extension of the function field of Yc D ta equipped with a discrete valuation v' 
which is an extension of v. One argument involves the algebraic K-theory of 
the field F, while the other uses the action of nl(M) on the affine building of 
SL2(F) determined by the representation. There are intriguing parallels be- 
tween these two arguments which presumably are due to the existence of 
a deeper connection between K-theory and the theory of affine buildings over 
function fields. 

In the K-theoretic argument the functions I and m, regarded as elements of 
F, are eigenvalues of the images of ~2 and 93l on a common eigenspace. These 
determine an element {l, m} of Ka(F). The square of {1, m} is, in a sense, the 
K-theoretic fundamental class of the peripheral torus of M and hence 
vanishes. The result follows from the existence of a homomorphism (the tame 
symbol) from K2(F) to C* which sends {x, y} to r~,(x, y)n for a certain integer 
n. It is immediate from the definition that r~(x, y) = ro,(x, y). It follows from the 
construction of S that the exponent n divides the number of boundary 
components of S. 

The tree-theoretic argument also involves eigenvalues and homological 
considerations, but in quite a different setting. If an element A of SL2(F) fixes 
a vertex w of the affine building then A is conjugate to an element A' of SL2(C), 
where (9 denotes the valuation ring in F. The conjugacy determines an 
identification of the link of the vertex w with the complex projective line so 
that the induced action of SL2(C) factors through the standard action of 
SLa (C). If an edge e with initial vertex w is fixed by A then it is identified with 
an eigenspace of the reduction of A' modulo the maximal ideal. The associated 
complex eigenvalue is called the eigenvalue of A associated to the fixed 
(directed) edge e. 

If S is an incompressible surface associated to the action of nl (M) on the 
building of SL2(F) then the subgroup nl(S) is contained in the stabilizer of 
some edge e. Thus each element of nl (S) has an eigenvalue associated to the 
edge e. The boundary components of a component of S can be regarded as 
elements of nl (S) whose product is contained in the commutator subgroup of 
the stabilizer of e, and hence has eigenvalue 1. For any boundary component 
the eigenvalue associated to e is either r~(l, m) or z~(l, m)-1. A topological 
argument with a homological flavor shows that if S is reduced then, for all of 
the boundary components of a component of S, the eigenvalues associated to 
e are equal. This implies that z~(I, m) is a root of unity with order dividing the 
number of boundary components of each component of S. (So the tree-theoretic 
argument gives a slightly stronger result than does the K-theoretic argument.) 

The paper is organized as follows. The definitions of DM and AM, 8 are given 
in w In w we explain the connection between Puiseaux parametrizations 
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and valuations and prove that boundary slopes are boundary slopes. The 
K-theoretic arguments are given in w and the tree-theoretic arguments in w 
In w we discuss the relationship between Ar and the Alexander polynomial of 
K, where K is a knot in a homology sphere. Finally, in w we give computa- 
tions of AK for several knots K. 

This paper is as much an account of overlapping independent efforts by its 
many authors as it is a collaboration. Many of the ideas presented here were 
also discovered by Andrew Casson. 

2 Definitions 

In this section we give the definition of the curve DM and the polynomial 
AM.n. The 3-manifold M is assumed to be compact, oriented and to have 
a single torus boundary component. We will assume that a basis B = {~, ~13l} of 
the free abelian group Zl(0M) has been fixed, and in the case where M is 
a knot complement in a homology 3-sphere that ~ and 9Jl are the longitude 
and meridian respectively. 

2.1. We will follow the notational conventions of [CS1, CS2, CGLS]. Given 
a finitely generated group 7r we denote by R(rc) the variety of representations 
of rc in SL2(C ). The variety of characters of SL2(C ) representations of n is 
denoted X(n) and t: R(rO~X(1c ) is the canonical projection which, by [CS1], 
is surjective. If V is an element of ~ then I V will be the function defined by 
I~(X)=Z(V), and may be regarded as an element of the function field of any 
irreducible component of X(~z). When 7r is the fundamental group of a mani- 
fold N we may write R(N) and X(N) for the representation and character 
varieties of re. To construct the curve DM, where M is a compact 3-manifold 
with boundary a torus, we use the restriction map r: X(M)~X(c?M) induced 
by the inclusion of nl(t?M) into nl(M). 

2.2. The curve DM. Let A cR(OM) be the subvariety consisting of diagonal 
representations. There is an isomorphism PB from the affine variety A to 
C* • C* defined as follows: if p is the representation defined by 

p ( ~ ) = [ l  0 1_01] and p(gJ/)=IO m0_ll 

then pn(p)=(l,m). It is easily verified that t restricts to a surjection 
t~: A~X(~M), and that t~ is a finite map which is generically 2-to-1. In fact 
X(dM) may be identified with the quotient of pB(A) under the involution 
tr which interchanges I with I- ~ and m with m -  1; the map tA is the composi- 
tion of PB with the quotient map. 

Denote by X'(M) the union of the irreducible components Y' of X ( ~  t) 
such that the closure of r(Y') is 1-dimensional. For each component Z'  of 
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X' (M) let Z be the curve t~ 1 (r(Y'))c  A. We define DM to be the union of the 
curves Z as Z '  varies over all components of X'(M). 

Note that if B' is the basis consisting of ~ -1  and 9J / - i  then Pn'= 
(I-1, m-1)__ PB ~ a. Thus PB and PB' have the same image. Having made this 
observation, it will no longer be necessary to indicate dependence upon the 
(fixed) basis B of 7zl (M), so the subscript B will be suppressed. We will identify 
DM with its image in C* • C*. If Y is an irreducible component of DM we will 
write I 7 for the projective completion of Y in CP 2 and I 7 for the smooth 
projective model of E By an ideal point of DM we will mean a point of 17, 
for some irreducible component Y of DM, which corresponds to a point of 
17- Y. There are finitely many ideal points of DM, each of which determines 
a discrete rank one valuation on the function field C(Y) for some irreducible 
component Y ofDM. Ifv is a valuation on C(Y ) which corresponds to an ideal 
point of DM then at least one of 1, m, 1- ~ or m-1  is not contained in the 
valuation ring of v. 

Proposition. Let Y be an irreducible component of  DM. Then there exists a finite 
extension F of C(Y) and a representation P: ~za(M)~SL2(F) such that 

where 1 and m are regarded as elements of the coordinate ring of K 

Proof By the construction of DM there is an irreducible component  Y' of 
X(M)  and a curve Y,~M contained in X(dM) such that the restriction of r to Y' 
is a dominating map to Y~M. Also the restriction of t~ to the component Y is 
a dominating map to Your. Finally, since t: R ( M ) ~ X ( M )  is surjective we may 
choose a curve YR c R(M) such that the restriction of r o t to YR is dominating. 
Thus the function fields of YR and Y are both finite extensions of that of YeM. 
Moreover,  since YR is a curve in R(M) there is a tautological representation 
PI :  nl(M)~SL2(C(YR)).  Let F be a common finite extension of C(Y) and 
C(Y~). We may regard P1 as a representation of nl(M) into SL2(F). Since 
F contains I and m, which are eigenvalues of the commuting matrices PI(~) 
and PI(gJI), the representation P1 is conjugate in GL/ (F)  to a representation 
P satisfying the conclusion of the proposition. []  

2.3. The polynomial AM. By a defining polynomial of a plane curve we mean 
a polynomial which vanishes exactly on the curve and has no repeated 
irreducible factors. Such a polynomial is unique up to multiplication by 
non-zero constants. We define AM(I, m) to be the defining polynomial of the 
closure of DM in C x C. 

Propostion. After multiplication by a non-zero constant the coefficients of AM 
can be taken to be integers. 
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Proof It suffices to show that the curve X'(M) is defined by polynomial 
equations with integral coefficients. For  this we use a theorem attributed to 
Weil [La, Chap. III, Theorem 7]. This theorem asserts that an ideal I in 
a polynomial ring K[x~, . . . ,  x,],  K a field, has a minimal field of definition 
k c K. Moreover an automorphism of K leaves I invariant if and only if it fixes 
k. Thus we need only show that X'(M) is invariant under any automorphism 
of the field of complex numbers (i.e. under the diagonal action of the automor- 
phism an affine space.) It is clear that the variety R(M) is defined over Q. Since 
the projection to X(M) is a polynomial map with integral coefficients, the 
variety X(M) is also defined over Q. Similarly, the restriction map 
r: X(M)~X(dM) is a polynomial map with integral coefficients, so r(X(M)) is 
defined over Q. If a variety defined over Q is invariant under an automor- 
phism of the complex numbers then the set of generic points on the variety is 
also invariant; it follows that the automorphism must take components of the 
variety to components of the same dimension. Therefore, since X'(M) is 
defined to be the union of the components of X(M) whose image under the 
restriction map is 1-dimensional, X'(M) must be invariant under any auto- 
morphism of the complex numbers. []  

2.4. It is very often (but not always) the case that every component of X(M) 
has dimension 1, so that we actually have X'(M)=X(M). In particular we 
have the following. 

Proposition. There are no O-dimensional components of X(M). Moreover, if 
M contains no closed incompressible surface then every component of X(M) has 
dimension 1. 

Proof It is shown in [CS1] that the characters of reducible representations 
form a closed algebraic subset of X(M), and that any component of X(M) 
which contains the character of an irreducible representation has dimension at 
least 1. Thus a 0-dimensional component of X(M) would have to be a charac- 
ter of a reducible representation. But it is also shown in [CS1] that any 
reducible character in X(M) is the character of a diagonal representation. 
It follows that a component of X(M) which consists entirely of characters 
of reducible representations must have dimension greater than or equal 
to the first Betti number of M. Therefore X(M) can have no 0-dimensional 
component. 

If there is a component of X(M) with dimension greater than 1 then for 
any peripheral element 7 in n l (M) there is a curve contained in X(M) on 
which the function I v restricts to a constant function. By the main theorem of 
[CS1] this implies that either M contains a closed incompressible surface or 
-+ [7] is a boundary slope of an incompressible surface in M for every 
peripheral element 7. The second alternative would contradict a theorem of 
Hatcher [Ha] which states that there are only finitely many boundary slopes 
of incompressible surfaces in M. [] 
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2.5. The subvariety X' (M)  always has at least one component of reducible 
characters since any homomorphism h: ~1 (M)---,Z gives rise to a subvariety of 
X' (M)  consisting of characters of representations which factor through h. In 
the case where M is a knot complement in a homology 3-sphere, if Y is 
a component of X' (M)  consisting of reducible characters then the curve I 7 in 
A is just the line I = I. (This is because the longitude is mapped to the identity 
by any reducible representation of ~zl(M).) Thus 1 - 1  is a factor of AK(I, m) for 
any knot K in a homology sphere, and if K is the trivial knot then 
AK(I, m ) =  1-- 1. 

2.6. Proposition. I f  K is a hyperbolic knot then Ar(I, m ) # I - - 1 .  

Proof It follows from [CS2] that if Y' is an irreducible component of X ( M )  
which contains the character of a discrete faithful representation then Y' is 
1-dimensional and the function I v is non-constant on Y' for any non-trivial 
peripheral element 7. This implies that the closure Y of r(Y') is an irreducible 
component of X(OM), of dimension at most 1, which admits a non-constant 
function. Thus Y is 1-dimensional and hence determines a component of DM. 
Since the trace function I~ is non-constant on Y', it follows that the compon- 
ent of DM corresponding to Y is different from the line l =  1. [] 

2.7. Proposition. I f  K is a non-trivial (p, q)-torus knot then Ax(1, m) is divisible 
by ImPq+ 1. In particular, At(l ,  m) 4=l -  1. 

Proof The fundamental group of the complement M of the (p, q)-torus knot 
has presentation (x, y : x p = yq). If mp + nq = 1 then we may take J / =  x"y m and 
~2 = xP~JJl- Pq. A family of irreducible representations of n 1 (M) can be construc- 
ted by sending x and y to non-commuting elements of SL2(C) of order 2p and 
2q respectively. After conjugation, such a representation can be taken to 
restrict to a diagonal representation of re1 (~M), which is then contained in D~. 
The relation J2=xPgJl -pq immediately implies that the closure of the set of 
diagonal representations obtained this way is the curve l m P q = -  1. Thus 
lntPq-} - 1 is a factor of AK(I, m). [] 

2.8. A point of intersection of DM with one of the lines m = _ 1 corresponds to 
a representation p: n 1 (M)-* S L2 (C) for which p (9)l) has trace + 2. Since p (93/) 
and p(~) commute we either have p(gJ/)= +1  or  t rp02)=  +2. If M is a knot 
complement in S 3 then rq (M) is generated by conjugates of 9)1. Therefore in 
this case p(gJl)= + 1 implies that p has abelian image and hence that p(~)=  I. 
This shows that i fK is a knot in S 3 then there are non-negative integers k t and 
k2 such that A~(I, +_ 1)=(I - -1)k ' ( l+  1) k2. 

The intersection points of the line l = 1 with the other components of DM 
are related to the Alexander polynomial; see w 

2.9. Proposition. l f  K is knot in a homology sphere then A(I, m) involves only 
even powers of m. 



54 D. Cooper et al. 

Proof Identify the cyclic group Z 2 with the subgroup + l c C * .  Any 
homomorphism ct: n 1 (M)~ Z2 determines an involution of R (M) which sends 
a representation p to the representation p~ defined by p~(g)= ~(g)p(g). In the 
case where M is a knot complement in a homology 3-sphere the unique 
non-trivial homomorphism from n~(M) to Z2 sends 93/to - 1 .  The corres- 
ponding involution of R(M) induces an involution of DM which sends (I, m) to 
(1, -m) .  Thus Ar is invariant under this involution, giving the result. [] 

3 Boundary slopes and the Newton polygon 

One of the important aspects of the relationship between the algebraic 
geometry of the character variety and the topological structure of M is 
described by the main theorem of [-CS1] which associates incompressible 
surfaces in M to ideal points of curves in X(M). In this section we reinterpret 
this theorem in terms of the curve DM and show that boundary slopes of 
incompressible surfaces are displayed by the coefficients of AM; the slope of 
each side of the Newton polygon of AM is equal to the boundary slope of an 
incompressible surface associated to an ideal point of DM. 

3.1. Recall that a slope is an unoriented homotopy class of non-trivial simple 
closed curves on 8M; that is a pair { [ +_ 7] } of primitive homology classes in 
H~(~M; Z). If S is an incompressible surface with non-empty boundary in 
M then 8S is a family of parallel simple closed curves on c~M and hence 
determines a slope, called the boundary slope of S. If, as in our situation, a basis 
of HI(OM; Z) is given then a slope can be represented by an element of 
Q w { ~ } in the usual way. In our case the slope { _+ (a~2 + b~O/) } is represented 
by the rational number b/a. 

Proposition. To each ideal point x of Du there corresponds an incompressible 
surface with non-empty boundary in M. I f  v is the valuation on C(DM) associated 
to x then the boundary slope of this incompressible surface is -v(1)/v(m). 

Proof The construction of the incompressible surface proceeds exactly as in 
[CS1]. Let Y be the irreducible component of DM and v valuation on C(Y) 
associated to x. By Proposition 2.2 there is a representation P of ztl(M) into 
SL2(F) where F is a finite extension of C(Y). The discrete valuation v can be 
extended to a discrete valuation v' on F which satisfies v'(f) = Nv(f )  for some 
integer N and all feC(Y). One can then consider the action of z~l (M) on the 
tree of SL2 (F) determined by the representation P. The fact that one of v (1) or 
v(m) is non-zero implies that P is not conjugate to a representation into 
SL2((gv, ) and hence that this action is non-trivial. Using transversality and 
Dehn surgery, exactly as in [-CS1] or [CGLS], one obtains an incompressible 
surface in M. 

Let us identify rq(OM) with a subgroup of rq(M) and with HI(OM). Then 
in our situation the unique slope {+ 7} with the property that the trace of P(7) 
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lies in the valuation ring C~, is that which corresponds to the extended rational 
number -v(1)/v(m). As in [CGLS] this implies that the surface has non- 
empty boundary and that its boundary slope is -v(l)/v(m). [] 

3.2. Puiseaux parametrizations. Consider an irreducible plane curve C de- 
fined by a homogeneous equation F(x, y, z) =0. Assume that F is not divisible 
by x or y or z and that C passes through (0 : 0 : 1). A Puiseaux parametrization 
of C at (0:0:  1) is a solution of the equation F(x, y, 1)=0 in the power series 
ring C [ [ t ] ]  of the form 

x(t)=t p and y(t)=t q ~ a,t", (3.2.1) 
,=o 

where p and q are positive integers and ao+0.  Puiseaux proved that such 
solutions exist and that the power series y(t) converges; thus a Puiseaux 
parametrization does actually give a parametrization of the curve. (Puiseaux 
parametrizations exist at all points of C but for our purposes it suffices to 
consider parametrizations at (0:0 : 1).) Given a rational function R(x, y) which 
represents a non-zero element of the function field of C, one defines the order 
of R to be the integer n such that R(x(t), y(t)) = t"E(t) where E(t) is a power 
series with non-zero constant term. It is shown in [Le] that the order depends 
only on the element of C(C) represented by R, and that the induced integer 
valued function on the non-zero elements of C(C) is a valuation. Note  that if 
v is the valuation determined by the Puiseaux parametrization 3.2.1 then 
v(x)=p and v(y)=q, where we have abused notation by using x and y to 
denote the elements of C(C) represented by the corresponding polynomials. 

3.3. The Newton polygon. Given a polynomial 

F(x, y)= ~ bm, xmy" 
m,n  

consider the subset Jlrv of the integer lattice in R z given by J t ~ =  
{(m, n) I b,,,#:0}. The Newton polygon of F is defined to be the convex hull of 
jV" F . 

Let us assume that 

x(t)=t p and y(t)=t q ~ a,t" 
n = 0  

satisfy the equation F(x, y)=0.  Letf(m, n) be the linear functional o n  R 2 given 
byf(m, n) =mp + nq. Setting the coefficient of the term of lowest degree d in the 
power series F(x(t), y(t)) equal to 0 one obtains 

b,,,a~ =0. (3.3.1) 
f ( m , n ) = d  

Since ao :6 O, one obtains immediately that a necessary condition for (x(t), y(t)) 
to be a solution to F(x, y)=O is that the minimum value off(m, n) on the set 
.X(F) should be attained at two points. This is equivalent to the condition 
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that the Newton polygon of F have a side of slope - p / q  lying below JV'v. If 
this condition is satisfied then equation 3.3.1 exhibits ao as a root of a certain 
polynomial. It is proved in [Le] or [K] that if ao is taken to be any root of this 
polynomial then one can repeat this procedure to recursively determine the 
coefficients of y(t), and that the power series produced in this way converges. 
This means that for each pair (p, q) satisfying the necessary condition above 
there exists a Puiseaux parametrization of some irreducible component C of 
the curve defined by F. In particular, for each side of the Newton polygon of 
F which has slope -p /q ,  p, q > 0, and lies below the set JV]~ there is a valuation 
v on the function field of C which satisfies v(x)= p and v(y)= q. This statement 
is extended to apply to any side of the Newton polygon by the following 
proposition. 

Proposition. Let C be a plane curve with defining polynomial F(x, y). Assume 
that F is not divisible by x or y. I f  the Newton polygon ofF has a side of slope p/q 
then there is a valuation v on the function field of  some irreducible component of  
C such that p/q = -v(x)/v(y) .  Moreover we have v(y)> 0 if and only if the side 
lies below Jtr F. 

Proof In view of the discussion above we need only show how to handle the 
case of a side of non-negative slope or a side which lies above JV~. 

If the Newton polygon o f f  has a side of slope 0 lying below ~V" F then there 
are at least two terms in F which are powers of x. Thus there is a point on 
C with coordinates (x0, 0) where Xo  9 0. It is easy to see that if v is a valuation 
on C(C) corresponding to a place centered at (Xo,0) then v(x)=0 while 
v(y)>0. A similar argument applies to the case where a side of the Newton 
polygon has slope oo. 

To handle the remaining cases one simply changes coordinates. Consider 
the birational self-equivalence of CP 2 defined by the Cremona transforma- 
tion T ( x : y : z ) = ( x y : x  z :yz). Note that if y#:0 then T(x:y:  1 )=(x : l / y :  1). In 
particular T restricts to a birational isomorphism from the closure of C to its 
image. The defining polynomial for T(C) in the affine coordinates x and y is 
obtained from F by substituting 1/y for y and multiplying by a power of y. 
The Newton polygon for this polynomial is obtained from that of F by 
reflection through the horizontal axis and translation; the new polygon has 
a side of negative slope lying below it for each side of the Newton polygon 
of F which has positive slope and lies above JVF. If the Newton polygon for 
F has a side of slope p/q, p, q > 0, which lies above X r  then a Puiseaux 
parametrization for T(C) gives rise to a valuation v on the function field 
of some component of T(C) with v(x)=p and v ( y ) = - q .  Since T is 
a birational isomorphism from C to T(C) it induces isomorphisms 
between the function fields of corresponding components. This gives 
the proposition in this case. The other cases are handled the same way 
by using birational equivalences which map ( x : y : l )  to ( 1 / x : y : l )  or 
( 1 / x : l / y : l ) .  [] 
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3.4. Theorem. The slopes of the sides of the Newton polygon of AM are bound- 
ary slopes of incompressible surfaces in M which correspond to ideal points of 
DM. 

Proof Combine Proposition 3.1 with Proposition 3.3. [] 

4 Algebraic K-theory and z~(l, m) 

The main result of this section implies that ,~(I, m) is a root of unity for each 
valuation v corresponding to an ideal point of DM. As mentioned in the 
introduction, this implies that in the power series which appears in a Puiseaux 
parametrization of a local branch of/9~t through a point at infinity, the 
leading coefficient is a root of unity. The proof given here uses results from 
algebraic K-theory about the group Kz(F) where F is a field with discrete 
valuation. In the next section we will give another proof of this fact using the 
tree of SL2(F), which also relates the order of z~(1, m) to topological informa- 
tion about incompressible surfaces in M. 

The main result of the section can be summarized as follows. Let Y denote 
the irreducible component of DM and v the discrete valuation on C(Y) 
corresponding to the given ideal point. Let F be the finite extension of C(Y) 
provided by Proposition 2.2, and let F be endowed with a discrete valuation v' 
which extends the valuation v on C(Y ). The functions l and m determine an 
element {l,m} of K2(F). The main result is that {1, re}z=0. There is 
a homomorphism from K2(C(Y )) to C*, called the tame symbol, whose value 
on {1, m} is a power of zv(1, m). Thus r,,(l, m) is a root of unity. 

Given un i t s f and  9 in the coordinate ring of a smooth affine curve one can 
define a closed (real) differential 1-form on the curve by the formula q(f, g)= 
log l f ]d  arg 9 - log]gld arg f This form arises in the construction of the regula- 
tor on K2 of a curve. The main result of this section implies that the form 
~/(1, m) is exact on Y, a fact which has a geometric interpretation in terms of 
the volumes of hyperbolic dehn fillings of M. For  an arbitrary curve in 
C* x C*, the exactness of r/(l, m) gives a computable obstruction to realizing 
the curve as D~t for a 3-manifold M. 

4.1. The symbol. Suppose that A is a commutative ring. Let SL(A) denote the 
direct limit of the groups SL(n, A) and E(A)<SL(A) the direct limit of the 
groups E(n, A) of n x n elementary matrices. Recall that the abelian group 
K2(A) is canonically isomorphic to the kernel of the universal central exten- 
sion of E(A). The extension is the Steinberg group St(A). In other words we 
have a short exact sequence 

O~ K2(A)--* St(A)~ E(A)~O 

which is a universal central extension. Recall also that it follows from the 
five-term exact sequence of a group extension that the kernel of a universal 
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central extension is naturally isomorphic to the second integral homo- 
logy group of the quotient. So we have a natural isomorphism q: K2(A)--* 
Hz(E(A)). 

Following Milnor [M], given any two commuting elements U and V of 
E(A) we define an element U * V of Kz(A) by lifting U and V to elements u and 
v of St(A) and setting U * V= uvu- ~ v- l This commutator lies in the kernel of 
the central extension, since U and V commute, and is independent of the 
choice of lifts. 

Given any two uni tsfand g in A the symbol { f  g} is an element of Kz(A) 
which is defined as follows. Consider the matrices [ 001 l 00; 

D / =  0 f 1 0 and Do= 1 0 , 
0 0 1 0 g - t  

which are elements of E(3, A). Then {f, g} = D j-* D'g. 
By [M, Lemma 8.3], using multiplicative notation for the abelian group 

K2 and writing diag(f~ . . . . .  f,) for the diagonal matrix with diagonal entries 
.fl . . . . .  f . ,  we have 

diag(fl  . . . .  ,f.) * diag(g~ . . . . .  g,,) = {fl ,  gl } ' "  { f,,,, g.}. 

Thus we have d i ag ( f , f -  1) .  diag(g, g -  ~) = {f, g} { f -  a, g - , }  = {f, g}2 (The 
last equality follows from the bimultiplicativity of the symbol [M, Lemma 
8.2].) 

Lemma. Suppose that f and 9 are units in A. Let A be a free abelian group with 
basis {U, V}. Let ~: A-~E(A) be the homomorphism defined by 

r  -1) and q~(V)=diag(g,g-1). 

Then there is a 9enerator ~ of H2(A) such that t/, o 0 , ( 0 - - { f ,  g} 2 

Proof By the remarks above it suffices to show that 

~,  o r  = 4,(u) * q~(v). 

Let F be a free group on the letters U and V. The homomorphism ~b deter- 
mines a commutative diagram 

[F, F ]  ~ F ~ A 
,L ~ ~ 

KE(A) -~ St(A) ~ E(A) 

for which the homomorphism from IF, F ]  to K2(A) sends the commutator 
[U, V] to ~b(U)* ~b(V). Consider the commutative diagram below in which 



Plane curves associated to character varieties of 3-manifolds 59 

the vertical maps between terms of the five-term exact sequences are induced 
by q~. 

H2(F) ~ H2(A) --+Ho(A;H~([F,F]))~ H~(F) ~ Hi(A) 

H2(St(A)) ~ H2(E(A)) -+ Ho(E(A); Kz(A)) --~ H,(St(A)) ~ H,(E(A)) 

Note that the second map is an isomorphism in each of the five-term se- 
quences. If we identify Ho(A; H~ ([F, F]) with the second quotient of the lower 
central series of F, which is a cyclic group generated by the coset of [U, V], 
then the isomorphism from H2(A) to Ho(A; HI([F, F])) must take a gener- 
ator of H2(A) to the coset of [U, V]. Since [U, V] maps to r r in 
K2(A) = Ho(E(A); H I(K2 (A))), the lemma follows from the commutativity of 
the diagram. [] 

Proposition. Suppose that M is a 3-manifold with boundary a torus and that 
93~ and ~ form a basis of the peripheral subgroup of M. Suppose that p is 
a representaion of nl(M) into SLz(A)]or which p(~2)=diag(I,1-1) and 
p(gJ~)= diag(m, m-1). Then the symbol {I, m}~K2(A) has order dividing 2. 

Proof The homomorphism induced by p from Hz(nl(c3M)) to Hz(E(F))= 
K2(F) factors through the homomorphism induced on Hz by the inclusion of 
nl((?M) into hi(M) and is thus trivial. [] 

4.2. The tame symbol. Here we consider representations of nl(M) into 
SLz(F), where F is a field with discrete valuation v and residue field k. 

Recall [M, Corollary 9.13] that Kz(F) is generated by the symbols {f, g} 
for f, g~F*. Recall also that there is a homomorphism d~: K2(F)--*k* which is 
called the tame symbol and is defined by 

dv({f  g})=ff,g)/g~'(I). 
(The elementff(g)/g ~'(I) is a unit in (9 and hence has a well-defined value in k*. 
By definition this value is ~,(f, gY, where s=(v(f) ,  v(g))). 

Suppose now that F is the function field of a smooth projective curve 
C and that v is the valuation associated to a point p of C. Let p be as above, so 
that for a general peripheral element i2m~t" we have 

Unless l and m are both finite-valued at p there will be a primitive element ? of 
the peripheral subgroup of nt(M), unique up to inverse, for which the 
diagonal entries of p(?) are finite-valued at p. We must have 

where s is the greatest common divisor of v(1) and v(m). Since the tame symbol 
is a homomorphism, Proposition 4.1 implies that the eigenvalues of 7(p) are 
roots of unity whose order divides 2s. 
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4.3. Let x be an ideal point of D~t and Y an irreducible component of DM such 
that x is contained in I 7. Let F be the finite extension of C(Y) and P the 
representation provided by Proposition 2.2. Let v be the discrete valuation on 
C(Y) associated to x and v' a discrete valuation on F satisfying V'lc~r)* = Nv. 

Proposition. Let s be the greatest common divisor of v(l) and v(m). I f  the 
incompressible surfaces in M associated to the ideal point x of DM have boundary 
slope p/q then z~(l, m) is a root of unity of order dividing 2Ns. 

Proof Let dr,: K2(F)--*C* and dr: Kz(C(Y ))--~C* be the tame symbols. Note 
that d~,({1, m})=dv({l, m}) N. Thus by 4.2 we have 

(1) dv,({l, m}) is a root of unity of order dividing 2; 
(2) dv({l, m}) is a root of unity of order dividing 2N; 
(3) zv(l, m) is a root of unity of order dividing 2Ns. [] 

4.4. Regulator homomorphisms and the 1-form ~/(1, m). In this section and the 
next we describe some connections with the hyperbolic geometry of M. These 
sections are independent of the rest of the paper. 

Suppose that Y is a smooth complex projective curve and t h a t f a n d  g are 
functions on Y. Let S be a finite subset of Y containing the zeroes and poles of 
both f and g. We then define a (real) differential 1-form on Y - S  by the 
formula 

Note that 

q ( f  g)=loglfldarg g-loglgldarg f 

Thus dr/is the imaginary part of a complex 2-form on Y, so t/(f, g) is a closed 
1-form. We denote by c(f, g) the class in H i ( Y - S ;  R) whose value on the 
homology class represented by a loop ~ in Y - S  is given by (1/2~)~ t / ( f  g). 
We will regard c(f, g) as an element of the direct limit of the groups 
H~(Y-S; R) as S ranges over the finite subsets of Y. 

Proposition. There is a unique homomorphism ro: K2 (C(Y))~l im H~(Y - S; R) 
which sends the symbol { f  g} to c ( f  g). 

Proof Using Matsumoto's Theorem, it suffices (see [M, Corollary 1.3]) to 
show that c ( f  g) satisfies 

(i) c( flf2, g)=c(fl, g)+c(f2, g), 
(ii) c ( f  g)= -c (g , f ) ,  

(iii) c ( f  l - f ) - - 0 .  
The first two properties are immediate, so we concentrate on property (iii). 

Let S be a finite subset of Y such that ne i ther fnor  1 - f h a s  a zero or a pole in 
Y - S .  We may then r e g a r d f a s  a function from Y - S  to P I - { 0 ,  1, o0}. By 
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naturality it suffices to check (iii) in the case where Y= P ~ c  C, S = {0, 1, oo }, 
a n d f = z  is the standard coordinate. If 7 is a circle of radius e about 0 then 

r/(z, 1 - z ) = ~  loglztd a r g ( 1 - z ) - ~  logll-zldarg(z).  

Now, 

and 

loglzl d a r g ( 1 - z ) = ~  ~ d a r g ( l - z ) = 0  
y 7 

logll-z ldarg(z)  <2nllog(1 -~)1. 

Taking the limit as ~ 0  shows that c(z, l - z )  takes the value 0 on the 
homology class represented by 7. A symmetric calculation about 1 shows 
that c(z, 1 -  z) vanishes on a basis of H i ( P 1  {0, 1, oo}; R), proving the pro- 
position. [] 

Combining the proposition above with Proposition 4.1 gives: 

Corollary. The 1-form r/(l,m) is exact on the smooth projective model of each 
irreducible component of the curve DM. 

Given a curve in C* x C*, the exactness of r/(1, m) is a computable obstruc- 
tion to realizing the curve as DM for a 3-manifold M; integration of r/(l, m) 
around a cycle in the complement of the singular set of the curve must yield 
0 if the curve is to be realizable as DM. 

The homomorphism r is very closely related to the regulator homorphism 
on K2 of a curve. Specifically, it follows from JR, 4.2, 4.4, 6.2] that if Y is 
defined over a number  field k c  C then there is a commutative diagram 

K2(Y ) -* HI(Y(C); R) 

Kz(k(Y)) -% limH~(Y(C)-S;R) 
where c~ is the localization homomorphism, fl is the injection induced by 
inclusion and the map at the top is, up to twisting by 2hi, the regulator as 
defined by Beilinson. 

4.5. Volumes. The exactness of q(l, m) has geometric significance. We will 
explain, following Hodgson [HO],  how to define a natural "volume" function 
V: R ( M ) ~ R  which has the property that if p is a discrete faithful representa- 
tion of n~(M) then V(p) is the volume of the hyperbolic manifold 
p(nl (M)) \H 3. The differential dV is essentially a pull-back of the 1-form 
q(1, m) to R(M), which implies the exactness of r/. 

For the definition of the function V we begin with a triangulation of the 
1-point compactification of M -  OM. Deleting the point at infinity produces 
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a triangulation of M with some ideal vertices. Lift this triangulation to the 
universal cover of M and add points at infinity to complete the simplices with 
ideal vertices. The result is a simplicial complex which we shall denote M. 
There is a simplicial action of ~rl(M) on this complex for which each interior 
vertex has a trivial stabilizer while each vertex at infinity is stabilized by 
a conjugate of the peripheral subgroup of zrl (M). 

Let p: n l ( M ) ~ S L / ( C )  be a representation. Let fi3 denote hyperbolic 
space compactified by adjoining the sphere at infinity. A map of a 3-simplex 
into t]  3 will be called totally geodesic if its image is a hyperbolic 3-simplex 
with totally geodesic faces and if it sends faces to faces. (The hyperbolic 
simplex is allowed to have vertices at infinity and may be degenerate.) By 
a pseudo-hyperbolic structure with holonomy p we will mean a map from 5,4 to 
I7t 3 which is n l(M)-equivariant with respect to the action determined by p, 
sends vertices at infinity of M to points at infinity in I~ 3, and restricts to 
a totally geodesic map on each 3-simplex. Such a map is not necessarily an 
immersion since it is not required to preserve orientation of the 3-simplices. If 

is a pseudo-hyperbolic structure then the volume of T is defined to be 
~o~g.(a)vol  T(a) where S is a complete set of representatives for the n~(M)- 
orbits of 3-simplices in M, and e(a)= + 1 according to whether 7 j preserves 
the orientation of a. 

Given a representation p, it is not difficult to construct a pseudo-hyper- 
bolic structure with holonomy p. Choose representatives v~, v:, ... ,  v, of the 
n~(M)-orbits of the interior vertices of M. The action of n~(M) is transitive 
on the vertices at infinity of M; let v~ be a representative of this orbit. The 
stabilizer ofvo~ is a conjugate of the peripheral subgroup and has a common 
fixed point on the sphere at infinity of hyperbolic space. Map v| to such 
a fixed point and map v~ . . . .  , v, to arbitrary interior points of H 3. There 
is a unique extension to a nl(M)-equivariant  map of the 0-skeleton of 
)~. This can be extended over the 1-skeleton, sending edges to geodesic 
segments, and over the 2-skeleton, sending faces to totally geodesic triangles. 
Finally, the map can then be extended over the 3-simplices to give a pseudo- 
hyperbolic structure. More generally, given a smooth 1-parameter family p, 
of representations, it is clearly possible to construct a smooth l-parameter 
family 7Jr of pseudo-hyperbolic structures so that the holonomy of 7Jr 
is Pt. 

Now, using Schl~ifli's formula for the derivative of the volume of a smooth 
1-parameter family of hyperbolic polyhedra, Hodgson computes in [Ho] the 
derivative of the volume of a smooth family of pseudo-hyperbolic structures 
on M. Let 7Jr be such a family, let Pt be the holonomy of 7Jr, and let It and rnt be 
the eigenvalues of pt(~) and p,(~0/) associated to a common eigenvector. We 
can take pt, It and m, to depend smoothly on t. In this situation, Hodgson's 
calculation shows that 

dV 1 f ,  T d a r g m  dargl '~ 
- d t = - 2 ~  '~ I ~  - l ~  dt J" 
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This implies that the function V determines a well-defined function on DM 
which is smooth away from the singularities. Lifting to the smooth projective 
model of an irreducible component of DM we obtain a smooth function whose 
differential is q(l, m). 

A slight extension is required to apply Hodgson's argument in our situ- 
ation since he only considers the case where the pseudo-hyperbolic structures 
are immersions and where the triangulation has only ideal vertices. It is 
remarked in [Ho] that the arguments apply without change to the case of 
pseudo-hyperbolic structures which are not immersions. The Schl~ifli formula 
states that for a smooth family of polyhedra in H 3 the differential of the 
volume is given by 

d V = ~  liOi, 

where the sum is over the edges of the polyhedron, and li and 0i denote 
respectively the length and dihedral angle of ith edge. In the case of a polyhed- 
ron with ideal vertices one first chooses an arbitrary small horosphere at each 
ideal vertex along which to truncate the polyhedron. The value of Ii is 
interpreted to be the length of the truncated edge; the choice of truncating 
horosphere does not affect the differential since the sum of the dihedral angles 
at the edges incident to an ideal vertex is constant. In computing the differen- 
tial of the volume of a pseudo-hyperbolic structure one obtains a sum of 
contributions from the edges of the triangulation. Edges with ideal vertices 
make non-trivial contributions, which reflect the fact that in general it is not 
possible to choose invariant horospheres at the ideal points when truncating 
the simplices of the triangulation. This part of Hodgson's argument goes 
through in our setting. One must only add the observation that an edge with 
no ideal endpoints contriutes 0 because the sum of the dihedral angles of the 
simplices containing the edge is constant. 

5 The tree of SL2(F) and z,~(l, m) 

We again consider an ideal point x ofD M. Let Y be the component of DM and 
v the discrete valuation on C(Y ) associated to x. We have seen that there is an 
incompressible surface S in M with boundary slope -v(l)/v(m) which is also 
associated to x. Assume that S has been chosen among all such surfaces to 
have the fewest possible number of boundary components. The main result of 
this section shows that the root of unity %(I, m) carries topological informa- 
tion about this surface. We show that the order of rv(l, m) divides the number 
of boundary components of any component of S. 

The main theorem of this section, Theorem 5.7, applies to a general 
representation P of ~1 (M) in SL2 (F), where F is a field with discrete valuation. 
The application to DM, Corollary 5.7, is obtained by specializing to the case 
where F is the finite extension of the function field of an irreducible compon- 
ent of DM provided by Proposition 2.2. 
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At the end of this section we state the conditions which are imposed upon 
the coefficients of AM by the conclusion of Theorem 5.7. 

5.1. Eigenvalues. Let F be a field with discrete valuation v : F * ~ Z .  We 
denote by (9 the valuation ring of F, by ~ a generator of the maximal ideal in 
(9 and by k the residue field (9/(~). 

Recall from [S] that the affine building Tr of SLz(F ) is a tree. The vertices 
of TF are homothety classes of (Y-lattices in the 2-dimensional vector space F 2. 
There is an edge of Tv joining the class [L] to the class [L'] whenever 
~L ~ L' ~ L. By "edge" we shall always mean "directed edge"; there are two 
edges joining each pair of adjacent vertices, one in each direction. If e is an 
edge then g will denote the opposite of e, the edge with the same endpoints and 
opposite orientation. We denote by i(e) and t(e) respectively the initial and 
terminal vertices of an edge e. The set of edges of TF with initial vertex [L] are 
in one-to-one correspondence with the lines in the 2-dimensional k-vector 
space L/gL. IfL' is an (Y-lattice with ~L ~L '  ~ L  then the edge from [L] to 
[L'] corresponds to the 1-dimensional subspace L'/~L of L/~L. 

The action of SL2(F) on the set of 0-lattices in F 2 induces an action on Tr. 
This is an action without inversions, i.e. no element of SLz(F) sends an edge to 
its opposite. The stabilizer in SL2 (F) of a vertex ILl coincides with the stabilizer 
of the (y-lattice L, and is therefore conjugate in GLz(F) to SL2((Y). It follows (cf. 
[CS1, Theorem 2.2.1] that A fixes some vertex of Tv if and only if 
tr A~ (Y. Let e be an edge of T which is fixed by an element A ~ SLz(F). Then i(e) 
and t(e) are represented by lattices L and L' such that ~L ~ L' ~ L; the linear 
transformation of the 1-dimensional k-vector space L'/~L which is induced by 
A must be multiplication by a scalar 2. We shall call 2 the eigenvalue of 
A associated to thefixed edge e. The eigenvalue 2 does not depend on the choice 
of L and L' because the pair {L, L'} is uniquely determined up to homothety. 

Note that we may interpret 2 as the eigenvalue corresponding to the 
eigenspace L'/gL of the linear transformation induced by A on the 2-dimen- 
sional vector space L/~L. 

Note also that if A~SLz(F) fixes an edge then it necessarily fixes two 
vertices, so its trace lies in (9. If 2 is the eigenvalue of A associated to the edge 
then 2 + 2-1 is the image of tr A under the quotient map (9---, (Y/~ = k. 

Finally, note that the eigenvalue of A associated to a fixed edge e depends 
only on the conjugacy class of A in the stabilizer of e. 

5.2. Proposition. Suppose that A~SL2(F) fixes an edge e of Tr. I f  the eigen- 
value of A associated to e is 2 then the eigenvalue of A associated to ~ is 2- t. 

Proof. Let the initial and terminal vertices of e be [L] and [L'] respectively, 
where ~L .~L' ~L. Then A induces multiplication by 2 on L'/~L. On the 
other hand we have ~ L ' ~  7rL ~ L'; hence if ,i, denotes the eigenvalue of 
A associated to 4, then A induces multiplication by 2 on ~zL/gL' ~-L/L'. From 
the exact sequence 

O~L' /~L ~ L  /~L ~ L  /L'~O, 
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it follows that  itS. is the de terminant  of the linear t ransformat ion induced by 
A on L/nL. Since AeSL2(F)  this means that  ~ = i t - 1  [ ]  

5.3. By an edge path in Tv we mean  a sequence eo , . . . ,  e, of edges of Tr with 
i(ej) = t(ej_ 1) for j = 1 . . . . .  n. The edge pa th  e0 . . . . .  e, is reduced if ej # 6j_ 1 for 
j = 1 , . . . ,  n. We define a part ial  ordering of the edges of Tr by setting e < e' if 
there is a reduced edge path  e = eo, . . . ,  e, = e'. Fo r  any pair  {e, e'} of distinct 
edges exactly one of the following relations holds: e < e', ~ < e', e' < e, or e ' <  & 

Proposition. Let A be an element ofSL2(F ) which fixes two edges e and e' of Tv. 
The eigenvalues of A associated to e and e' are equal if e < e' or e' < e. They are 
reciprocals if 6< e' or e' < & 

Proof We will assume that  e <e ' ;  the other cases follow from this one by 
Proposi t ion  5.2. 

Let  eo,.. . ,  e, be the unique reduced edge path with e = eo and  e, = e'. Since 
A fixes e and e' it must  fix all of the ei. Let  it be the eigenvalue of A associated 
to e. By Proposi t ion 5.2, it-~ is the eigenvalue associated to & 

Now #o and  e~ are distinct edges with the same initial vertex [L] and  
terminal  vertices [Lo] and [L 1], where rcL ~ Lo ~ L and  ltL ~ L 1 ~ L. The 
1-dimensional subspaces Lo/r~L and L 1/7~L of L/~L are invar iant  under  the 
linear t ransformat ion of L/~L induced by A; fur thermore these subspaces are 
distinct and therefore span L/~tL. Since A has de te rminant  1 and  induces 
mult ipl icat ion by it-1 on Lo/ltL, it must  induce mult ipl icat ion by it on L 1/~L. 
This means tha t  the eigenvalue associated to ea is 2. It now follows by 
induct ion that  the eigenvalue of A associated to e' = e, is also 2. [ ]  

5.4. The s ta tement  of Propos i t ion  5.3 implies tha t  if tr  A 4: _ 2 then compara-  
bility is an equivalence relat ion on  the set of fixed edges of A. This may appear  
paradoxical  because comparabi l i ty  is never  an equivalence relat ion on the set 
of edges of a tree which contains a vertex of valence at  least three: consider the 
three edges shown in Fig. 1 where e0 is comparable  to el and  to e2 but  el and  
ez are not  comparable.  

However,  it is not  hard  to show directly that if A fixes at least one edge of 
Te a nd  tr  A 4: + 2 then the fixed point set of A is a line. 

Fig. 1 
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5.5. Reduced surfaces. We now return to our compact, orientable, 3-manifold 
M with OM a torus. We fix a universal covering p: M--.M and write 7zl(M ) for 
the group of deck transformations of M. We suppose that we are given 
a representation P: n l(M)-o SL2 (F). Then P determines an action of zh(M) on 
Tv, and the fundamental group of any connected submanifold of M has an 
induced action defined up to conjugacy. We assume that the induced action of 
n~(t3M) on TF does not fix any vertex. 

In this situation the theory developed in [CS1], as re-formulated in 
[CGLS], allows one to associate properly embedded essential surfaces to the 
action of n l(M) on Te. We review the relevant definition. Let E denote the set 
of midpoints of edges of Tv. For S to be associated to the action of n ~ (M) on Te 
means that there is a rh(M)-equivariant map q~:)~t~T such that 
4-1(e)=p-~(s). 

A surface S associated to the action of rq (M) on Tv is not necessarily 
connected. The assumption that n~ (M) fixes no vertex of Te implies that 
0s+O. 

A surface associated to an action of ~1 (M) on T~ will be said to be reduced 
if it is essential and has the minimal number of boundary components among 
all essential surfaces associated to the action. 

5.6. Fix a reduced surface S associated to the action of hi(M) on Tr. Also fix 
orientations of M and S. Then the components of OM and of p-  1(S) have 
induced orientations, and the components of S and OS have induced trans- 
verse orientations in M and ~?M respectively. 

Under our assumptions either ~M is incompressible or some component 
of S is a boundary compressing disk. Otherwise the image of n l(~3M) in n~(M) 
would be a cyclic subgroup containing an element of the non-trivial conjugacy 
class represented by a component of t?S. This cyclic group would contain 
a non-trivial element which fixed a vertex of Te. This implies that the entire 
cyclic group fixes a vertex and hence that there is a vertex fixed by nl(9M) 
under the induced action, contrary to our assumption. 

If ~3M is incompressible then the components of 0M are planes and the 
components of p-1(0S) contained in a single component of c~54 form a family 
of parallel lines. If ~M is compressible then the components of 02~ are open 
annuli and the components of p-  ~ (~3S) contained in a single component of 3M 
form a family of parallel essential circles. We will say that two components of 
p-  ~ (8S) have compatible orientations if they project to homologous oriented 
simple closed curves in the torus ~?M. 

For each component (~ of p -  ~(OS) there is a unique (directed) edge e(C) of 
TF so that qS(C) is the midpoint of e(C) and the direction of e(C) pulls back to 
the transverse orientation of C. 

Proposition. Under the above assumptions, suppose that C and C' are compo- 
nents of p-  1( ~S) which lie in the same component of fal .  Then the orientation of 

and C' are compatible if and only if the edges e(C) and e(C') are comparable. 
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Proof Let U be the component of 01~ t containing C and C'. 
First consider the case where C and C' are adjacent on U. We claim that in 

this case ~(C)#~(C') ,  i.e. that e(C)#e(C') and e(C)#e(C'). 
The proof of this claim is a simple application of the techniqes used in 

Section 1.3 of [CGLS].  Suppose that ~(C) = d~(C'). Let J~ denote the submani- 
fold of U which is bounded by C and C'. Note  that p restricts to a covering 
projection from A to an annulus A ~ t?M which is bounded by two adjacent 
components of OS. Since p -  1 (S) = ~ -  I(E), the components C and C' of q~- 1 (E) 
are mapped by q~ to the same point of E while the interior of A maps into 
a (contractible) component of TF-E.  Thus the map ~ can be modified in 
a small neighborhood of A to make the image of A disjoint from E. This 
modification can be performed equivariantly on each component of the 
~l(M)-orbit  of .4. This produces a new equivariant map ~1: )Q--*Tr. As in 
[CGLS] the map ~1 determines a surface $1 which is also associated to the 
action of n l (M) on Tv and which differs from S by a surgery on the annulus A, 
i.e. $1 is obtained from S by "tubing" along the annulus A. This is a contradic- 
tion since $1 has fewer boundary components than S, which proves the claim. 

For  the proof  of the proposition, let C = Co, .. . ,  C, -- C' be the components 
of OS which lie between C and C' on U, numbered consecutively. There is 
a unique edge path Co, ..., e, such that for each i = 0  . . . .  , n either e~=e(Ci) or 
e~=e(Ci); specifically we have e~=e(CO if the transverse orientation on Ci 
points toward Ci+ 1 and e~=e(Ci) otherwise. The claim proved above implies 
that e~#~+l  irrespective of whether the orientations of Ci and C~+1 are 
compatible. Therefore this edge path is reduced, so eo and e, are comparable, 
as are go and ~,. The orientations on C and C' are compatible if and only if 
either e0 = e(C) and e, = e(C') or eo = e(C) and ~, = e(C'). Thus e(C) is compar- 
able to e(C') if and only if the orientations on C and C' are compatible. [] 

5.7. We continue to let M denote a compact orientable 3-manifold whose 
boundary is a torus, and P a representation of nl(M) in SL2(F), where F is 
a field with a discrete valuation. Note  that P induces a representation of 
nl(c3M) in SLz(F) which is defined up to conjugacy. The image of this 
representation will be denoted P(nl (c~M)). 

If S is an essential surface in M then since the boundary components of 
S are parallel simple closed curves on ~?M they lie in the same unoriented free 
homotopy class. Thus they determine a unique pair [h -+ 1] of conj ugacy classes 
in n l (M). The trace of an element of SL2 (F) is unchanged by conjugation and 
taking inverses, so we may define tr c3S = tr P(h). 

If S is a compact 2-dimensional manifold with non-empty boundary then 
n(S) denotes the greatest common divisor of the numbers of boundary compo- 
nents of the various components of S. 

Theorem. Suppose that P(nl(dM)) is not conjugate to a subgroup of SL2((9). 
Then tr c~S= 2 + 2-1 where 2 is a root of unity. Moreover, if S is a reduced 
surface associated to the action of hi(M) on Tr determined by P then 2nts)= 1. 
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Proof As in Sect. 4, we fix orientations of S and M. We consider an arbitrary 
component So of S with 8So # O. Choose a component $o of p-a (So). Then $o 
is a simply connected cover of So; we write lrl(So) for its group of deck 
transformations, which is the stabilizer of $o in lrl(M). The image of $0 is the 
midpoint of an edge e where the direction of e pulls back to the transverse 
orientation of So. 

By equivariance, the stabilizer of $o is contained in the stabilizer of e. 
A component C of 0S, with its induced orientation, determines a conjugacy 
class in stabilizer of 70, which in turn determines a conjugacy class in the 
stabilizer of e. Choose a representative h of the latter conjugacy class and 
define 2c to be the eigenvalue ofh associated to e. By the remarks at the end of 
Sect. 2, 2c is independent of the choice of h. Since rrl(M) acts transitively on 
the components of p -  1 (So), 2c is also independent of the choice of So. 

We claim that if C and C' are two components of 0So then 2c = 2c,. To 
prove this we consider an arbitrary component U of O_M. Let C and C" be 
components of p-l(C) and p-  l(C') contained in U. Let $o and S~ denote the 
components of p-X(S0) containing (~ and C' respectively. Then q~(So) and 
~b(Sb) are midpoints of edges e and e' whose directions pull back to the 
transverse orientations of $0 and S~. Let h be the generator of the stabilizer of 
(~ corresponding to the oriented curve C. Now h is a deck transformation of 
the covering of the torus 8M by U and leaves C invariant. Since h also 
preserves the entire family U c~ p-  x (OS) of parallel lines or circles, it must leave 
each member of the family invariant. In particular, C' is invariant under h. 
However, h will be the generator of the stabilizer of C' corresponding to the 
oriented curve C' if and only if the orientations of C and C' agree. Otherwise 
h-1 will be this generator. 

By Proposition 5.6 the edges e=e(ff) and e' =e(C') are comparable if and 
only if the orientations of C and C' are compatible. The eigenvalue of 
h associated to e is 2o If the orientations of C and (~' are compatible than ).c, 

t .  is the eigenvalue of h associated to e, by Proposition 5.3 2c= 2c, since e is 
comparable to e'. If the orientations are not compatible then 2c, is the 
eigenvalue of h-1 associated to e' which, by Proposition 5.2, equals the 
eigenvalue of g associated to ~'. By Proposition 5.3 this equals the eigenvalue 
of g associated to e since e and e' are not comparable. Thus we again have 
2c = 2c,. 

To complete the proof of the theorem we let the boundary components of 
So be Co . . . . .  C,,. For i=O,...,m let hi be an element of hi(So) in the 
conjugacy class determined by Ci with the induced orientation. Then each h~ is 
an element of the stabilizer of e and the eigenvalue of hi associated to the edge 
e is 2~ = 2c,. Moreover, the product ho..- hm is an element of the commutator 
subgroup of nl (So) and hence of the commutator subgroup of the stabilizer of 
e. Now, the commutator subgroup of the stabilizer of an edge of Tr consists of 
unipotent elements modrr. Thus we have 41-.. 2m = 1 mod ~z. By the claim 
proved above 41 . . . . .  4,.. If we let 2 be the image of 2i in the residue field 
k then we have t rOS=2+2  -1 where 2m= 1. Since So was an arbitrary 
component of S, this implies the statement of the theorem. [] 
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Corollary. Let M be a compact orientable 3-manifold with boundary a torus. 
Let x be an ideal point of DM. Let Y be the component of DM and v the valuation 
on C(Y) associated to x. I f  the incompressible surfaces associated to x have 
boundary slope p/q, where (p, q) = 1, then the field value %(l, m) of mP/l q at x is 
a root of unity. I fS  is any component of a reduced surface associated to the ideal 
point z then %(1, m) msJ= 1. 

Proof Let Y be the irreducible component of D~ such that x is an ideal point 
of Y. Let F be the finite extension of C(Y) provided by Proposition 2.2 
equipped with a discrete valuation which extends the valuation on C(Y) 
associated to x. Apply the Theorem to P. [] 

5.8. The K-theoretic argument given in section 4 implies that the order of 
2 divides 2N gcd(v'(1), v'(m)) where v' is an extension of v to a valuation on 
F and satisfies v'(f)= Nv( f )  for fEC(Y). Interpreted in terms of the tree this 
shows that the order of 2 divides the number of boundary components of any 
reduced surface associated to z. Thus Corollary 5.7 gives stronger information 
when this surface is not connected. 

5.9. Corollary 5.7 gives insight into the proof of the Smith Conjecture. In 
[CS1] Culler and Shalen proved a strong version of the Smith Conjecture: If 
S is an n-fold cyclic cover (n> 1) of a closed 3-manifold S branched over 
a non-trivial K then either 

(1) 2~ contains a non-separating 2-sphere or an incompressible surface of 
positive genus; or 

(2) 7ri(,~ ) admits a non-trivial representation in PSL2(C). 
In the case where S - K  is hyperbolic this was proved by considering 

a suitable curve X in the character variety of ~zl(Z-K), and the function 
ls0~ where ~1.1/is a meridian of K. Let )? denote the smooth projective model of 
X and I~ the extension of ls0~ to a function on )?. There always exists a point 
x~)? such that ira(x)= ~ + ~-1, where 2 is a primitive nth root of unity. If x is 
an ideal point then conclusion (1) holds; if x e X  then conclusion (2) holds. 

It would appear that this proof involves only rather special ideal points, 
namely those where some -f0, for 9e ~1 (OM), takes a value of the form ~ + ( - l  
with ~ a root of unity. Corollary 5.7 says that these ideal points are not so 
special. 

In the proof of the Cyclic Surgery Theorem [CGLS], an important r61e is 
played by ideal points where some /'0 takes the value 2 or - 2 .  These 
correspond to the cases where ( =  + 1 in the conclusion of Corollary 5.7. The 
statement of 5.7 leaves open the possibility that ~ is always + 1. It would be 
very interesting to give an example for which ~ #: _+ 1. 

5.10. We record here the conditions which are imposed upon the coefficients 
of AM by the conclusion of Corollary 5.7. Assume that 

AM(I, In)----~ bm.lmtrt ~. 
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Proposition. Suppose that the Newton polygon of AM has a side of slope - p / q  
and let E be the set of lattice points (m, n) which lie on this side. Then the 
polynomial 

O(z)= ~ bin.z" 
(m,n)EE 

is a product of cyclotomic polynomials. The orders of the roots of unity which 
occur as roots of OM divide the number of boundary components of any 
component of a reduced surface determined by the given side of the Newton 
polygon. 

6 Alexander Polynomials 

In the case where M is the complement of a knot K in a homology 3-sphere, 
the polynomial AK is related to the Alexander polynomial of K. This relation- 
ship will be described here. We will write AK(t) for the Alexander polynomial 
of K. Recall that the AK is a Laurent polynomial which is well defined up to 
multiplication by units. 

6.1. It was observed by de Rham [dR] that the Alexander polynomial of 
K can be regarded as the defining equation of a curve of representations of 
nl (M) into the affine group of the complex plane. In de Rham's formulation 
one considers meridian generators go, gl ,  .-., g, of the knot group and a rep- 
resentation ~ into the affine group which does not have abelian image. Assume 
that ~ has been normalized up to conjugation in the affine group so that the 
fixed point of ~(go) is 0. Thus a(go) is the affine transformation z ~ t z  for some 
complex number t. Since the meridians are all conjugate elements of z~ 1 (M), 
the affine transformations a(gi) all have the same derivative. In particular 
there exist complex numbers x~, . . . ,  x,  so that a(gi) is the affine transforma- 
tion z ~ t z  + x,. The condition that ~ have non-abelian image is equivalent to 
the condition that some x~ be non-zero. Setting the image of a relator in n~(M) 
equal to 1 gives rise to a homogeneous linear equation in xt  . . . . .  x,  whose 
coefficients are polynomials in t. An n-relator presentation of nl(M), e.g. 
a Wirtinger presentation, determines a homogeneous system of linear equa- 
tions over the polynomial ring C [t]. In [dR] it is shown that the determinant 
of this system is well-defined up to multiplication by powers of t and is the 
Alexander polynomial of K. Thus if ~ is any affine representation of nl(M) 
then there is a root t of the Alexander polynomial such that the derivative of 
p(g) equals t for any meridian g. Conversely, if ~ is a function sending the 
generators go, . . . ,  g, to the affine transformations given above, then ~ extends 
to a representation with non-abelian image if and only if the linear system has 
a non-zero solution. Therefore there exists a non-abetian affine representation 
of nl (M) for which the image of each meridian has derivative t if and only if 
Ax(t)=O. 
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Lemma. Let K be a knot in a homology 3-sphere Z,. Let M be the complement of 
K in 2. Then any representation ofTra (M) into PSL2(C) li]ts to a representation 
of ~zl(m) into SL2(C). 

Prot?f First assume that M is irreducible. To prove the lemma it suffices to 
show that any central extension of the cyclic group of order 2 by gt (M) is split. 
Since M is a K(~, 1)-space, this is equivalent to the statement H2M,  Z2)=0,  
which is immediate since M is a homology SL In the general case M is 
a connected sum of irreducible manifolds one of which is a homology S 1 while 
the others are homology 3-spheres. A representation of a free product lifts if 
and only if the restrictions to the factors lift. A PSL2(C) representation of the 
fundamental group of an irreducible summand of M lifts to SL2(C) again 
because its second cohomology group with Z2 coefficients vanishes. [] 

Proposition. Let M be the complement of a knot K in a homology 3-sphere. The 
following are equivalent. 

1) There exists a reducible representation of ~zl(M ) in SL2(C) which has 
non-abelian image and sends 93l to an element with eigenvalue m. 

2) m 2 is a root oJ AK. 

Proof This is immediate from the lemma and the preceding discussion. [] 

6.2. Proposition. Let M be the complement ~?['a knot K in a homology 3-sphere. 
Suppose that p is a reducible representation of  T~ 1 (M) such that the character of 
p lies on a component of X '  which contains the character of an irreducible 
representation. Then p(9)O has eigenvalue nt where m 2 is a root of AK. 

Proof We need only show that there is a representation with the same 
character as p which has non-abelian image. It is shown in [CS1] that if Y is 
a component of X which contains the character of an irreducible representa- 
tion then t I(Z ) is 3-dimensional for each z~Y. However, by [CGLS] the 
variety of abelian representations with a given character is 2-dimensional. 
Thus t I(Z~) contains a representation with non-abelian image. [] 

6.3. Recall that the longitude of a knot is an element of the second derived 
subgroup of the knot group. This means that if M is the complement of a knot 
in a homology 3-sphere then E is in the kernel of any reducible representation 
of ~z~(M) in SL2(C). In particular, if p is a reducible representation of ~I(M) 
such that zp~X'  then the corresponding point of DK will have l-coordinate 1. If 
Zo lies on a component  of X '  which contains the character of an irreducible 
representation then Proposit ion 6.2 shows that the y-coordinate of this point 
of DK is m where A 01l 2) = 0. We remarked in Section 2 that the component of 
DM which corresponds to a component of X '  consisting entirely of reducible 
characters is just the line I = 1. Thus we have the following. 
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Proposition. Let V be an irreducible component of D~ distinct from the line 1 = 1. 
The points of V which correspond to reducible characters have coordinates (1, t) 
where A (t 2) = 0. In this case the minimal polynomial oft is a common irreducible 
factor Of AK(1, m) and AK(m2). 

7 Computations 

The computation of AM can be reduced to classical elimination theory and is 
therefore, in principle, possible for arbitrary M. Suppose that we are given 
a representation p: rcl(M)-*SL2(C) which restricts to an upper triangular 
representation of the peripheral subgroup of ~zl(M). A diagonal representa- 
tion p' of 7~1(c?M) can be constructed as follows: 

t en %1 
It follows from the definition that p' is a point ofDM=C* • C* with coordin- 
ates (a(.~), a(~t)). Since any representation in R(M) is conjugate to a repres- 
entation which is upper triangular on the peripheral subgroup, there is a dense 
subset of DM which is produced by this construction. 

A finite presentation of ~zl(M) determines an explicit set of defining 
equations for the affine variety R(M). The affine coordinates of a representa- 
tion p are the matrix entries of the images of the generators. Each relator 
determines a matrix whose entries are polynomials in these coordinates; 
setting these matrices equal to the identity produces a set of defining equa- 
tions. Suppose that the elements ~2 and 9Jr are included in the generating set of 
7h(M). Let U be the subvariety of R(M) consisting of representations p with 
p02) and p0JJ~) upper triangular. Then DM is the closure of the planar 
projection of U defined by the two coordinates a(~2) and a(~t). 

These computations are especially tractable in the case of 2-bridge knots. 
In this case the usual presentation of 7~1(M) has the form 

(x, y: xw = wy), 

where x and y are meridians. We set 9Jl=x and ~2=x"ww* where w* is the 
word obtained by reversing w and n is chosen to make the exponent sum of 
~2 be 0. It suffices to compute a defining equation A'(l,m) for the curve 
D~u which is the union of the irreducible components of DM other than the line 
1 = 1. (This line contains the points of DM which are determined by reducible 
representations in U.) Suppose that p is an irreducible representation in U. 
After conjugation and after replacing y by y -  ~ if necessary we can assume that 

p ( x ) = I ; I  ml_l]  and P ( Y ) = I t  m-01] . 

Let p(m, t) be the upper right entry of the matrix p(xw)-p(wy), which has 
diagonal entries equal to 0. Let q(m, t) be the upper left entry ofp(x"ww*). The 
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curve D~ is the closure of the projection onto the (l, m) plane of the curve 
defined by p = 0  and q=l .  Thus A'(I, m) is obtained by deleting repeated 
factors from the resultant of mrp and m~(q-I) over t, where the exponents 
r and s are chosen to make mrp and mS(q-1) be polynomials. 

The appendix to this paper lists the polynomials AK for a number of knots, 
including some which are not 2-bridge knots. In order to make extraction of 
the Newton polygon as easy as possible, the polynomials are specified by 
giving matrices of coefficients. An m x n matrix Q represents the polynomial 

[1 m 2 ... m2"-Z]Q[1 1 . . .  l"-*] v. 

One computation which is not included in the appendix, because of the 
enormous size of the polynomial, is that of AK where K is the untwisted double 
of the trefoil. 

As an indication of the kind of topological information that can be 
obtained from these computations we mention that the results in the appendix 
provide evidence for the following conjecture, which implies that if a non- 
trivial knot has no essential closed surface in its complement then no non- 
trivial Dehn surgery on the knot produces a simply-connected manifold. 

Conjecture. For any non-trivial knot K the degree of Ar as a polynomial in m is 
more than twice its degree as a polynomial in I. 

To make the connection with Dehn surgery, note that the conjecture 
above implies that the degree of I t ,  as a function on the character variety of 
the complement M of K, is at least twice that of I~.  We know from [CGLS] 
that 

(i) there is a norm I' I on the vector space R 2 such that if p and q are 
integers then I(P, q)l is the degree of I v for 7=  ~vg~q; and 

(ii) if p/q-surgery on K produces a manifold with cyclic fundamental 
group then either p/q is the boundary slope of an incompressible surface in 
M or the vector (p, q) has minimal norm among non-zero vectors with integer 
coordinates. 

Suppose that p/q-surgery on K produces a simply-connected manifold. By 
the Cyclic Surgery Theorem of [CGLS], we know that p/q = + 1. If neither 
1/0 nor  p/q are boundary slopes for K then we would have I(1, 0)1 = [(1, + 1)1. 
By the triangle inequality this implies I(0, 1)J<2l(1, 0)1, contradicting the 
conjecture above. On the other hand, it is shown in [CGLS] that if M con- 
tains no essential closed surface then surgery along a boundary slope cannot 
produce a simply-connected manifold. 

In the general case the conjecture would reduce the question of whether 
non-trivial surgery can produce a simply connected manifold to the following 
question, which has the flavor of the results in the second chapter of [CGLS]. 
If a surgery on a boundary slope produces a simply-connected manifold, must 
every other surgery produce a non-simply-connected manifold? 
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Appendix 

31 

41 

51 
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(ol) 
0 0 
0 0 
1 0 

0 1 0 
0-1 0 

-i -2 -1 
0-I 0 
0 1 0 

0 0 
0 0 
0 0 
0 0 
1 0 

1 - 1  0 0 
0 2 0 0 
0 2 I 0 
0 0 - 1  0 
0 - 1  0 0 
0 1 2 0 
0 0 2 0  
0 0 - 1  1 

0 1 - 1  0 0 
0 - 1  3 0 0 
0 0 1 2 0 
0 0 - 3 - 3  0 

-1  - 3  - 6 - 3 - 1  
0 - 3 - 3  0 0 
0 2 1 0 0 
0 0 3 - 1  0 
0 0 - 1  1 0 
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0 0 0 0 1 0 
0 0 0 1 - 2  0 
0 0 0 - 3  1 - 1  
0 0 0 1 2 0 
0 0 0 5 - 5  0 
0 0 - 3  3 - 5  0 
0 0 8 -12  3 0 

6 2  0 0 3 - 1 3  0 0 
0 0 - 1 3  3 0 0 
0 3 - 1 2  8 0 0 
0 - 5  3 - 3  0 0 
0 - 5  5 0 0 0 
0 2 1 0 0 0 

- 1  1 - 3  0 0 0 
0 - 2  1 0 0 0 
0 1 0 0 0 0 

0 0 0 1 0 0 0 
0 0 1 - 5  1 0 0 
0 0 - 4  3 - 4  0 0 
0 0 4 9 4 0 0 
0 2 2 - 2  2 2 0 
0 - 5  - 6  - 2 1  - 6  - 5  0 
0 1 2 8 2 1 0 

6 3  1 10 17 34 17 10 1 
0 1 2 8 2 1 0 
0 - 5  - 6  - 2 1  - 6  - 5  0 
0 2 2 - 2  2 2 0 
0 0 4 9 4 0 0 
0 0 - 4  3 - 4  O 0 
0 0 1 - 5  1 0 0 
0 0 0 1 0 0 0 

75 
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1 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 1 
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0 0 0 1 - 2 1  
0 0 0 - 4 4 0  
0 0 - 2 2 3 0  
0 0 5 5 0 0  
0 1 1 6 0 0  
0 - 1 - 4 0 0 0  
0 0 0 - 4 - 1 0  
0 0 6 1 1 0  
0 0 5 5 0 0  
0 3 2 - 2 0 0  
0 4 - 4 0 0 0  
1 - 2 1 0 0 0  
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1 - I  0 0 0 0 0 
0 2 0 0 0 0 0 
0 - 1  0 0 0 0 0 
0 0 0 0 0 0 0 
0 5 3 0 0 0 0 
0 2 - 9  0 0 0 0 
0 - 3  2 0 0 0 0 
0 2 1 4  0 0 0 0  
0 0 2 - 3  0 0 0 
0 0  - 4  10 0 0 0  
0 0  4 - 3  0 0 0  
0 0 2 -12  0 0 0 
0 0  3 6 1 0 0 
0 0 - 3  24 - 3  0 0 
0 0  1 6 3 0 0  
0 0 0 -12  2 0 0 
0 0  0 - 3  4 0 0  
0 0  0 i0 - 4  0 0  
0 0 0 - 3  2 0 0 
0 0  0 0 1 4 2  0 
0 0  0 0 2 - 3 0  
0 0 0 0 - 9  2 0 
0 0 0 0 3 5 0 
0 0 0 0 0 0 0 
0 0  0 0 0 - I  0 
0 0 0 0 0 2 0 
0 0 0 0 0 - 1  I 
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1 -3 3 - I  0 0 
0 7 - I 0  3 0 0 
0 4 3 -3 0 0 
0 -6  21 -2 0 0 
0 1 -3 lO l 0 
0 3-17 6 -2 0 
0 -2  6 -17 3 0 
0 i i0 -3 l 0 
0 0 -2 21 -6  0 
0 0 - 3  3 4 0 
0 0 3 - I0  7 0 
0 0 - I  3 - 3  l 

75 

0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 -1  
0 0 0 7 
0 0 0 -12 
0 0 0 -2 
0 0 0 15 
0 0 0 15 
0 0 0 -46 
0 0 -3 -13 
0 0 14 47 
0 0 -14 -28 
0 0 -22-82 
0 0 28 15 
0 0 24 48 
0 0 -56 -6 
0 -3 -32 -23 
0 7 35 12 
0 -3 I0 -2 
0-13-17 0 
0 2 6 0 
0 5 - i  0 
0 - 4  0 0 

- I  I 0 0 

0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 -2 
0 0 12 

0 --23 
-1 --6 

6 48 
--11 15 

4 -82 
4 -28 
4 47 

- i i  --13 
12 --46 

-16 15 
-52 15 
-16 -2  

12 -12 
--ll  7 

4 --i 
4 0 
4 0 

- i i  0 
6 0 

--i 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 

0 1 - 1  
0 --4 0 

--1 5 0 
6 2 0 

-17 --13 0 
10 --3 0 
35 7 0 

--32 -3  0 
-56 0 0 

24 0 0 
28 0 0 

--22 0 0 
--14 0 0 

14 0 0 
-3 0 0 

0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
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76  

0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 - I  
0 0 0 7 
0 0 0 -19 
0 0 0 29 
0 0 0 - 1 0  
0 0 - 3  - 4 7  
0 0 16 48 
0 0 - 2 3  44 
0 0 - 8  - 8 3  
0 0 3 7 - 3 4  
0 -3 - i i  - I0  
0 9 -42 -62 
0 -5 -8  9 
0 -16 -9  80 
0 5 7 - I0  

- I  5 16 -34 
0 - 6  - 2  - 1  
0 2 - 1 1  16 
0 0 6 - 7  
0 0 - 1  1 

0 0 1 
0 0 -7  
0 -1  16 
0 g - I  
0 -32 -34 

-2  30 - i 0  
16 68 80 

-41 -98 9 
18 -164 -62 
78 212 - i 0  

-52 266 -34 
-158 -196 -83 

85 -377 44 
237 -24 48 

-24 237 -47 
-377 85 -lO 
- 1 9 8 - 1 5 8  29 

266 - 5 2  - 1 9  
212 78 7 

- 1 6 4  18 - 1  
- 9 8  - 4 1  0 

68 16 0 
30 - 2  0 

- 3 2  0 0 
9 0 0 

- 1  0 0 
0 0 0 
0 0 0 

- 1  0 0 
6 0 0 

- 1 1  2 0 
- 2  - 6  9 

16 5 - 1  
7 5 0 

- 9  - 1 6  0 
- 8  - 5  0 

- 4 2  9 0 
- 1 1  - 3  0 

37 0 0 
- 8  0 0 

- 2 3  0 0 
16 0 0 

- 3  0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
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0 0 0 1 - 1  0 0 0 
0 0 0 - 7  8 0 0 0 
0 0 0 15 - 1 9  1 0 0 
0 0 3 1 - 4  - 6  0 0 
0 0 - 1 8  - 3 0  59 11 0 0 
0 0 23 - 1  0 - 1  0 0 
0 3 27 41 - 1 2 3  - 8  - 2  0 
0 - 1 1 - 6 5  7 - 2  1 7 0 
0 4 - 1 9  - 2 9  130 - 2 8  - 7  0 
1 20 84 - 4 6  35 16 - 7  0 
0 - 7  16 35 - 4 6  84 20 1 
0 - 7  - 2 8  130 - 2 9  - 1 9  4 0 
0 7 1 - 2  7 - 6 5  - 1 1  0 
0 -2 -8 -123 41 27 3 0 
0 0 - I  0 - I  23 0 0 
0 0 II 59 -30 -18 0 0 
0 0 -6 -4  I 3 0 0 
0 0 I -19 15 0 0 0 
0 0 0 8 -7 0 0 0 
0 0 0 - I  I 0 0 0 

77 

81 

0 1 - 2  1 0 0 0 
0 - 1  6 - 5  0 0 0 
0 0 0 6 - 3  0 0 
0 0 - 4  5 10 0 0 
0 0 0 3 0 3 0 
0 0 0 - 1 0  - 1 2  - 5  0 

- 1  - 4  - 1 0  - 2 0  - 1 0  - 4  - 1  
0 - 5 - 1 2 - 1 0  0 0 0 
0 3 0 3 0 0 0 
0 0 I0 5 -4  0 0 
0 0 - 3  6 0 0 0 
0 0 0 -5  6 - i  0 
0 0 0 I -2  i 0 
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0-1  0 0 
0 2 0 0 
I - I  0 0 
0 0 - 2  0 
0 0 7 0 
0 -3 -8 0 
0 7 -4 - I  0 
0 9" 14 5 0 
0-5  - l  -8 0 
0 0 -28 I 0 
0 0 17 -2 0 
0 0 56 29 0 
0 0 -1  -17  5 
0 0 - 3 2  -77  -24  
0 0 10 33 26 

0 0 0 0 0 
0 0 0 0 0 
0 0 0 0 0 
0 0 0 0 0 
0 0 0 0 0 
0 0 0 0 0 

0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 

0 0 0 143 36 0 0 0 0 
0 0 0 29 -43 0 0 0 0 
0 0 0 -87 -108 0 0 0 0 
0 0 0 -24 47 - I0  0 0 0 
0 0 0 42 192 42 0 0 0 
0 0 0 -lO 47 -24 0 0 0 
0 0 0 0 -I08 -87 0 0 0 
0 0 0 0 -43 29 0 0 0 
0 0 0 0 36 143 0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 

0 26 33 10 0 0 
0 -24  -77  -32  0 0 
0 5 -17  - I  0 0 
0 0 29 56 0 0 
0 0 - 2  17 0 0 
0 0 I -28  0 0 
0 0 - 8  - I  - 5  0 
0 0 5 14 9 0 
0 0 - i  - 4  7 0 
0 0 0 -8  -3  0 
0 0 0 7 0 0 
0 0 0 - 2  0 0 
0 0 0 0 - i  I 
0 0 0 0 2 0 
0 0 0 0 - i  0 
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0 - 1  0 0 
0 3 - 1  0 
1 - 7  4 0 
0 8 -10  0 
0 3 12 0 0 
0 -12  0 1 0 
0 11 -15  - 6  0 
0 7 - 3  20 0 
0 - 5  40 -43  0 
0 0 -19  28 0 
0 0 -27  42 1 
0 0 68 -66  -11 
0 0 -10  -15  41 
0 0 -29  93 -66  
0 0 10 -16  23 
0 0 0 -37  61 

0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 

0 0 0 0 0 
0 0 0 0 0 
0 0 0 0 0 
0 0 0 0 0 
0 0 0 0 0 
0 0 0 0 0 
0 0 0 0 0 
0 0 0 0 0 
0 0 0 0 0 
0 0 0 0 0 
0 0 0 0 0 
0 0 0 0 0 

0 0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 

0 -96  70 10 0 0 0 
0 -32  95 -46  0 0 0 
0 76 -127 42 0 0 0 
0 -34  -64  71 0 0 0 

5 107 -104 0 0 0 
0 -61 37 0 0 0 
0 -23  16 -10  0 0 
0 66 -93  29 0 0 
0 -41  15 10 0 0 
0 11 66 -68  0 0 
0 - 1  -42  27 0 0 

85 

0 0 0 104 -107 - 5  
0 0 0 -71  64 34 0 
0 0 0 -42  127 -76  0 
0 0 0 46 -95  32 0 
0 0 0 -10  -70  96 0 
0 0 0 0 127 -127 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 0 
0 0 0 0 0 
0 0 0 0 0 
0 0 0 0 0 
0 0 0 0 0 
0 0 0 0 0 
0 0 0 0 0 
0 0 0 0 0 
0 0 0 0 0 
0 0 0 0 0 

0 -28  19 0 0 
0 43 -40  5 0 
0 -20  3 - 7  0 
0 6 15 - I 1  0 
0 -1  0 12 0 
0 0 - 1 2  - 3  0 
0 0 10 - 8  0 
0 0 - 4  7 - 1  
0 0 1 - 3  0 
0 0 0 1 0 
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0 0 0 1 - 1 0  
0 0 0 - 5 1 0  
0 0 - 2 0 - 2 0  
0 - 1 - 4 3 2 0  

- 1 - 5 0 - 3 1 0  
0 1 - 3 0 - 5 - 1  
0 2 3 - 4 - 1 0  
0 - 2 0 - 2 0 0  
0 1 - 5 0 0 0  
0 - 1 1 0 0 0  

91 

I 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 1 

92 

1 - 3  3 - i  0 0 0 0 
0 6 - 1 2  6 0 0 0 0 
0 4 5 - 1 2  3 0 0 0 
0 0 15 2 - 1 3  0 0 0 
0 0 10 5 9 - 3  0 0 
0 0 0 15 16 8 0 0 
0 0 0 20 0 0 1 0 
0 0 0 0 - 1 5 - 5 - 1  0 
0 - 1 - 5 - 1 5  0 0 0 0 
0 1 0 0 20 0 0 0 
0 0 8 16 15 0 0 0 
0 0 - 3  9 5 10 0 0 
0 0 0 - 1 3  2 15 0 0 
0 0 0 3 - 1 2  5 4 0 
0 0 0 0 6 -12  6 0 
0 0 0 0 - 1  3 - 3  1 
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pretzel(-2, 3, 7) 

- 1 0 0 0 0 0 0  
o o o 0 o o 0  
0 o o o o 0 0  
0 o o o o o o  
o o 0 0 o o 0  
0 o o o o o 0  
0 0 o o o 0 0  
o o o o o o 0  
o 1 o o 0 0 0  
0 - 2 0 0 0 0 0  
0 1 0 0 0 0 0  
0 0 0 0 0 0 0  
0 0 0 0 0 0 0  
0 0 0 0 0 0 0  
0 0 0 0 0 0 0  
0 0 0 0 0 0 0  
0 0 0 0 0 0 0  
0 0 0 0 0 0 0  
0 0 2 0 0 0 0  
0 0 1 O O 0 O  
0 0 0 0 0 0 0  
0 0 0 0 0 0 0  
0 0 0 0 0 0 0  
0 0 0 0 0 0 0  
0 0 0 0 0 0 0  
0 0 0 0 0 0 0  
0 0 0 0 0 0 0  
0 0 0 0 0 0 0  
0 0 0 0 0 0 0  
0 0 0 0 0 0 0  
0 0 0 0 0 0 0  
0 0 0 0 0 0 0  
0 0 0 0 0 0 0  
0 0 0 0 0 0 0  
0 0 0 0 0 0 0  
0 0 0 0 0 0 0  
0 0 0 0 - 1 0 0  
0 0 0 0 - 2 0 0  
0 0 0 0 0 0 0  
0 0 0 0 0 0 0  
0 0 0 0 0 0 0  
0 0 0 0 0 0 0  
0 0 0 0 0 0 0  
0 0 0 0 0 0 0  
0 0 0 0 0 0 0  
0 0 0 0 0 - 1 0  
0 0 0 0 0 2 0  
0 0 0 0 0 - 1 0  
0 0 0 0 0 0 0  
0 0 0 0 0 0 0  
0 0 0 0 0 0 0  
0 0 0 0 0 0 0  
0 0 0 0 0 0 0  
0 0 0 0 0 0 0  
0 0 0 0 0 0 0  
0 0 0 0 0 0 1  
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