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NÉEL WALLS IN LOW ANISOTROPY SYMMETRIC DOUBLE
LAYERS∗

CARLOS J. GARCIA-CERVERA†

Abstract. A new model for the study of one-dimensional walls in magnetic multilayers is
presented. We obtain the optimal scaling of this energy functional for low anisotropy double layers
with magnetic layers of equal thickness. We prove that the optimal scaling may be attained by
opposing Néel walls. We obtain the core length of the Néel wall and a detailed description of its
structure. We illustrate our findings numerically.
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1. Introduction. A magnetic multilayer consists of two or more magnetic films,
separated by a layer of nonmagnetic material (see Figure 1). Each layer may be of
a different thickness. Multilayers seem to have good permanent magnet properties,
in particular a high coercive field and approximately rectangular hysteresis loop [17].
For that reason multilayers are an integral part of magnetic memories (MRAMs) and
have been one of the most important applications of ferromagnetic thin films in the
past few years.

The magnetization distribution in a ferromagnetic material is described by the
micromagnetics model, introduced by Landau and Lifshitz [12]. In nondimensional
variables, the Landau–Lifshitz energy functional for a sample occupying a volume V
is

F [m] =
q

2

∫
V

Φ(m) dx +
1

2

∫
V

|∇m|2 dx +
1

2

∫
R3

|∇η|2 dx.(1.1)
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Fig. 1. One-dimensional wall setting in a multilayer.

∗Received by the editors November 18, 2003; accepted for publication (in revised form) January
3, 2005; published electronically July 26, 2005.

http://www.siam.org/journals/siap/65-5/43776.html
†Mathematics Department, University of California, Santa Barbara, CA 93106 (cgarcia@math.

ucsb.edu, http://www.math.ucsb.edu/∼cgarcia).

1726
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In (1.1), |m| = 1 in V , and m = 0 outside V . The three terms in (1.1) are anisotropy,
exchange, and stray field energy, respectively. The parameter q is the quality factor,
defined as q = Ku/(μ0M

2
s ), where Ku is the crystalline anisotropy constant, Ms

is the saturation magnetization, and μ0 is the permeability of vacuum (μ0 = 4π ×
10−7N/A2). In (1.1), lengths are measured in units of the exchange length, l =√
Cex/(μ0M2

s ), where Cex is the exchange constant. The energy is measured in units

of e =
√
μ0M2

sCex.
The stray field is hs = −∇η, where η is obtained by solving the equation

div (−∇η + m) = 0 in R
3(1.2)

in the sense of distributions. The solution has the explicit form

η = ∇N ∗ m,(1.3)

where N(x) = − 1
4π

1
|x| is the Newtonian potential.

For physical parameters typical of Permalloy (Cex = 1.3 × 10−11J/m, Ku =
5 × 102J/m3, Ms = 8 × 105A/m), the quality factor is q ≈ 6.21 × 10−3. Thus it is
physically relevant to consider the low anisotropy limit q → 0, which is the situation
considered in this article.

Functional (1.1) has been the focus of recent attention in the mathematical com-
munity, and the energy landscape for a single magnetic layer is now fairly well under-
stood [9, 4, 5, 6, 8, 7, 18].

Due to the nonlocal nature of the magnetostatic interactions, the behavior of the
magnetization distribution in double layers is very different from the single layer case.
The magnetization patterns correspond to local minimizers of the Landau–Lifshitz
energy. In a double layer, a pattern that would otherwise be energetically unfavorable
for a single layer can be permitted by producing a pattern in the other layer which
will cause the necessary field cancellations. With this compensating mechanism, new
phenomena occur that are intrinsic to double layers.

The domain structure in magnetic films can be rather complicated [10, 6, 18].
In order to understand the structure in double films, we start by analyzing one-
dimensional profiles, which will be the building blocks of more complicated structures.
We are interested in both the structure and the energy of the minimizers. We are
mainly interested in the scaling of the energy in terms of q as q → 0, since all other
parameters are kept fixed. To determine the energy of the minimizers, we consider an
appropriate function in the admissible class, which provides us with an upper bound
for the energy in terms of q. Subsequently we find a lower bound for the energy with
the same scaling in q. The upper bound and the matching lower bound ensure that
the energy is optimal, at least in terms of scaling.

In this article, we focus on the study of Néel walls in multilayers formed by two
layers of equal thickness. Throughout this article we will refer to these multilayers
as symmetric double layers. A description of the Néel wall in a single ferromagnetic
layer was presented in [7], where the following energy functional, due originally to
Aharoni [1], was analyzed:

FA
q,δ[m] =

q

2

∫
R

(
m2

1 + m2
2

)
+

1

2

∫
R

|m′|2 +
1

2

∫
R

(
m2

1 −m1 (Γδ ∗m1)
)

+
1

2

∫
R

m2 (Γδ ∗m2).(1.4)
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The set of admissible functions is

A =

{
m = (m1,m2,m3)|m1,m2 ∈ H1(R), m′

3 ∈ L2(R), |m| = 1 a.e.,(1.5)

m → ±e3 as x → ±∞
}
.

In (1.4), δ represents the (rescaled) thickness of the sample, and

Γδ(x) =
1

4πδ
log

(
1 +

4δ2

x2

)
.(1.6)

Functional (1.4) is derived directly from (1.1) by considering magnetization profiles
that depend only on the x-variable. Functional (1.4) provides an accurate description
of the minimizers for thin films (δ � 1), since the dependence on the thickness variable
becomes negligible as δ → 0 [9, 6, 8, 7, 18, 11, 3]. For thicker films, lower energy can
be achieved with higher-dimensional structures [10, 18, 16].

For the study of Néel walls, we consider magnetization profiles such that m2 = 0.
The optimal energy scaling for a Néel wall in a single layer was obtained in [7]. In
particular, it was proved that for a given δ > 0 there exist positive constants c0 and
C0 such that

c0

log 1
q

≤ inf
m∈A,m2=0

FA
q,δ[m] ≤ C0

log 1
q

(1.7)

as q → 0. Moreover, it was shown that the Néel wall has a long logarithmic tail,
which extends the stray field interactions to great distances.

In double layers the structure of Néel walls can be very different [14, 19, 20]. In
this article we prove that in low anisotropy symmetric double layers, the logarithmic
tail of the Néel wall disappears. The stray field becomes an exchange-type energy,
and the wall becomes more localized and similar to the Landau–Lifshitz wall [12].

Considering a double layer as depicted in Figure 1, we have derived the following
one-dimensional model for the study of magnetic walls in double layers:

Gq,α,δ1,δ2 [m1,m2] = Fq,δ1 [m1] +
δ2
δ1

Fq,δ2 [m2](1.8)

+
δ2
2

∫
R

u1 (u2 ∗ Θα,δ1,δ2) − v1 (v2 ∗ Θα,δ1,δ2) dx

+
δ2
2

∫
R

v1 (u2 ∗ Ψα,δ1,δ2) − u1 (v2 ∗ Ψα,δ1,δ2) dx,

where m1 = (u1, v1, w1) and m2 = (u2, v2, w2) represent the magnetization inside
each layer, Fq,δ1 and Fq,δ2 are as in (1.4), and

Θα,δ1,δ2(x) =
1

2δ1δ2π

(
log

(
x2 + (2α + δ1)

2

x2 + (2α + δ1 + δ2)2

)
− log

(
x2 + 4α2

x2 + (2α + δ2)2

))
,

Ψα,δ1,δ2(x) =
1

δ1δ2π

(
arctan

(
2α + δ1
x− s

)
− arctan

(
2α

x− s

)
− arctan

(
2α + δ1 + δ2

x− s

)
+ arctan

(
2α + δ2
x− s

))
.(1.9)
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We have not been able to find this model in the literature, and therefore a complete
derivation of this model is given in Appendix A. For the study of Néel walls, we
assume v1 = v2 = 0. For a symmetric double layer, δ1 = δ2 = δ.

This article is organized as follows. In section 2, we obtain the optimal energy
scaling for Néel walls in symmetric double layers. In particular, we show that for fixed
δ > 0 and α > 0 there exists a constant C0 > 0 such that

4
√
q ≤ inf

m∈A
Gq,α,δ,δ[m] ≤ C0

√
q.(1.10)

The upper bound is obtained considering Néel walls in the double layer.
A more detailed analysis is carried out in section 3, where we prove that for a

family of minimizers of the Néel wall functional (2.7), {mq}{q>0},

lim
q→0

1
√
q
Gq,α,δ,δ[mq] = min

m∈A,m2=0

∫
R

m2
1 dx +

δ (δ + 3α)

3

∫
R

(m′
1)

2 dx +

∫
R

|m′|2 dx.

(1.11)

We also prove that, given a family of minimizers {mq}{q>0}, we can extract a sequence
(not relabeled) such that the rescaled family {mq(x/

√
q)}{q>0} converges strongly in

H1(R). We interpret this in the Γ-limit sense of an appropriately scaled family of
functionals. The limiting profile is studied in section 4 using a formal asymptotic
expansion.

In section 5 we illustrate all of our findings numerically. To this end, we have
implemented a modified Newton method for energy minimization. Finally, a detailed
derivation of the model used in this article is presented in Appendix A.

2. Optimal scaling: Opposing Néel walls. Since the stray field energy is
nonnegative, the Landau–Lifshitz wall profile always provides us with a lower bound
for the energy:

Gq,α,δ[m1,m2] ≥ min
m1,m2∈A

F̃q[m1,m2],(2.1)

where

F̃q[m1,m2] =
1

2

2∑
j=1

(
q

∫
R

(u2
j + v2

j ) dx +

∫
R

|m′
j |2 dx

)
.(2.2)

Since m1 and m2 are decoupled in (2.2), the minimum will be achieved for m1 =
m2 = (u, v, w). Moreover, we can assume that either u = 0 or v = 0. Otherwise,
following Lemma 4 in [7], consider m̃ = (

√
u2 + v2, 0, w). Then

F̃q[m̃, m̃] = q

∫
R

(u2 + v2) +

∫
R

(
(uu′ + vv′)2

u2 + v2
+ (w′)2

)
= q

∫
R

(u2 + v2) +

∫
R

|m′|2 −
∫

R

(uv′ − vu′)2

u2 + v2
≤ F̃q[m,m].(2.3)

Therefore, a lower bound for (1.8) in a symmetric double layer is obtained by mini-
mizing

min
m∈A,m2=0

F̃q[m,m].(2.4)
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This is the minimization problem studied by Landau and Lifshitz in [12]. The mini-
mizer is

m = (sech (
√
qx), 0, tanh(

√
qx)),(2.5)

and the minimum energy is

q

∫
R

u2 dx +

∫
R

|m′|2 dx = 4
√
q.(2.6)

In a single layer, this is not optimal for a Néel wall, as proved in [7]. However, we can
prove that, due to stray field cancellations, this energy scaling is indeed optimal in a
symmetric double layer.

To obtain a matching upper bound for the energy, we consider Néel walls in
symmetric double layers and study the functional

Gq,α,δ[m1,m2] =
q

2

∫
R

u2
1 +

1

2

∫
R

|m′
1|2 +

1

2

∫
R

(
u2

1 − u1 (Γδ ∗ u1)
)

+
q

2

∫
R

u2
2(2.7)

+
1

2

∫
R

|m′
2|2 +

1

2

∫
R

(
u2

2 − u2 (Γδ ∗ u2)
)

+
δ

2

∫
R

u1 (u2 ∗ Θα,δ).

In (2.13), we have renamed the energy functional Gq,α,δ ≡ Gq,α,δ,δ, and the convo-
lution kernel Θα,δ ≡ Θα,δ,δ, in view of definitions (1.8) and (1.9), respectively. In
Fourier space,

(2.8)

Gq,α,δ[m1,m2] =
q

2

∫
R

|û1|2 dξ +
1

2

∫
R

4π2ξ2|m̂1|2 dξ +
1

2

∫
R

|û1|2
(
1 − Γ̂δ(ξ)

)
dξ

+
q

2

∫
R

|û2|2 dξ+
1

2

∫
R

4π2ξ2|m̂2|2 dξ+
1

2

∫
R

|û2|2
(
1 − Γ̂δ(ξ)

)
dξ+

δ

2

∫

R

û1û2Θ̂a,δ(ξ) dξ.

In the following lemma, we prove that in a symmetric double layer the minimum of
(2.7) is achieved by opposing Néel walls; i.e., u1 = −u2.

Lemma 2.1. Consider m1,m2 ∈ A, where m1 = (u1, 0, w1) and m2 = (u2, 0, w2).
Define m̃1 = (−u1, 0, w1) and m̃2 = (−u2, 0, w2). Then, either

Gq,α,δ[m1, m̃1] ≤ Gq,α,δ[m1,m2](2.9)

or

Gq,α,δ[m2, m̃2] ≤ Gq,α,δ[m1,m2].(2.10)

Proof. We can rewrite the Fourier representation (2.8) as

Gq,α,δ[m1,m2] =
q

2

∫
R

|û1|2 dξ +
1

2

∫
R

4π2ξ2|m̂1|2 dξ

+
1

2

∫
R

|û1|2
(

1 − Γ̂δ(ξ) −
δ

2
Θ̂α,δ(ξ)

)
dξ +

q

2

∫
R

|û2|2 dξ +
1

2

∫
R

4π2ξ2|m̂2|2 dξ

+
1

2

∫
R

|û2|2
(

1 − Γ̂δ(ξ) −
δ

2
Θ̂α,δ(ξ)

)
dξ +

δ

4

∫
R

|û1 + û2|2Θ̂a,δ(ξ) dξ.(2.11)
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Note that ∫
R

|û2|2
(

1 − Γ̂δ(ξ) −
δ

2
Θ̂α,δ(ξ)

)
dξ(2.12)

is the stray field energy that corresponds to a symmetric double layer where u1 =
−u2, and therefore it is nonnegative. Thus, given (m1,m2), since all the terms in
(2.11) are nonnegative, we can always lower the total energy by selecting (m1, m̃1) or
(m2, m̃2).

In view of this lemma, we need to consider only opposing Néel walls. Thus, we
need to study functional

G̃q,α,δ[m] = q

∫
R

u2 dx +

∫
R

|m′|2 dx +

∫
R

u2 dx−
∫

R

u (Γδ ∗ u) dx(2.13)

−δ

2

∫
R

u (u ∗ Θα,δ) dx,

which can be written in Fourier space as

(2.14)

G̃q,α,δ[m] = q

∫
R

|û|2 dξ +

∫
R

4π2ξ2|m̂|2 dξ +

∫
R

|û|2
(

1 − Γ̂δ(ξ) −
δ

2
Θ̂α,δ(ξ)

)
dξ.

The lower semicontinuity and existence of minimizers of functional (2.13) follow from
Lemmas 1, 2, and 3 in [7]. The main difficulty in establishing the existence of mini-
mizers lies in the fact that functional (2.13) is translation invariant. This problem is
resolved in [7] by considering a translation of m such that m(0) = (1, 0, 0). The result
then follows from the Sobolev embedding and the Rellich compactness theorem [21].

As a consequence of Lemma 2.1,

inf
m1,m2∈A

Gq,α,δ[m1,m2] = inf
m∈A

G̃q,α,δ[m].(2.15)

Thus, the existence of minimizers for functional (2.7) is established. To simplify
notation, in what follows we will drop the tilde from functional (2.13).

The matching upper bound that we need can be obtained by considering the test
function m = (sech (

√
qx), 0, tanh(

√
qx)), which is the Landau–Lifshitz wall. The

Fourier transform of u(x) = sech (
√
qx) can be obtained by residues [2]:

û(ξ) =
π
√
q
sech

(
π2ξ
√
q

)
.(2.16)

The stray field energy of this profile is

Es =

∫
R

û2

(
1 − 1 − e−2πδ|ξ|

2πδ|ξ| − 1

2
e−4πa|ξ| (1 − e−2πδ|ξ|)2

2πδ|ξ|

)
dξ(2.17)

=
π2

q

∫
R

sech2

(
π2ξ
√
q

)(
1 − 1 − e−2πδ|ξ|

2πδ|ξ| − 1

2
e−4πα|ξ| (1 − e−2πδ|ξ|)2

2πδ|ξ|

)
dξ

=
1
√
q

∫
R

sech2(ξ)

(
1−1 − e−2δ|ξ|√q/π

2δ|ξ|√q/π
− 1

2
e−4α|ξ|√q/π (1 − e−2δ|ξ|√q/π)2

2δ|ξ|√q/π

)
dξ

=
4δ
√
q

π2

(
δ

3
+ α

)∫
R

|ξ|2sech2(ξ) dξ + O(q) =
2δ
√
q

3

(
δ

3
+ α

)
+ O(q).
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Therefore ∃q0 > 0 such that

Es ≤
4δ
√
q

3

(
δ

3
+ α

)
∀q ≤ q0.(2.18)

The total energy is therefore

G̃q,α,δ[m] =

{
4 +

2δ

3

(
δ

3
+ α

)}
√
q + O(q) ≤ 4

{
1 +

δ

3

(
δ

3
+ α

)}
√
q ∀q ≤ q0.

(2.19)

We collect all this in the following theorem.
Theorem 2.2. Consider the one-dimensional wall energy functional for a sym-

metric double layer (1.8). Given α > 0 and δ > 0 fixed, ∃ q0 > 0 such that

4
√
q ≤ min

m1,m2∈A
Gq,α,δ,δ[m1,m2] ≤ 4

{
1 +

δ

3

(
δ

3
+ α

)}
√
q ∀q ≤ q0.(2.20)

An estimate of the value of q0 is presented in Appendix B.

3. Néel walls: Limiting behavior. In this section we study the structure of
Néel walls in symmetric double layers and obtain the limiting behavior of any sequence
of minimizers of the Néel wall functional (2.13). This is the content of the following
theorem.

Theorem 3.1. Given α > 0 and δ > 0, consider {mq}{q>0} ⊂ AN = {m =
(m1, 0,m3) ∈ A} such that

Gq,α,δ[mq] ≤ C
√
q,(3.1)

and define m̃q(x) = mq(
x√
q ). There exists a subsequence of {mq}{q>0} (not relabeled)

such that the following two statements hold:
(i)

lim
q→0

1
√
q
Gq,α,δ[mq] = min

m∈AN

Fα,δ[m],(3.2)

where

Fα,δ[m] =

∫
R

m2
1 dx +

(
1 + δ

(
1

3
δ + α

))∫
R

(m′
1)

2 dx +

∫
R

(m′
3)

2 dx.(3.3)

(ii) The subsequence converges strongly in AN to n ∈ AN such that

Fα,δ[n] = min
m∈AN

Fα,δ[m].(3.4)

Proof. Given the sequence of minimizers, consider the new rescaled sequence
m̃q(x) = mq(

x√
q ). This sequence is bounded in the following sense:∫

R

ũ2
q(x) dx +

∫
R

|m̃′
q|2 dx =

√
q

∫
R

u2
q(x) dx +

1
√
q

∫
R

|m′
q|2 dx(3.5)

≤ 1
√
q
Gq,α,δ[mq] ≤ C.
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Thus there is a subsequence (not relabeled) that converges weakly in AN to n ∈ AN .
Consider now nq(x) = n(

√
qx). Then,

n̂q(ξ) =
1
√
q
n̂

(
ξ
√
q

)
(3.6)

and

(3.7) Gq,α,δ[nq] =
√
q

∫
R

u2(ξ) dξ +
√
q

∫
R

4π2ξ2|n̂(ξ)|2 dξ

+
1
√
q

∫
R

û2(ξ)

(
1 − 1 − e−2πδ|ξ|√q

2πδ|ξ|√q
− 1

2
e−4πa|ξ|√q (1 − e−2πδ|ξ|√q)2

2πδ|ξ|√q

)
dξ.

We need to take the limit of the stray field energy. Since α
√
q � 1 and δ

√
q � 1,

lim
q→0

1

q

(
1 − 1 − e−2πδ|ξ|√q

2πδ|ξ|√q
− 1

2
e−4πa|ξ|√q (1 − e−2πδ|ξ|√q)2

2πδ|ξ|√q

)
=

(
1

3
δ + a

)
4π2|ξ|2δ.

(3.8)

The stray field energy can be written as

1
√
q
Es = δ

(
1

3
δ + a

)∫
R

4π2ξ2û2(ξ)ϕ̂(
√
qξ) dξ,(3.9)

where

ϕ̂(ξ) =
1(

1
3δ + a

) 1

4π2ξ2

(
1 − 1 − e−2πδ|ξ|

2πδ|ξ| − 1

2
e−4πa|ξ| (1 − e−2πδ|ξ|)2

2πδ|ξ|

)
.(3.10)

Note that ϕ̂(0) = 1 and ϕ̂ ∈ L1(R) ∩ L∞(R), so ϕ ∈ L1(R) ∩ L2(R). Therefore, the
stray field can be written, in real space, as

1
√
q
Es = δ

(
1

3
δ + a

)∫
R

u
(
u ∗ ϕ√

q

)
dx,(3.11)

where ϕ√
q(x) = 1√

qφ( x√
q ), which is an approximation to the identity. Therefore we

can take the limit in (3.7), and we obtain

lim
q→0

1
√
q
Gq,α,δ[nq] =

∫
R

û2(ξ) dξ +

∫
R

4π2ξ2

(
1 + δ

(
1

3
δ + a

))
|û(ξ)|2 dξ(3.12)

+
1

2

∫
R

4π2ξ2|ŵ(ξ)|2 dξ =

∫
R

u2 dx +

(
1 + δ

(
1

3
δ + a

))∫
R

(u′)2 dx +

∫
R

(w′)2 dx

= Fα,δ[n].

Since mq was a minimizer,

1
√
q
Gq,α,δ[mq] ≤

1
√
q
Gq,α,δ[nq],(3.13)

and thus

lim sup
q→0

1
√
q
Gq,α,δ[mq] ≤ lim

q→0

1
√
q
Gq,α,δ[nq] = Fα,δ[n].(3.14)



1734 CARLOS J. GARCIA-CERVERA

Observe now that

1
√
q
Gq,α,δ[mq] = Hq,α,δ[m̃q],(3.15)

where

Hq,α,δ[m] =

∫
R

u2 dx +

∫
R

|m′|2 dx + δ

(
1

3
δ + α

)∫
R

u
(
u ∗ ϕ√

q

)
dx.(3.16)

Since m̃q converges to n weakly in AN , by the lower semicontinuity of the functional,

Fα,δ[n] ≤ lim inf
q→0

1
√
q
Gq,α,δ[mq].(3.17)

Combining (3.14) and (3.17), we conclude that

lim
q→0

1
√
q
Gq,α,δ[mq] = Fα,δ[n].(3.18)

It is easy to see that n must be a minimizer of Fα,δ: Given any m0 ∈ A, consider
ñq(x) = m0

(√
qx

)
. Then

Fα,δ[m0] = lim
q→0

1
√
q
Gq,α,δ[ñq] ≥ lim

q→0

1
√
q
Gq,α,δ[mq] = Fα,δ[n].(3.19)

This proves (i). Since the sequence nq converges weakly to n and the energies converge,
the limit is strong, which proves (ii).

From the previous proof, it is easy to see that Hq,α,δ → Fα,δ in AN as q → 0, in
the Γ-limit sense [13].

4. Asymptotic analysis of the limiting profile. We perform a formal asymp-
totic expansion of the minimizers of functional Fα,δ, defined in (3.3), for δ � 1. Since
|m| = 1, it is customary to write m = (cos θ, 0, sin θ), where θ → ±π

2 as x → ±∞.
We consider the functional

Fβ [m] =

∫
R

m2
1 dx + (1 + β)

∫
R

(m′
1)

2 dx +

∫
R

(m′
3)

2 dx,(4.1)

where β = δ(3α + δ)/3 � 1. We do the change of variables to θ, and get

Fβ [θ] =

∫
R

cos2 θ dx +

∫
R

(θ′)2 dx + β

∫
R

(θ′)2 sin2 θ dx.(4.2)

The Euler–Lagrange equation is

(1 + β sin2 θ)θ′′ + (1 + β(θ′)2) sin θ cos θ = 0.(4.3)

For β = 0, we get

θ′′ + sin θ cos θ = 0,(4.4)

which has as solution cos θ = tanhx. This is the Landau–Lifshitz profile [12]. The
asymptotic analysis can be carried out more easily if we consider profiles of the form
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m = (sechϕ, 0, tanhϕ) instead, and write the equation for ϕ. Since cos θ = sechϕ
and sin θ = tanhϕ, we get θ′ = ϕ′sechϕ and

θ′′ = sechϕ
(
ϕ′′ − (ϕ′)2 tanhϕ

)
.(4.5)

The equation becomes then(
1 + β tanh2 ϕ

) (
ϕ′′ − (ϕ′)2 tanhϕ

)
+
(
1 + β(ϕ′)2 sech2 ϕ

)
tanhϕ = 0.(4.6)

Assume that ϕ ∼ ϕ0 + βϕ1 + O(β2). Then,(
1 + β tanh2(ϕ0 + βϕ1)

) (
ϕ′′

0 + βϕ′′
1 − (ϕ′

0 + βϕ′
1)

2 tanh(ϕ0 + βϕ1)
)

(4.7)

+
(
1 + β(ϕ′

0 + βϕ′
1)

2 sech2(ϕ0 + βϕ1)
)
tanh(ϕ0 + βϕ1) = 0.

Collecting terms, we get

ϕ′′
0 + (1 − (ϕ′

0)
2) tanhϕ0 = 0.(4.8)

The solution is ϕ0 = x. The next term in (4.7) is

ϕ′′
1 − 2ϕ′

1ϕ
′
0 tanhϕ0 − (ϕ′

0)
2 sech2 ϕ0ϕ1 + tanh2(ϕ0)

(
ϕ′′

0 − (ϕ′
0)

2 tanhϕ0

)
(4.9)

+(ϕ′
0)

2 sech2 ϕ0 tanhϕ0 + sech2 ϕ0ϕ1 = 0.

Since ϕ0 = x and ϕ′
0 = 1, the equation simplifies to

ϕ′′
1 − 2ϕ′

1 tanhx− tanh3 x + sech2 x tanhx = 0.(4.10)

Then (
ϕ′

1

cosh2 x

)′
=

ϕ′′
1 − 2ϕ′

1 tanhx

cosh2 x
= sech2 x tanh3 x− sech4 x tanhx.(4.11)

We can integrate the right-hand side:∫
sech2 x tanh3 x dx =

∫
sinhx

(
cosh2 x− 1

)
cosh5 x

dx =
1

4

1

cosh4 x
− 1

2

1

cosh2 x
,∫

sech4 x tanhx dx =

∫
sinhx

cosh5 x
dx = −1

4

1

cosh4 x
.(4.12)

Therefore,

ϕ′
1 = C cosh2 x +

1

2

1

cosh2 x
− 1

2
(4.13)

and, integrating,

ϕ1 = C
sinh 2x + 2x

4
+

1

2
tanhx− x

2
+ D.(4.14)

We want ϕ to be odd, so D = 0. Unless C = 0, ϕ1 will dominate over ϕ0, so we take
C = 0, and finally,

ϕ1 =
1

2
tanhx− x

2
.(4.15)

Therefore,

m =

(
sech

(
x +

β

2
(tanhx− x)

)
, 0, tanh

(
x +

β

2
(tanhx− x)

))
+ O(β2).(4.16)
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5. Numerical experiments. We have implemented a truncated Newton method
with an inexact line search for the minimization of

Gq,α,δ[m1,m2] =
1

2
q

∫
R

u2
1 dx +

1

2

∫
R

|m′
1|2 dx +

1

2

∫
R

u2
1 dx− 1

2

∫
R

u1 (Γδ ∗ u1) dx

+
1

2
q

∫
R

u2
2 dx +

1

2

∫
R

|m′
2|2 dx +

1

2

∫
R

u2
2 dx− 1

2

∫
R

u2 (Γδ ∗ u2) dx

− δ

2

∫
R

u1 (u2 ∗ Θα,δ) dx.(5.1)

The method is well known, and the details can be found in the literature [15], so we
will simply describe some of the details particular to our implementation.

We consider a finite interval I = [−M,M ], and restrict the functional to I. We
have performed simulations in several intervals of increasing size until no change
was found in the characteristics of the wall. For the results presented here we used
I = [−200, 200]. We define the grid points xi = −M + iΔx, for i = 0, 1, . . . , n + 1,
where Δx = 2M

n+1 . The magnetization is approximated by a linear interpolant in the
subinterval Ii = [xi, xi+1], for i = 0, 1, . . . , n. We impose the boundary conditions
u0 = un+1 = 0. For the simulations presented here we fixed the parameters δ = 1
and a = 10−1. The parameter q varied in the range q ∈ [10−3, 1].

To evaluate the stray field, we need to approximate convolution integrals of the
form

v(xj) =

∫ M

−M

u(s)K(xj − s) ds.(5.2)

Substituting the piecewise linear interpolant,

v(xj) ≈
n∑

i=0

∫ xi+1

xi

(
ui +

ui+1 − ui

Δx
(s− xi)

)
K(xj − s) ds.(5.3)

Grouping terms,

vj =

n∑
i=1

ui

[ ∫ xi+1

xi

(
1 − (s− xi)

Δx

)
K(xj − s) ds +

∫ xi

xi−1

(s− xi−1)

Δx
K(xj − s) ds

]
.

(5.4)

This can be written in the form

vj =

n∑
i=1

Kj−iui,(5.5)

where

Kλ = Δx

∫ 1

0

(1 − t)K (Δx(λ− t)) + tK (Δx(λ + 1 − t)) dt.(5.6)

The sum (5.5) has the shape of a discrete convolution, and it can therefore be efficiently
evaluated using the fast Fourier transform (FFT) in O(n log n) operations.
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The unit length constraint in the magnetization is taken into account by consid-
ering a line search on the function

h(ε) = Gq,α,δ

[
m1 + εp1

|m1 + εp1|
,

m2 + εp2

|m2 + εp2|

]
,(5.7)

where (p1,p2) is a descent direction, i.e., h′(0) < 0.
In Figure 2 we show the profiles of several minimizers as a function of q. All the

numerically computed minimizers were opposed Néel walls, consistent with Lemma
2.1. These same profiles are presented in Figure 3, but this time the abscissa is
rescaled by

√
q. As can be seen, all the plots collapse into one, illustrating that the

core length is 1/
√
q, as proved in section 4. This limiting profile is plotted in Figure 4,

where it is compared to the profile of the minimizer of (5.1) computed numerically.
The profiles are almost indistinguishable.

The computed values for the minimum energy as a function of q are presented
in Table 1. From the results in the third column it is clear that the energy scales
like

√
q. We plot the results in a logarithmic scale in Figure 5. The energy of the

asymptotic approximation (4.16) was computed to machine precision using adaptive
Gaussian quadrature. The computed energy coincides to a remarkable degree with
the energy obtained using the asymptotic analysis described in the previous section.
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Fig. 2. Néel wall profiles for several values of q.

6. Conclusion. We have presented a new model for the analysis of one-
dimensional walls in double layers. Using this new model, we have studied the struc-
ture of Néel walls and obtained the core length of the wall, the optimal energy scaling,
and the structure of the minimizers. The main observation is that in a symmetric dou-
ble layer the Néel wall no longer has a long logarithmic tail. The wall profile becomes
local and similar to the classic Landau–Lifshitz wall. Thus, the range of nonlocal in-
teractions is considerably reduced. We have implemented a truncated Newton method
for energy minimization, and illustrated all the results numerically. In our simulations
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Fig. 3. Néel wall profiles for several values of q. The abscissa has been rescaled to illustrate
that the core length scales like

√
q.
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Fig. 4. Comparison between the computed limiting profile and the asymptotic approximation
obtained in section 2.

we have managed to accurately capture the energy scaling, the core length, and the
structure of the wall.

Appendix A. One-dimensional model for double layers. In this section
we derive the model used in this article, starting from the Landau–Lifshitz energy
functional.
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Table 1

Minimum energy as a function of q. The energy is computed with the energy minimization
algorithm described in section 5, and the energy scaling in q is obtained. We fixed the parameters
δ = 1 and a = 10−1.

Energy scaling as q → 0

n qn = 2−n En log
En−1

En
/log 2

0 1.000000E+00 0.413832547E+01
1 5.000000E-01 0.294556828E+01 0.490501
2 2.500000E-01 0.209484869E+01 0.491699
3 1.250000E-01 0.148838645E+01 0.493096
4 6.250000E-02 0.105647543E+01 0.494489
5 3.125000E-02 0.749249198E+00 0.495741
6 1.562500E-02 0.530979818E+00 0.496788
7 7.812500E-03 0.376078916E+00 0.497621
8 3.906250E-03 0.266248579E+00 0.498261
9 1.953125E-04 0.188430720E+00 0.498739
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Fig. 5. Comparison between the numerically computed energy, the optimal energy obtained in
section 2, and the energy of the Landau–Lifshitz wall. The asymptotics give us an upper bound,
while the Landau–Lifshitz wall provides us with a lower bound.

We consider a double layer, infinite in both the x and y directions, and solve
the magnetostatic equation in two dimensions. The stray field is hs(x, z) = −∇η,
where

η = ∇N ∗ m(A.1)

is the magnetostatic potential, and N(x) = 1
2π log(|x|), x = (x, z) ∈ R

2.

For the study on one-dimensional walls, we assume that m depends only on x.
The double layer will be identified with the domain Ω = R×[−a−D1,−a]∪[a, a+D2].
In the bottom layer, we have m = (u1, v1, w1), and in the top layer, m = (u2, v2, w2).
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Then,

(A.2) η(x, z) =

∫
Ω

∂xN(x− s, z − t)u(s) ds +

∫
Ω

∂zN(x− s, z − t)v(s) ds

=

∫
Ω

∂xN(x− s, z − t)u(s) ds +

∫
R

(N(x− s, z + a + D1) −N(x− s, z + a)) v1(s) ds

+

∫
R

(N(x− s, z − a) −N(x− s, z − a−D2)) v2(s) ds.

The stray field energy is

(A.3)
2

μ0M2
s

E =

∫
Ω

∇η · m dx dz =

∫
Ω

u∂xη + v∂zη dx dz

=

∫
R

u1(x)

∫ −a

−a−D1

∂xη(x, z) dz dx +

∫
R

u2(x)

∫ a+D2

a

∂xη(x, z) dz dx

+

∫
R

v1(x) (η(x,−a) − η(x,−a−D1)) dx +

∫
R

v2(x) (η(x, a + D2) − η(x, a)) dx.

We can easily compute the derivative of η w.r.t. x:

∂xη(x, z) =

∫
Ω

∂xxN(x− s, z − t)u(s) ds(A.4)

+

∫
R

(∂xN(x− s, z + a + D1) − ∂xN(x− s, z + a)) v1(s) ds

+

∫
R

(∂xN(x− s, z − a) − ∂xN(x− s, z − a−D2)) v2(s) ds.

Since ΔN = δ, we get that ∂xxN(x−s, z−t) = δ(x,z)−∂zzN(x−s, z−t). Substituting
this,

∂xη(x, z) = u(x) −
∫

Ω

∂zzN(x− s, z − t)u(s) ds

+

∫
R

(∂xN(x− s, z + a + D1) − ∂xN(x− s, z + a)) v1(s) ds(A.5)

+

∫
R

(∂xN(x− s, z − a) − ∂xN(x− s, z − a−D2)) v2(s) ds

= u(x) −
∫

R

(∂zN(x− s, z + a + D1) − ∂zN(x− s, z + a))u1(s) ds

−
∫

R

(∂zN(x− s, z − a) − ∂zN(x− s, z − a−D2))u2(s) ds

+

∫
R

(∂xN(x− s, z + a + D1) − ∂xN(x− s, z + a)) v1(s) ds

+

∫
R

(∂xN(x− s, z − a) − ∂xN(x− s, z − a−D2)) v2(s) ds.
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Now we compute the energy step by step:

(A.6)∫
R

u1(x)

∫ −a

−a−D1

∂xη(x, z) dz dx = D1

∫
R

u2
1(x) dx−

∫
R

u1(x)

∫
R

u1(s)(N(x− s,D1)

−2N(x− s, 0) + N(x− s,−D1))ds dx

−
∫

R

u1(x)

∫
R

u2(s)
(
N(x− s,−2a) −N(x− s,−2a−D1)

−N(x− s,−2a−D2) + N(x− s,−2a−D1 −D2)
)
ds dx

+
1

2π

∫
R

u1(x)

∫
R

v2(s)

(
arctan

(
2a + D1

x− s

)
− arctan

(
2a

x− s

)

− arctan

(
2a + D1 + D2

x− s

)
+ arctan

(
2a + D2

x− s

))
ds dx

= D1

∫
R

u2
1 dx−D1

∫
R

u1 (u1 ∗ ΓD1
) dx +

D1D2

2

∫
R

u1 (u2 ∗ Θa,D1,D2
) dx

+
D1D2

2

∫
R

u1 (v2 ∗ Ψa,D1,D2) dx,

where we have defined

(A.7)

ΓDi(x) =
1

2πDi
log

(
1 +

D2
i

x2

)
, i = 1, 2,

Θa,D1,D2(x) =
1

2D1D2π

(
log

(
x2 + (2a + D1)

2

x2 + (2a + D1 + D2)2

)
− log

(
x2 + 4a2

x2 + (2a + D2)2

))
,

Ψa,D1,D2
(x) =

1

D1D2π

(
arctan

(
2a + D1

x− s

)
− arctan

(
2a

x− s

)

− arctan

(
2a + D1 + D2

x− s

)
+ arctan

(
2a + D2

x− s

))
,(A.8)

(A.9)

∫
R

u2(x)

∫ a+D2

a

∂xη(x, z) dz dx = D2

∫
R

u2
2 dx−D2

∫
R

u2 (u2 ∗ ΓD2
) dx

+
D1D2

2

∫
R

u2 (u1 ∗ Θa,D1,D2
) dx− D1D2

2

∫
R

u2 (v1 ∗ Ψa,D1,D2
) dx.
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Now

η(x,−a) − η(x,−a−D1)

=

∫
R

u1(s)

∫ −a

−a−D1

(∂xN(x− s,−a− t) − ∂xN(x− s,−a−D1 − t)) dt ds

+

∫
R

u2(s)

∫ a+D2

a

(∂xN(x− s,−a− t) − ∂xN(x− s,−a−D1 − t)) dt ds

+

∫
R

(N(x− s,D1) − 2N(x− s, 0) + N(x− s,−D1)) v1(s) ds

+

∫
R

(
N(x− s,−2a) −N(x− s,−2a−D2)

−N(x− s,−2a−D1) + N(x− s,−2a−D1 −D2)
)
v2(s) ds

=
D1D2

2
u2 ∗ Ψa,D1,D2

+ D1v1 ∗ ΓD1
− D1D2

2
v2 ∗ Θa,D1,D2

(A.10)

and

η(x, a + D2) − η(x, a)

=

∫
R

u2(s)

∫ a+D2

a

(∂xN(x− s, a + D2 − t) − ∂xN(x− s, a− t)) dt ds

+

∫
R

u1(s)

∫ −a

−a−D1

(∂xN(x− s, a + D2 − t) − ∂xN(x− s, a− t)) dt ds

+

∫
R

(
N(x− s, 2a + D1 + D2) −N(x− s, 2a + D2)

−N(x− s, 2a + D1) + N(x− s, 2a)
)
v1(s) ds

+

∫
R

(
N(x− s,D2) − 2N(x− s, 0) + N(x− s,−D2)

)
v2(s) ds

= −D1D2

2
u1 ∗ Ψa,D1,D2 −

D1D2

2
v1 ∗ Θa,D1,D2 + D2v2 ∗ ΓD2 .(A.11)

Assembling all this, we get the stray field energy:

2

μ0M2
s

Es = D1

∫
R

u2
1 dx−D1

∫
R

u1 (u1 ∗ ΓD1) dx + D1

∫
R

v1 (v1 ∗ ΓD1) dx(A.12)

+D2

∫
R

u2
2 dx−D2

∫
R

u2 (u2 ∗ ΓD2) dx + D2

∫
R

v2 (v2 ∗ ΓD2) dx

+D1D2

∫
R

u1 (u2 ∗ Θa,D1,D2) − v1 (v2 ∗ Θa,D1,D2) dx

+D1D2

∫
R

u1 (v2 ∗ Ψa,D1,D2) − v1 (u2 ∗ Ψa,D1,D2) dx.



NÉEL WALLS IN DOUBLE LAYERS 1743

In order to write this in Fourier space, we need the Fourier transform of the convolution
kernels. We start with the following:∫

R

log

(
x2 + α2

x2 + β2

)
e−2πiξx dx =

∫
R

log

(
1 +

α2 − β2

x2 + β2

)
e−2πiξx dx(A.13)

=
β2 − α2

2πiξ

∫
R

1

1 + α2−β2

x2+β2

2x

(x2 + β2)2
e−2πiξx dx

=
β2 − α2

2πiξ

∫
R

2x

(x2 + α2)(x2 + β2)
e−2πiξx dx.

Using residue theory, we get that∫
R

2x

(x2 + α2)(x2 + β2)
e−2πiξx dx = 2πi(Res (f, iα) + Res (f, iβ))

= 2πi

(
2iβ

2iβ(α2 − β2)
e2πβξ +

2iα

2iα(β2 − α2)
e2παξ

)
(A.14)

for ξ < 0. When we put it all together, we get∫
R

log

(
x2 + α2

x2 + β2

)
e−2πiξx dx =

e−2πβ|ξ| − e−2πα|ξ|

|ξ| .(A.15)

Therefore

1

2π

∫
R

log

(
1 +

D2
j

x2

)
e−2πiξx dx =

1 − e−2πDj |ξ|

2π|ξ| , j = 1, 2,(A.16)

and

(A.17)
1

2π

∫
R

(
log

(
x2 + 4a2

x2 + (2a + D2)2

)
− log

(
x2 + (2a + D1)

2

x2 + (2a + D1 + D2)2

))
e−2πiξx dx

= −e−4πa|ξ| (1 − e−2πD1|ξ|)(1 − e−2πD2|ξ|)

2π|ξ| .

Finally,

1

π

∫
R

e−2πiξx arctan
(α
x

)
dx = −2i

π

∫ ∞

0

sin(2πξx) arctan
(α
x

)
dx

= −2i

π

(
− 1

2πξ
cos(2πξx) arctan

(α
x

) ∣∣∣∣∞
0

− α

2πξ

∫ ∞

0

cos(2πξx)
1

α2 + x2
dx

)
= −i

1 − e−2π|ξ|α

2πξ
.(A.18)

Therefore

1

π

∫
R

e−2πiξx

(
arctan

(
2a + D1

x

)
− arctan

(
2a

x

)
(A.19)

− arctan

(
2a + D1 + D2

x

)
+ arctan

(
2a + D2

x

))
dx

= −ie−4πa|ξ| (1 − e−2π|ξ|D1)(1 − e−2π|ξ|D2)

2πξ
.
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Thus, the stray field energy can be written in Fourier space as

(A.20)

2

μ0M2
s

Es = D1

∫
R

û1
2
(ξ)

(
1 − 1 − e−2πD1|ξ|

2πD1|ξ|

)
dξ + D1

∫
R

v̂1
2(ξ)

1 − e−2πD1|ξ|

2πD1|ξ|
dξ

+D2

∫
R

û2
2
(ξ)

(
1 − 1 − e−2πD2|ξ|

2πD2|ξ|

)
dξ + D2

∫
R

v̂2
2(ξ)

1 − e−2πD2|ξ|

2πD2|ξ|
dξ

+

∫
R

(û1(ξ)û2(ξ) − v̂1(ξ)v̂2(ξ))e
−4πa|ξ| (1 − e−2πD1|ξ|)(1 − e−2πD2|ξ|)

2π|ξ| dξ

− i

∫
R

(
v̂1(ξ)û2(ξ) − û1(ξ)v̂2(ξ)

)
e−4aπ|ξ| (1 − e−2πD1|ξ|)(1 − e−2πD2|ξ|)

2πξ
dξ.

Note that the interaction between the layers decays exponentially with the spacer
distance.

In this one-dimensional setting, the Landau–Lifshitz energy for a double layer
reduces to

(A.21) F [m1,m2] =
KuD1

2

∫
R

(
u2

1 + v2
1

)
dx +

AD1

2

∫
R

|m′
1|2 dx

+
D1μ0M

2
s

2

∫
R

u2
1 dx− D1μ0M

2
s

2

∫
R

u1 (ΓD1
∗ u1) dx +

D1μ0M
2
s

2

∫
R

v1 (ΓD1
∗ v1) dx

+
KuD2

2

∫
R

(
u2

2 + v2
2

)
dx +

AD2

2

∫
R

|m′
2|2 dx

+
D2μ0M

2
s

2

∫
R

u2
2 dx− D2μ0M

2
s

2

∫
R

u2 (ΓD2
∗ u2) dx +

D2μ0M
2
s

2

∫
R

v2 (ΓD2
∗ v2) dx

+
D1D2μ0M

2
s

2

∫
R

u1 (u2 ∗ Θa,D1,D2) − v1 (v2 ∗ Θa,D1,D2) dx

+
D1D2μ0M

2
s

2

∫
R

v1 (u2 ∗ Ψa,D1,D2) − u1 (v2 ∗ Ψa,D1,D2) dx,

where

Γi(x) =
1

2πDi
log

(
1 +

D2
i

x2

)
, i = 1, 2,

Θa,D1,D2(x) =
1

2D1D2π

(
log

(
x2 + (2a + D1)

2

x2 + (2a + D1 + D2)2

)
− log

(
x2 + 4a2

x2 + (2a + D2)2

))
,

Ψa,D1,D2
(x) =

1

D1D2π

(
arctan

(
2a + D1

x− s

)
− arctan

(
2a

x− s

)

− arctan

(
2a + D1 + D2

x− s

)
+ arctan

(
2a + D2

x− s

))
(A.22)
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and in Fourier space

Γ̂Dj
(ξ) =

1 − e−2πDj |ξ|

2πDj |ξ|
, j = 1, 2,

Θ̂a,D1,D2
(ξ) = e−4πa|ξ|

(
1 − e−2πD1|ξ|

) (
1 − e−2πD2|ξ|

)
2πD1D2|ξ|

,

Ψ̂a,D1,D2
(ξ) = ie−4πa|ξ|

(
1 − e−2πD1|ξ|

) (
1 − e−2πD2|ξ|

)
2πD1D2ξ

.(A.23)

To write the energy in dimensionless variables, we define x = lx′, a = lα, D1 = lδ1,
and D2 = lδ2, where l =

√
A/(μ0M2

s ). Define also q = Ku/(μ0M
2
s ). Performing this

change of variables and dropping the prime in x′, we obtain

1

D1

√
μ0M2

sA
F [m1,m2] =

q

2

∫
R

(
u2

1 + v2
1

)
dx +

1

2

∫
R

|m′
1|2 dx(A.24)

+
1

2

∫
R

u2
1 dx− 1

2

∫
R

u1 (Γδ1 ∗ u1) dx

+
1

2

∫
R

v1 (Γδ1 ∗ v1) dx +
qδ2
2δ1

∫
R

(
u2

2 + v2
2

)
dx

+
δ2
2δ1

∫
R

|m′
2|2 dx +

δ2
2δ1

∫
R

u2
2 dx

− δ2
2δ1

∫
R

u2 (Γδ2 ∗ u2) dx +
δ2
2δ1

∫
R

v2 (Γδ2 ∗ v2) dx

+
δ2
2

∫
R

u1 (u2 ∗ Θα,δ1,δ2) − v1 (v2 ∗ Θα,δ1,δ2) dx

+
δ2
2

∫
R

v1 (u2 ∗ Ψα,δ1,δ2) − u1 (v2 ∗ Ψα,δ1,δ2) dx.

Appendix B. Validity range for the upper bound. In order to estimate the
value of q0 in (2.18), we need to study the stray field (2.17). Define

η =
2δ|ξ|√q

π
(B.1)

and

β =
α

δ
.(B.2)

We need to study the Taylor series of

φ(η) = 1 − 1 − e−η

η
− 1

2
e−2βη (1 − e−η)2

η
.(B.3)

Using the Taylor polynomials of e−η and e−2βη, we obtain

(B.4) φ(η) =

(
1

3
+ β

)
η2 + η3

(
e−η1

4!
− β2e−2βη3 − βe−2βη4

− e−2βη

2

(
1

4
+

1

3
e−η2 − η

3!
e−η2 +

η2

36
e−2η2

))
,
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where ηk ∈ [0, η] for k = 1, 2, 3, 4. Using (B.4), (B.1), and (B.2) in (2.17), we obtain

Es ≤
2δ
√
q

3

(
δ

3
+ α

)
+

8δ3q

π3

(
1

3
+

α2

δ2
+

α

δ

)∫
|ξ|3sech2(ξ) dξ(B.5)

+
4δ4q3/2

3π4

∫
|ξ|4sech2(ξ) dξ +

4δ5q2

9π5

∫
|ξ|5sech2(ξ) dξ.

Estimate (2.20) holds for

q0 ≤ min

{
M,

4

9

(
δ

3
+ α

)2 [
8

π3

(
δ2

3
+ α2 + δα

)∫
|ξ|3sech2(ξ) dξ

+
4δ3M1/2

3π4

∫
|ξ|4sech2(ξ) dξ +

4δ4M3/2

9π5

∫
|ξ|5sech2(ξ) dξ

]−2
}
,(B.6)

where M > 0 is arbitrary.
Note that as α → ∞, q0 → 0. This is consistent with the fact that as α → ∞,

the layers are decoupled, and we recover the Néel wall energy for a single layer, for
which the upper bound is not (2.20) but (1.7).
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