ON THE NON-VANISHING OF GENERALIZED KATO CLASSES FOR
ELLIPTIC CURVES OF RANK TWO

FRANCESC CASTELLA AND MING-LUN HSIEH

ABSTRACT. Let E//Q be an elliptic curve, p > 3 a good ordinary prime for £, and assume that
L(E,1) = 0 with root number +1 (so ords=1 L(E, s) > 2). A construction of Darmon—Rotger
attaches to F, and an auxiliary weight one cuspidal eigenform g such that L(E,ad(g),1) # 0,
a Selmer class k;, € Sel(Q, V,E), and they conjectured the equivalence

kp#0 <= dimg,Sel(Q,V,E) = 2.

In this paper, we prove the first cases on Darmon—Rotger’s conjecture when the auxiliary
eigenform g has CM. In particular, this provides a new construction of non-trivial Selmer
classes for elliptic curves of rank two.

CONTENTS

(1.__Introductionl

[1.1. The Darmon—Rotger conjecture|

(1.2, Statement of the main results|

|1.3.  Relation to previous work|

[2. Triple products and theta elements|

[2.1. Ordinary A-adic forms|

[2.2. 'Triple product p-adic L-function|

[2.3.  Iriple tensor product of big (Galois representations|
(2.4. Theta elements and factorizationl

3. Coleman map for relative Lubin—Tate groups|

(3.1, Preliminaries|

13.2. Perrin-Riou’s big exponential map|

13.3.  The Coleman map|

13.4.  Diagonal cycles and theta elements|

4. Anticyclotomic derived p-adic heights|

|4.1.  The general theory|

4.2. Derived p-adic heights and the Coleman map|

(5. _Proof of the main results|

[b.1. Generalized Kato classes|

5.2.  Vanishing of k, g-1(f,9,9") and kg ,-1(f,9,9")
5.3.  The leading term formulal

[5.4. Non-vanishing of x, o 1(f, g, g")|

5.5. Analogue of Kolyvagin’s theorem for &, ,-1(f,g,9")
5.6. Proof of Theorem IB

5.7. Application to the strong elliptic Stark conjecture]
6. Appendix. Non-vanishing of x, ,-1(f, g,9"): Numerical examples|

2020 Mathematics Subject Classification. Primary 11G05; Secondary 11G40.
Key words and phrases. Elliptic curves, Birch and Swinnerton-Dyer conjecture, p-adic families of modu
forms, p-adic L-functions, Euler systems.
1

Q0 ~J O O O =N

26
27

lar



2 F. CASTELLA AND M.-L. HSIEH

1. INTRODUCTION

Let E be an elliptic curve over Q (hence modular, [Wil95, TW95, [BCDT01]) with associated
L-function L(E, s). In the late 1980s, a major advance towards the Birch and Swinnerton-Dyer
conjecture was the proof, by Gross—Zagier and Kolyvagin, of the implication

ords—1 L(E,s) =1 = rankzFE(Q) =1 and #111(E/Q) < oc. (1.1)

In the proof of an imaginary quadratic field K/Q is chosen such that ords—1 L(E/ K, s) =
1 and for which a Heegner point yx € E(Q) can be constructed using the theory of complex
multiplication and a modular parametrization of E. By the Gross—Zagier formula [GZ86],
the non-vanishing of L'(E/K, 1) implies that yx has infinite order, and the proof of is
reduced to the proof of the implication

Yk € E(Q)tors = rankzE(Q) =1 and #I1I(E/Q) < oo, (1.2)

which is a celebrated theorem by Kolyvagin [Kol8§].

A more recent major advance towards BSD arises from the works of Kato [Kat04], Skinner—
Urban [SU14] and Xin Wan [Wan20] on the Iwasawa main conjectures for elliptic modular
forms, which in particular yield a proof of a p-converse to ([1.2)):

rankzE(Q) = 1 and #II(E/Q)[pX] < o0 = yx ¢ E(Q)tors (1.3)

for certain primes p of good ordinary reduction for F, an implication first realized by Skinner
[Ski20]. (A different proof of was obtained independently by Wei Zhang [Zhald] as a
consequence of his proof of Kolyvagin’s conjecture.) Together with the Gross—Zagier formula,
(1.3) yields a p-converse to the theorem of Gross—Zagier and Kolyvagin.

It is natural to ask about the extension of these results to elliptic curves E/Q of rank r > 1.
As a first step in this direction, in this paper we prove certain analogues of and in
rank two, with yx replaced by a generalized Kato class

K, € Sel(Q, V,E)
introduced by Darmon-Rotger. Here Sel(Q,V,E) C HY(Q, V,E) is the p-adic Selmer group

fitting into the exact sequence
0= E(Q) ®z Qp — Sel(Q, V,F) — TII(E/Q) ©z, Qp = 0,
where T,l11(E/Q) is the p-adic Tate module of the Tate-Shafarevich group ILI(E/Q).

1.1. The Darmon—Rotger conjecture. We begin by briefly recalling the construction of
kp by Darmon-Rotger [DR17, [DRI6]. One starts by associating a global cohomology class

”7,6(f797 h) € Hl(Q: Vfgh)a

where Vign, = V,(f) ® Vp(g) ® Vpp(h) is the tensor product of the p-adic Galois representations
associated to f, g and h to the data of:

e a triple of eigenforms (f, g, h) € Sa(I'o(N¢)) x S1(To(Ng), x) x S1(To(Nn), X) of weights
(2,1,1) and levels prime-to-p with
ged(Ny, NgNp) =1, (1.4)
e a choice of roots v € {ayg, By} and § € {oy,, Bi} of the Hecke polynomials of g and h
at p, assumed to be regular, i.e. ay # B4 and oy, # By.

Letting ¢” and A’ be the p-stabilizations of ¢ and h with Up-eigenvalue v and 6, the class
ky5(f,9,h) is defined as the p-adic limit

Kv,é(f,gah) = %I_I)I% H(fagéahf)¢ (15)
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where (gy, hy) runs over the classical weight ¢ > 2 specializations of Hida families g and
h passing through ¢’ and R’ in weight 1, and &(f, hy, hy) is obtained from the p-adic étale
Abel-Jacobi image of generalized Gross—Kudla—Schoen diagonal cycles, [GK92, [GS95].

Remark 1.1. Under assumption , the sign in the functional equation for the triple product
L-series L(s, f ® g, ® hy) is —1 for all £ > 2; in particular, L(1, f ® g, ® hy) = 0, and by the
Gross—Zagier formula for diagonal cycles (proved in [YZZ12] for ¢ = 2), the classes &(f, g;, h¢)
should be non-trivial precisely when L'(1, f ® g, ® hy) # 0. On the other hand, the global
root number of L(s, f®g®h) is +1, and it is precisely this sign-change phenomenon between
weights £ > 2 and £ = 1 that makes it possible for the p-adic limit construction to yield
interesting cohomology classes in situations of even analytic rank; in fact, as we recall below,
classes that are crystalline at p precisely when ords—1L(s, f ® g @ h) > 2.

Under the hypothesis that p > 3 is a prime of good ordinary reduction for f, the explicit
reciprocity law of [DR17] yields a formula of the form

exp;(/@%(g(f,g, h)) = L(1, f ® g ® h) - (nonzero constant), (1.6)

where exp,, : HY(Q, Vigh) — Qp is the composition of the restriction map

Locy, : HY(Q, Vign) = H'(Qp, Vign)
with the dual exponential map of Bloch-Kato [BK90] paired against a differential associated to
(f,g,h). As aresult, the class k. s(f, g, h) is crystalline at p, and therefore lands in the Bloch—
Kato Selmer group Sel(Q, Vign) C HI(Q,Vfgh), precisely when L(s, f ® g ® h) vanishes at
s = 1. With the different choices for v and §, one thus obtains four—a priori distinct—classes
ky5(fr9,h) € Sel(Q, Vign) whenever L(1, f ® g ® h) = 0, and Darmon-Rotger conjectured
(see [DR16], Conj. 3.2]) that the following are equivalent:

(i) the classes k4 s(f,g,h) span a non-trivial subspace of Sel(Q, Vgn);
(ii) dimq,Sel(Q, Vign) = 2,
assuming for simplicity that the Hecke fields of f, g and h embed into Q,,.
The adjoint rank (2,0) setting. The construction of x,s(f, g, h) yields classes with a bearing

on the arithmetic of elliptic curves E/Q by taking f to be the newform associated to E, and
h = g* to be the dual of g, so that the triple tensor product Vy,« decomposes as

Vigg = VoE & (V,E @ ad’Vp(9)), (1.7)
where ado‘/},(g) is the three-dimensional Gq-representation on the space of trace zero endo-
morphisms of V,,(g). Correspondingly, L(s, f ® g ® ¢g*) factors as

L(s,f®g®g*) = L(E,s) - L(E,ad"(g), s).
In particular, the above construction yields the four generalized Kato classes
Fagart ([,9:97), Ko, 5-1(1,9,97),  Kg o=1(fr9:97), kg 5-1(fr9,97) (1.8)
landing (thanks to the explicit reciprocity law ) in the Selmer group
Sel(Q, Vigg+) = Sel(Q, Vo B) @ Sel(Q, Vo E ® ad"V,,(g)).

whenever L(E, 1) = 0. Since one expects L(E,ad’(g),1) # 0 <= Sel(Q, V,E ®ad’V,,(g)) = 0
by the Bloch-Kato conjecture, the non-vanishing criterion in [DR16, Conj. 3.2] leads to the
following prediction (see the “adjoint rank (2,0) setting” discussed in [DRI7, §4.5.3]).

Conjecture 1.2 (Darmon—Rotger). Suppose that L(E, s) has sign +1 and vanishes at s = 1,
and that L(E,ad’(g),1) # 0. Then the following are equivalent:

(i) the four classes in span a non-trivial subspace of Sel(Q, V,E);

(ii) dimqg,Sel(Q, V,E) = 2.
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Remark 1.3. Of course, by the Birch and Swinnerton-Dyer conjecture, condition (ii) in Con-
jecture should be equivalent to the condition ords—1 L(FE,s) = 2.

Remark 1.4. Note that Conjecture does not predict that the four classes in (1.8]) generate
Sel(Q, VpE). In fact, a strengthtening of the elliptic Stark conjectures in [DLR15] predicts
that in the setting of Conjecture only the classes Fagaz! (f,9,9%) and Kg, 51 (f,g,9%) are

nonzero, and that they are the same class up to a nonzero algebraic constant. Our results
also confirm this prediction (see Remark below and for further details).

1.2. Statement of the main results. In this paper we prove Conjecture [1.2] in the case
when ¢g has CM, assuming #I1I(E/Q)[p>°] < oo (in fact, a weaker condition suffices) for one
of the implications.

As before, let E//Q be an elliptic curve with good ordinary reduction at p > 3, and let f €
S2(I'o(Ny)) be the associated newform. Let K be an imaginary quadratic field of discriminant
prime of Ny in which (p) = pp splits, and let ¢ be a ray class character of K of conductor
prime to pN; valued in a number field L. The weight one theta series g = 6, then satisfies

L(Evado(g)? 8) = L(EKa 5) : L(E/K7X7 S)a

where EX is the twist of F by the quadratic character associated to K, and Y is the ring class
character given by /17, for ¢™ the composition of 1) with the action of complex conjugation
7. In this case, ay = ¢(p) and B4 = 1)(p) are the roots of the Hecke polynomial of g and p,
which we shall simply denote by a and 3, respectively, and g* is the theta series of ©)~. As
in the formulation of the conjectures in [DR16], we assume that oy # fy, i.e., x(p) # 1.

Let ppyp : Gq — Auty,(E[p]) be the mod p representation associated to E, and denote by
N 7 the largest factor of Ny divisible only by primes that are inert in K. Finally, let

Loc, : Sel(Q, V,E) — HY(Q,, V,E)
be the restriction map at p.
Theorem A. Suppose that L(E,s) has sign +1 and vanishes at s =1, and that the value
L(E,ad’(g),1) = L(EX 1) - L(E/K, x,1)
s nonzero. Suppose also that:
® ppp is irreducible,
° N; is the squarefree of an odd number of primes,
® prp 15 ramified at every prime q]Nf_.
Then ko g-1(f,9,9") = kga-1(f,9,9%) = 0, and the following hold:
Kaa-1(f19,97) #0 = dimq,Sel(Q,V,E) = 2, (1.9)
and conversely,
dimq,Sel(Q, V, £) = 2
Sel(Q, V,E) # ker(Loc,)
In particular, if Sel(Q,V,) # ker(Locy) then Conjecture holds.

Remark 1.5. The condition Sel(Q, V,E) # ker(Loc,) should always hold when Sel(Q, V, E) #
0. Indeed, if Sel(Q, V,,E) equals ker(Locy), then E(Q) must be finite (since F(Q) injects into
E(Qp)), so if also Sel(Q, V,E) # 0 we would conclude that ITTI(E/Q)[p>] is infinite.

} = ’ia,a—l(fa.%g*) # 0. (110)

Remark 1.6. It also follows from our results that, for g = 6, as above, the classes k,, o-1(f, 9, 9")
?nd kg s-1(f,9,9%) are the same up to a nonzero algebraic constant, and they span the p-adic
ine

% = ker(log,) C Sel(Q, V,E),
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where log,, : Sel(Q, V,E) — Q,, is the composition of Loc, with the formal group logarithm of
E. When #II(E/Q)[p™] < oo, it is suggestive to view %), as the line spanned by the image
of

2
PAQ:=PeQ-QoPc \(E(Q®Q)

under the natural map

2
Log,: \(E(Q ® Q) = E(Q) ® Q,
induced by log,. This is consistent with predictions by Darmon-Rotger (see [DR16, §4.5.3]),
and suggests regarding x,, o-1(f,9,9") as a “p-adic shadow” of a rank two motivic regulator.

Remark 1.7. Note that the implications (L.9) and (L.10)) in Theorem [A]are rank two analogues
of the implications ([1.3) and (1.2)) by Skinner and Kolyvagin, respectively.

The key new ingredient in the proof of Theorem [A]is a leading term formula for an anticy-
clotomic p-adic L-function ©;/x € Z,[T] attached to /K in terms of anticyclotomic derived
p-adic heights (see Theorem 5.3)). This formula applies in arbitrary order of vanishing of ©/x
at T' = 0, and in particular it allows us to deduce the following p-adic analytic criterion for
the non-vanishing of generalized Kato classes.

Theorem B. Under the hypotheses of Theorem assume in addition that rankz FE(Q) > 0.
Then the following implication holds:

OrdT(@f/K) =2 = Ra,a—1 (f?gvg*) 7& 0.
The same result holds with k. o-1(f,g,9") replaced by rg g-1(f,9,9").
Remark 1.8. If pg,, is irreducible and ramified at some prime ¢ # p (e.g., if E is semistable
and p > 11 is good ordinary for E, by [Rib90] and |[Maz78]), the non-vanishing results of

[BFHI0] and [Vat03] assure the existence of infinitely many imaginary quadratic fields K and
ring class characters y such that

e ¢ is inert in K,

e every prime factor of N¢/q splits in K,

o L(E,ad%g),1) = L(EX,1) - L(E/K,x,1) # 0.
Thus Theorem [B] suggests a general construction of non-trivial p-adic Selmer classes for ra-
tional elliptic curves of rank two.

Remark 1.9. In the Appendix to this paper, we apply Theorem [B] to numerically verify the
non-vanishing of generalized Kato classes for specific rational elliptic curves of algebraic and
analytic rank two, a task that was left as “an interesting challenge” by Darmon—Rotger (see
[DR16, p. 31]).

Remark 1.10. Assume that rankzE(Q) = 2 and #II(E/Q)[p>] < oo. A refinement of
Conjecture predicting the position of k. 5(f, g,g") relative to the natural rational structure
on Sel(Q, V,F) = E(Q) ® Q, then leads to the expectation

N ? *
Ra,a—1 (f)ga g ) NQX Logp(P A Q) NGX K’B,B_l(fvga g ) (111)
where (P, Q) is any basis for £(Q) ® Q and ~g* denotes equality up to multiplication by a
nonzero algebraic number. Our results confirm the predicted relation
Ra,o—1 (fv g, g*) NQX kg p—1 (f> g, g*)

and in Theorem [5.5] we show that
(v)
1—p oy ) Ok

oY (PQ)

K’a,a_l(fagag*) ~Qx C- ~L0gp(P/\Q),

1—ap
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where C' is a nonzero algebraic number, «;, is the p-adic unit root of 2 — a,(E)z + p (with

ap(E) = p+ 1 — #E(F)y) as usual), @;t/)K )
is the anticyclotomic v-th derived p-adic height pairing. In particular, this implies that the
conjectured algebraicity in (1.11)) follows from a p-adic Birch and Swinnerton-Dyer conjecture

refining [BD96, Conjecture 4.3] (see §5.7).

is the leading term of ©;/k at T' = 0, and hg

1.3. Relation to previous work. Prior to this paper, the only general results (known to
the authors) on the existence on nonzero Selmer classes for elliptic curves E/Q of rank r > 1
are in forthcoming work of Skinner—Urban (see [Urb13] for a report). Their methods, which
extend those outlined in their ICM address [SU06] for cuspidal eigenforms of weight k > 4,
are completely different form ours.

On the other hand, Darmon—Rotger [DR17] exhibited, under a certain non-vanishing hy-
pothesis, the existence of two linearly independent classes in the Selmer groups Sel(Q, V,E® )
of elliptic curves F/Q twisted by degree four Artin representations p. The required non-
vanishing is that of a special value %) of a certain p-adic L-function. Both their works and
ours exploit the construction of generalized Kato classes introduced in [DR17], but in the
setting we have placed ourselves in, the special value .%;* vanishes. The proofs of our main
results are based on anticyclotomic Iwasawa theory and derived p-adic heights, both of which
make no appearance in [DR17].

Acknowledgements. It is a pleasure to thank John Coates, Henri Darmon, Dick Gross, Barry
Mazur, and Victor Rotger for their comments on an earlier draft of this paper. We also thank
the anonymous referees for useful suggestions that helped us improve the exposition of our
results. During the preparation of this paper, F. C. was partially supported by the NSF grants
DMS-1801385, 1946136 and DMS-2101458; M.-L. H. was partially supported by the MOST
grant 108-2628-M-001-009-MY4.

2. TRIPLE PRODUCTS AND THETA ELEMENTS

In this section we describe the triple product p-adic L-function for Hida families [Hsi21], and
recall its relation with the square-root anticyclotomic p-adic L-functions of Bertolini-Darmon
[BD9G].

2.1. Ordinary A-adic forms. Fix a prime p > 2. Let I be a normal domain finite flat over
A = O[1+ pZ,], where O is the ring of integers of a finite extension L/Q,. We say that a
point x € Spec ]I(Qp) is locally algebraic if its restriction to 1+ pZ, is given by z(7) = v* e, (7)
for some integer k, called the weight of x, and some finite order character €, : 1+pZ, — pip;
we say that x is arithmetic if it has weight k, > 2. Let %Er be the set of arithmetic points.
Fix a positive integer N prime to p, and let x : (Z/NpZ)* — O* be a Dirichlet character
modulo Np. Let S°(N, x,I) be the space of ordinary I-adic cusp forms of tame level N and

branch character x, consisting of formal power series
oo
£l@) =) an(f)q" €1[q]
n=1

such that for every x € X the specialization f,(q) is the g-expansion of a p-ordinary cusp
form f, € Sk, (Np=T! xw? *2¢,). Here r, is such that e,(1 + p) has exact order p"=, and
w: (Z/pZ)* — pp—1 is the Teichmiiller character.

We say that f € S°(N, x,1) is a primitive Hida family if for every x € .’ff we have that
f, is an ordinary p-stabilized newform (in the sense of [Hsi21, Def. 2.4]) of tame level N.
Given a primitive Hida family f € S°(N, x,I), and writing x = x'x, with x’ (resp. xp) a
Dirichlet modulo N (resp. p), there is a primitive Hida family f* € S°(N, xpx’,I) with Fourier
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coeflicients
o _ )X (Oad(f) if {1 N,
CL@(f ) - —1 2 I
ag(f) Xxpw (O) (Ot if £| N,
having the property that for every = € .’{Er the specialization f. is the p-stabilized newform
attached to the character twist f, ® X'.
By [Hid86] (c¢f. [Wil88, Thm. 2.2.1]), attached to every primitive Hida family f € S°(N, x, I)

there is a continuous I-adic representation py : Gq — GLa(FracI) which is unramified outside
Np and such that for every prime ¢ { Np,

tr pg(Froby) = as(f), det ps(Froby) = xw?(£) ()¢,
where (€)1 € I* is the image of (¢) := fw™1(¢) € 1 + pZ, under the natural map
1+pZ, — O[1 +pZ,]* = A* = T*.
In particular, letting (ecyc)r : Gq — I* be defined by (ecye)1(0) = (€cyc(0))1, it follows that pg
has determinant x; 15(3_ylc, where 1 : Gq — I* is given by x1 := oy (5Cyc>_2<50yc>ﬂ, with o, the
Galois character sending Froby ~ x(£)~!. Moreover, by [Wil88, Thm. 2.2.2] the restriction of
pf to Gq, is given by

*
rrlGa, ~ ( ¢0f Y7 et > (2.1)
where 1y : Gq, — I is the unramified character with ¢y (Frob,) = a,(f).
Let T°(N, x,1) be the I-algebra generated by Hecke operators acting on S°(N, x,I) and
let A\ : T°(N,x,I) — I be the I-algebra homomorphism induced by f. Let C(As) be the
congruence module associated with Ay (see [Hid88]). Under the following hypothesis:

the residual representation py is absolutely irreducible and p-distinguished, (CR)
it follows from results of Hida and Wiles that C(Ag) is isomorphic to I/(n¢) for some nonzero
ny € L.
2.2. Triple product p-adic L-function. Let

(f?gah) € SO(Nf7Xf7]If) X SO(N_!Dng]Ig) X So(Nf“Xha]Ih)

be a triple of primitive Hida families. Set
R = [;®0lg&olh,
which is a finite extension of the three-variable Iwasawa algebra Ry := A®oA®eA, and define
the weight space %fz for the triple (f, g, h) in the f-dominated unbalanced range by
%7@ = {(x,y, z) € .’fﬁ; X f{]il]s X X85 ky >k, +k, and ky, = Ky, + k., (mod 2)} , (2.2)

I

where %ﬁs D %i'] (and similarly %]‘f}lls) is the set of locally algebraic points in Speclg (Qp) for
which g,(q) is the g-expansion of a classical modular form.

For ¢ € {f,g,h} and a positive integer N prime to p and divisible by Ng, define the space
of A-adic test vectors S°(N,x¢,1g)[@] of level N to be the Igy-submodule of S°(NV, x¢, 1)
generated by {¢(g%)}, as d ranges over the positive divisors of N/N.

For the next result, set N := lem(Ng, Ng, Ny ), and consider the following hypothesis:

for some (z,y,z2) € %{a, we have ¢,(f3,g,,h;) = +1forall ¢ | N, (X =0)
where g,(f3, gy, h?) is the local root number at ¢ of the Kummer self-dual twist of the tensor
product of the p-adic Galois representations attached to the newforms fg, gy, and h7 cor-

responding to f,, g,, and h,. We shall say that a point (x,y,2) € Q{fz is crystalline if the
conductors of f7, gy, and hZ are all prime-to-p.
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Theorem 2.1. Assume that f satisfies hypothesis (CR) and that, in addition to hypothesis
(X~ =0), the triple (f,g,h) satisfies:

(ev) XfXgXn = w?® for some a € Z,
sq) ged(Ng, Ng, Np) is squarefree.
FriVg

Fix a generator ng of the congruence module of f. Then there exist A-adic test vectors (f g, ﬁ)
L,

and an element fpf (i, g, ﬁ) € R such that for all crystalline (x,y, z) € %{2 of weight (k, €, m)
we have

LI(f.9.h)(2,y,2)? =T(k,t,m) - Ey(F4.9,, h-

L(f; ® gy ®hZ,c)
HQ' (vV=1)2k . Q2 )

qlN

where:
ec=(k+l+m—2)/2,
e I'(k,4dm)=(c—1!-(c=m)l-(c=O)! (c+1—L—m),
hd g (fz?gyv hz) = (1 - /foa;cyahz )(1 - ﬁfxﬂ;:cyahz )(1 - 5f$apgcyﬁhz )(1 - ﬂfxi)gcyﬁhz )7
e 7, is a nonzero constant (equal to either 1 or 1 +q~1),
e Qf € C* is the canonical period in [Hsi21l, Def. 3.12] computed with respect to ny,

and L(f3 ® g, ® hZ, c) is the central value of the triple product L-function.

Proof. This is a special case of Theorem A in [Hsi21]. The construction of gpf (i, g, h) under
hypotheses (CR), (ev) and (sq) is given in [Hsi21l §3.6]; the proof of its interpolation property
(for all points (z,y, z) € %fz’ rather than just those that are crystalline) assuming hypothesis
(X~ =0) is given in [Hsi21l §7]. O

Remark 2.2. The construction of %} / (}' g, v) is based on Hida’s p-adic Rankin—Selberg con-
volution [Hid85] and apphes to any choice of test vectors for (f,g,h). In the following, for
any test vectors ( f.4, ) we use Xf ( 1.4, ) to denote the associated triple product p-adic
L-function (but note that in the proof of our main results the specific choice (f, g, ﬁ) will be
critical).

2.3. Triple tensor product of big Galois representations. Let (f,g,h) be a triple of
primitive Hida families with x zxgXxn = w?® for some a € Z. For ¢ € {f,g,h}, let Ve be the
natural lattice in (Frac [)? realizing the Galois representation pg in the étale cohomology of
modular curves (see [Oht00]), and set

Vigh = ViRoVe®0 Va.

This has rank 8 over R, and by hypothesis its determinant can be written as det Vygp = X 25Cyc
for a p-ramified Galois character X taking the value (—1)* at complex conjugation. Similarly
as in [How07, Def. 2.1.3], we define the critical twist

Vigh = Vign © X!

More generally, for any multiple NV of Ng one can define Galois modules Vg (N) by working in
tame level N; these split non-canonically into a finite direct sum of the I4-adic representations

Ve (see [DR1T, §1.5.3]), and they define V}gh(N) for any N divisible by lem(Ng, Ng, Np,).
If f is a classical specialization of f with associated p-adic Galois representation V¢, we let
Vi gn be the quotient of Vggp given by

Vigh = Vi ®0 V@1V,

?nd dinote by V} oh the corresponding quotient of V} ok and by V}y gh(N ) its level N coun-
erpart.
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2.4. Theta elements and factorization. We recall the factorization proven in [Hsi21l §8].
Let f € Sa(pNy) be a p-stabilized newform of tame level Ny defined over O, let f° € Sa(Ny)
be the associated newform, and let oy, = ,(f) € O be the Up-eigenvalue of f. Let K be an
imaginary quadratic field of discriminant Dy prime to Ny. Write
Ny=NTN~

with N (resp. N7) divisible only by primes which are split (resp. inert) in K, and choose
an ideal Mt C Ok with Og /NT ~ Z/N*Z.

Assume that (p) = pp splits in K, with our fixed embedding ¢, : Q < C,, inducing the prime
p. Let I's be the Galois group of the anticyclotomic Z,-extension K /K, fix a topological
generator v € I's, and identity O[] with the power series ring O[T] via v — 1+ T. For
any prime-to-p ideal a of K, let o, be the image of a in the Galois group of the ray class field
K(p>®)/K of conductor p* under the geometrically normalized reciprocity law map.

Theorem 2.3. Let x be a ring class character of K of conductor cOg with values in O, and
assume that:
(i) (prv CDK) =1,
(ii) N~ is the squarefree product of an odd number of primes,
(ili) if ¢/ N~ is a prime with ¢ =1 (mod p), then ps is ramified at q.
Then there exists a unique © ¢/ (T') € O[T] such that for every p-power root of unity (:

p" L(f°/K ® xec, 1)
@f/K,X(C o 1)2 = O[Tz)n : 5p(f7X»C)2 ’ (2m)2 - Qo ;7 'U%(\/EXGC(WJH) * Ep,
where:
e n > 0 is such that ( has exact order p™,

o - : I'o = ppeo be the character defined by ec(v) = ¢,

(1= 'x(0)(1 = apx(p)) if n=0,
5 9y Y = b
* &lf:x:¢) {1 ifn >0,
o Qpon- = 4Hf0”12“0(Nf) '77;]1\/— is the Gross period of f° (see [Hsi2ll, p. 524]),
e oyt € [ is the image of M under the geometrically normalized Artin’s reciprocity

map,
o ug = |0x|/2, and e, € {£1} is the local root number of f° at p.

Proof. See [BD96] for the first construction, and [CH18bL Thm. A] for the stated interpolation
property. Il
Remark 2.4. From the interpolation property of Theorem one can show that the square

of O,k (T) is essentially the anticyclomic restriction of the two-variable p-adic L-function
constructed by Perrin-Riou [PRSS].

When Y is the trivial character, we write © ¢/ (T') simply as O, (T). Suppose now that
the p-stabilized newform f as in Theorem is the specialization of a primitive Hida family
f € S°(Ny, 1) with branch character xy = 1 at an arithmetic point z; € %f of weight 2. Let
¢ 1 pNy be a prime split in K, and let x be a ring class character of K of conductor {™O
for some m > 0. Denoting by the superscript 7 the action of the non-trivial automorphism of
K/Q, write x = ¢'~7 with ¢ a ray class character modulo /™ Q. Set C = Dy ¢*™ and let

g =0y(52) € O[5:][d], g*=6,-1(53) € O[S3][q]
be the primitive CM Hida families of level C' constructed in [Hsi21l §8.3].
The p-adic L-function .,Sfpf (f,9,9%) of Theorem attached to the triple (f,g,g*) (taking

a= —11n (ev)) is an element in R = I[Sy, S3]; in the following we let
Z{(f,99") € OS]
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denote the restriction to the “line” S = Sy = S3 of the image of gpf(},g,g*) under the
specialization map at x1. -

Let Ky be the Z%—extension of K, and let Ky~ denote the p-ramified Z,-extension in K,
with Galois group I'yee = Gal(Kp~/K). Let 4, € I'yee be a topological generator, and for the
formal variable T let ¥p : Gal(Ko/K) — O[T]* be the universal character defined by

Vr(o) = (1+ 1)@,  where olx,. =" (2.3)
The character W7 " factors through I'n, and yields an identification O[] ~ O[T corre-

sponding to the topological generator 'yg_T € I'so. Let p® be the order of the p-part of the

class number of K. Hereafter, we shall fix v € Z; such that v?' = Ecye(Vp b) €1+ pZ,. Let
K(x,op)/K (resp. K(x)/K) be the finite extension obtained by adjoining to K the values of
x and «y, (resp. the values of ).

Proposition 2.5. Assume that

(i) N~ is the squarefree product of an odd number of primes,
(i) py is ramified at every prime q| N~ with ¢ =1 (mod p).
Set T=v Y1+ 95)—1. Then

L] (£.45) = 2w Oyw(T) Cp (/K o)

where w is an unit in O[T], Cs, € K(x,ap)*, and

_L(f/Kex1)

LY(f/K @y, 1) = 12| o

5 € K(x).
HFO(Nf)

Proof. This is [Hsi21l Prop. 8.1] specialized to S = S = S3, using the interpolation property
of Ok (T) at ¢ = 1. (Note that the unit w is explicitly described in loc. cit., but we omit
it here.) O

Remark 2.6. The factorization of Proposition [2.5 reflects the decomposition of Galois repre-
sentations

Vi e = (Vi(1) @ Ind20i™) @ (Vy(1) @ IndEx). (2.4)
Note that the first summand in (2.4]) is the anticyclotomic deformation of V(1), while the
second is a fixed character twist of V¢(1).

3. COLEMAN MAP FOR RELATIVE LUBIN-TATE GROUPS

In this section we review Perrin-Riou’s theory [PR94] of big exponential maps, as extended
by Kobayashi [Kobl8] to Z,-extensions arising from torsion points on relative Lubin-Tate
formal groups of height one. Applied to the localization of the anticyclotomic Z,-extension
of an imaginary quadratic field K in which p splits, we then deduce, by the results of §2| and
[DR17], a Coleman power series construction of the p-adic L-function ©,x of Theorem
This new construction of O/ will play an important role in the proof of our main results.

3.1. Preliminaries. Fix a complete algebraic closure C, of Q,. Let Q) C C, be the
maximal unramified extension of Q, and let Fr € Gal(Q,"/Qy) be the absolute Frobenius.
Let F' C Q" be a finite unramified extension of Q, with valuation ring & and set

R = 0[X].
Let F = Spf R be a relative Lubin—Tate formal group of height one defined over &', and for

each n € Z set
F = F X $pec o Fr—n Spec 0.
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The Frobenius morphism ¢ € Hom(F, F (_1)) induces a homomorphism ¢ r: R — R defined
by
wr(f) =M oer,
where f' is the conjugate of f by Fr. Let ¢ 7 be the left inverse of ¢ satisfying
provr(f)=p" Y f(Xeraz). (3.1)
zE€F[p]

Let Fio/ F be the Lubin-Tate Z, -extension of F associated with F, i.e., Foo = Uy~ F(F[p"]),
and for every n > —1 let F,, be the subfield of F,, with Gal(F,/F) ~ (Z/p"T'Z)*. (Hence,
F_1 =F.) Letting Goc = Gal(F/F), there is a canonical decomposition

Goo > A x T,

with A the torsion subgroup of G, and I', ~ Z,, the maximal torsion-free quotient of G .
For every a € Z,;, there is a unique formal power series [a] € R such that

[a)T o pr = profa] and [a](X)=aX (mod X?).
Letting e7: Goo — Z; be the Lubin-Tate character, we let o € G act on f € R by
0 f(X) = F(ex(0) (X)),
thus making R into an O[Gs]-module.
Lemma 3.1. R¥Y7=0 is free of rank one over O[G].
Proof. This is [Kob18| Prop. 5.4]. O

Let V be a crystalline Gq,-representation defined over a finite extension L of Q) with ring
of integers Op. Let D(V') = Deis,q, (V') be the filtered ¢-module associated with V' and set

Do(V) :=D(V) @7, R¥*=°.
Fix an invariant differential wr € Qp, and let logr € R@Qp be the logarithm map satisfying
logz(0) =0 and dlogr =wpr,

where d : R — Qg be the standard derivation.
Let € = (en) € T, F = @1}"(”) [p"] be a basis of the Tate module of F, where the limit is
with respect to the transition maps
—(n+1)
I FOE D) o FOU ).
One can associate to € and wr a p-adic period t. € Bctis such that

Dais,p(er) = Ft;! and ot = wi, (3.2)

where w is the uniformizer in F' such that 5w = @ - wr (see [KobI8, §9.2]). For j € Z,
the Lubin-Tate twist V(j) := V ®f, €% then satisfies
Deris, r(V(j)) = D(V) ®q, Ft7.
There is a derivation d. : Zoo(V () = Deris. r(V (§)) ®¢ RYF=" — 9o (V(j — 1)) given by
de: f=n®g—ntc® g,

where 0: R — R is defined by df = df - wr. These give rise to the map
x Dcris F(V<*]>)
A: Do —_— e .
@(V)—>j62 o (3.3)

sending f ~— (87 f(0)t] (mod 1 — ©));-
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3.2. Perrin-Riou’s big exponential map. For a finite extension K over Q,, let
expgy: D(V) ®q, K — H'(K,V)

be Bloch—Kato’s exponential map [BK90), §3]. In this subsection, we recall the main properties
of Perrin-Riou’s map Qy,;, interpolating exp y(;) over non-negative j € Z.
Let V* := Homp,(V, L(1)) be the Kummer dual of V' and denote by

[, —Jv:DV)@ K xD(V)® K — L® K
the K-linear extension of the de Rham pairing
{,Yar: D(V*) x D(V) — L.
Let expjcy : HY(K,V) — D(V) ® K be the Bloch-Kato dual exponential map, which is
characterized uniquely by
Tri)q, [z, expk v (y)lv) = (expr v+ (2), Y)ar,
for all € D(V*) ® K and y € HY(K, V).
Choose a Op-lattice T C V stable under the Galois action, and set H (Fio, T) = Jim HY(F,,T)
and R R
H! (Foo, V) = H'(Foo, T) @2, Qy,
which does not depend on the choice of 7. Denote by
Tw’ : B! (Foo, V) = H (Fic, V(j)

the twisting map by E‘J}_—. For a non-negative real number r, put

I k(X) = Z cnr 7 X" € K[A][X] | sup |epr|,n™" < oo forall T €A,

b
n>0,7€A

where ||, is the normalized valuation of K with |p|, = p~ 1. Let 7 be a topological generator of

I'Z, and denote by 7. ;¢ (Goo) the ring of elements {f(y—1): f € J. (X)}, so in particular
)k (Goo) = Ok[G] ®0y K. Put

Hoo k(Goo) = | 7.1 (Goo).-
r=0
Define the map
Env:D(V) RQ, o 7 (X) = D(V) ®Q, In
by
_ p*(n+1)g0*(n+l) (GFrf(njLU (en)) if n 2 0,
=,y (G) = 4 _ (3.4)
(I=p 9 )(G(0)) if n=-1,
and let A = Z,[Guo].
Theorem 3.2. Let € = (e,) be a basis of T,F, let h > 0 be such that D(V) = Fil""D(V),
and assume that H*(F, V) = 0. There exists A-linear “big exponential map”

Cht Doo(V)A™0 = HY (Fuoo, T) @5 S 1 (G
such that for every g € @oo(V)AZO and j > 1 — h satisfies the interpolation property
pr, (Tw! 0 Q44(9)) = (1" (h+j = D! expp, v () (En v (d7G)) € HY(F, V()
where G € D(V) ®q, #4,7(X) is a solution of the equation
(1-9p®pr)G=g.



ON THE NON-VANISHING OF GENERALIZED KATO CLASSES 13

Moreover, these maps satisfy

Tw o Qyp o d/ = Q;(j),thj’
and if 7 < —h then
* € 1 = —J .
eXpFn,V(j>(ern (Tw; o Qv,h(g))) = m " S0, V() (d7G)) € D(V())) ®q, Fn;
and if Djg C D(V) is a p-invariant subspace in which all p-eigenvalues have p-adic valuation

at most s, then Q,, maps (Diy @z, Rw;:o)ﬁzo into Ifll(Foo,T) @3 Hirh,F(Goo)-

Proof. For F = (A}m, the construction of Q& 5, and its interpolation property for j > 1 — h is
due to Perrin-Riou [PR94]; the interpolation formula for j < —h is due to Colmez [Col9§].
The extension of these results to Z,-extensions arising from relative Lubin-Tate formal groups
of height one is given in [Kobl8, Appendix]. O

3.3. The Coleman map. From now on, we assume that
Doo(V)A0 = 2 (V), (3.5)

ie., A=0 (note that by || this is a condition on the ¢-eigenvalues on D5 #(V')), and for
simplicity for any field extension M/Q, we write ¢ for 7 pr(Goo). Let

[*, ,]V : D(V*) ®Qp T X D(V) ®Qp Hr — L ®Qp I
be the pairing defined by

[ @ A1, m2 @ Aoy = (11, M2)dr @ A1 Ay

for all AL, Ao € T
Recall that Fys = |, Fyy, and let (—, —) i, be the local Tate pairing H! (F,,, T*)xH'(F,,, T) —
Op. Letting z = (z,), and y = (yn)n be sequences in H'(F,., T*) and H!(F,., T), define the
OL[G]-linear pairing
(= =) p : B (Foo, T*) x H'(Foo, T) — Or[Goc]

by letting (x,y)r, be the limit of the elements

> umrlo] € Or[Gal(Fy/F)],

o€Gal(Fp/F)

which are compatible under the natural projection maps Op[Gal(Fy,+1/F)] — Or[Gal(F,/F)].
After inverting p, this extends to a pairing

(= Vit HY (Fao, V) x HY (Foo, V) = L ©q, 4, (3.6)

Definition 3.3. Let e € R¥7=0 be a 0[G «]-module generator, and let € a generator of T)F.
The Coleman map

Cols: H' (Fao, V*) = D(V*) ®q, 5
is the L ®q,, HF-linear map uniquely characterized by

Trr/q, ([Cole(2),1]y) = (2, Q1 (0 © €)) k., (3.7)
for all n € D(V).

Let Q be the completion of Q)" in Cp, with ring of integers W, and set F}" = F, Q" for
—1 < n < oo (so FY = F™). Let 09 € Gal(F3/Qp) be such that og|qur = Fr is the absolute
Frobenius.

Fix an isomorphism

p: (A}m ~ F (3.8)
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defined over W and let p: W[T] ~ R ®¢ W be the map defined by p(f) = fop~!, so
prop=pTopg .

Fix also a O[Guo]-generator e € RY*=9 and let he € W[G ] be such that p(1+ X) = he - e.
Note that e(0) € 0*. Fix a sequence ((pn) of primitive p™-th root of unity giving a generator

of Tpam, and let € = (&) be the generator of T),F given by
- pFr—(n+1)(Cpn+1 . 1) c f(nJrl)[anrl]'

Let t € BCJ;IS be the p-adic period as in 3 associated to the generator ((ynt1 — 1) € Tpém
and the invariant differential wa, = ﬂr—XX.

From now on, we suppose that Fil ™! D(V) = D(V) and H’(F,., V) = 0, so the big expo-
nential map €, of Theorem|3.2|is defined. Let n € D(V') be such that ¢n = an, and suppose

that 7 has slope s (i.e. |a|, =p~*). For every z € H!(Fs, V*), we define

P
(F:Qp] ' N
Col(z Z [COF 270 ) 0| he - 0 € Hin1o(Goo), (3.9)
where Gog = Gal(Fo/Qp), and [—,—] : D(V*) ® #o x D(V) ® o — H1,0 is the image of

[—, =], under the natural map L ®q, o — #79. We put

2 jn = prp, (Tw(2)) € HA(F, V().

and say that a finite order character y of CNJOO has conductor p"+!

such that x factors through Gal(F,,/Q,).

if n is the smallest integer

Theorem 3.4. Let z € H! (Foo, V*) and let ¢ be a p-adic character of Goo such that ¢ = Xajf
with x a finite order character of conductor p"+1. If j <0, then

(-1p~"
Col"(z)(¢)) = ——+——
[IOgFV*< >(Z_] n) @t J , (1 — pj_lgo_l)(l — p_jgo)_ln] ifn=—1,
prOU D) S XY (logg, ey (275,) @0l ifn >0
T€Gal(Fn/Qp)
If j >0, then
Col"(z)(¢) = j!(~1)’
eXpFV*( >(Z—J n) @t (1—p lo (1 —pip)iy if n=-—1,
X

pMHDG=D 1 (4h) $ x~(r) [eXp*Fn,V*<— 4>( T L)@t (n+1)77] if n > 0.
T€Gal(Fn/Qp)

Here T(v) is the Gauss sum defined by

W)= > behropCE

reGal(Fur/Fur)

Proof. This follows from Theorem by a direct computation (see [Kobl8, Thm. 5.10], and
[LZ14, Thm. 4.15] for a related computation). O
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3.4. Diagonal cycles and theta elements. We now apply the local results of the preceding
section to the global setting of Assume that f, g = 6,(5) and g* = 6,,-1(5) are as in
§2.4 Keeping the notations from by [DR17, §1] (see also [DR21] and [BSV21]) there
exists a class

’i(f7 a9 ) € Hl(Q? f.99* (N)) (310)

constructed from twisted diagonal cycles on the triple product of modular curves of tame level
N.
Every triple of test vectors F = ( f,q, g") defines a Gq-equivariant projection \4 99" L(N)—

4

— and we put

w(f.99%) = pr“( (f,99") € H(Q, V] ), (3.11)
where pry : Hl(Q, fag (V) = HI(Q, f.gg+) 18 the induced map on cohomology.

Since \II%F " gives the universal character of Gal(K+ /K), by the Gq-isomorphism 1| and
Shapiro’s lemma we have the identifications

H'(Q, V) ~ H(Q,V;(1) @ Ind} W) & H'(Q, Vy(1) ® Ind} )
~ H' (Koo, V3(1)) ® H' (K, V5(1) @ x).

In the following, we write

(3.12)

w(f.99%) = (5o (f.997), k0(f. 99")) (3.13)
according to this decomposition.
Let g and g* be the weight 1 eigenform 6, and 6,,-1, respectively, so that the specialization
of (g,g*) at T =0 (or equivalently, S = v — 1) is a p-stabilization of the pair (g, g*).

Lemma 3.5. Assume that L(f ®g® g*,1) =0 and that L(f/K ® x,1) # 0. Then for every
choice of test vectors F = (f,g g*) we have ﬂg(f,gg ) =0.

Proof. Let k = s(f,3g*) and for every ? € {f,g,g*}, let .Z*V; be the rank one subspace of
V7 fixed by the inertia group at p. By (3.12]), in order to prove the result it suffices to show
that some specialization of £ has trivial image in H' (K, V;(1) ® x). Let

Koo o= Klg—y—1 € H(Q, Vyger) = H' (K, V;(1)) ® H' (K, V(1) ® x),

where Vigge := Vi(1) ® Vy ® Vy=. By looking at the Hodge-Tate weights, we see that the
Bloch-Kato Selmer group Sel(Q, Vigq+) C HY(Q, Vigg+) is given by

Sel(Q, Viggr) = ker( (Q7Vfgg ) § = HY(Q,, 7 Vi(1) @ Vy @ Ve ))

where 8, is the natural map induced by the projection Vy — ZF~Vy := V;/F TV} (see e.g.
[DR17, p. 634]). Thus it follows that
Sel(Q, Vigg+) = Sel(K, Vy(1)) @ Sel(K, V(1) ® x).

The implications L(f ® g ® g%,1) = 0 = k... € Sel(Q, Viggr) and L(f/K @ x,1) # 0 =
Sel(K, V(1) ® x) = 0, which follow from [DRI17, Thm. C] and [CHI5, Thm. 1], respectively,
therefore yield the result. O

Suppose from now on that f° € S3(I'g(Ny)) is the newform associated to an elliptic curve
E/Q with good ordinary reduction at p. Thus V(1) ~ V,E and from (3.13) we obtain an
Iwasawa cohomology class

koo ([, 83") € HY(Ko, V,E).
Set V' = V,E for the ease of notation. Note that Fil~! D(V') = D(V) and, by the Weil pairing,
V* ~ V. Let P be the prime of Q above p induced by our fixed embedding tp (inducing p on
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K), and for any subfield H C Q denote by H = Hgy the completion of H with respect to L.
Then Gal(K+/Q,) is identified with the decomposition group of 9 in T, = Gal(K/K).

For any integer m let H,, be the ring class field of K of conductor m,, and put F = H, for a
fixed ¢ prime to p. Let w € K be a generator of plf*Q»l and let F/F be the Lubin-Tate Z,-
extension associated with the uniformizer w/@ € OF (see [Kobl8 §3.1]). As is well-known,

we have
o
FOO = U Hcp"
n=0

(see e.g. [Shnl6, Prop. 8.3]). In particular, Fix, contains Koo
Let wg be the Néron differential of E, regarded as an element in D(Hét(E/Q, Qp)) ~D(V™).

Let o € Z be the p-adic unit eigenvalue of the Frobenius map ¢ acting on D(V), and let
neDV)~ D(Hét(E/Q, Q) ®D(Qp(1)) be a p-eigenvector of slope —1 such that
en=p tay-n and (nwp®t g = 1. (3.14)

Finally, note that hypothesis holds since D(V)“’[F:Qp ==/ = ( for any j € Z, given
that the gp-eigenvalues of D(V') are p-Weil numbers while @ /% is a 1-Weil number.

The second part of the next result recasts the “explicit reciprocity law” of [DR17, Thm. 5.3]
(see also [DR21, Thm. 5.1] and [BSV21, Thm. A]) in terms of the Coleman map of

Theorem 3.6. Assume that L(f ® g® ¢*,1) =0 and that L(f/K ® x,1) # 0. Then, for any
test vectors (f,g,g") we have

Locy (koo (f,9G7)) = 0,
and
Col(Locy (koo (f, 897))) = L] (f,997) - 205, (1 — oy, 'x(F)) "
Proof. Let & ++V}gg* be the rank four Gq,-stable submodule of V} ag* defined by
(VR I NVyg@Vyp + FTV V@ FtVe + Ve F V0 7 Ve ex
The class 1(f,§5%) = (koe(f,997), ko(f,§9")) € HY(Q, V1, _.) is known to land in the kernel
of the composite map
(see e.g. [DR21), Prop. 5. 8]) Using (2 , we immediately find that

O‘++V}gg — VUL 2TV e (x +x 7Y,

Locp

and therefore, identifying Gq, with Gk, via our fixed embedding Q— Qp, we obtain
HY(Qp, TV ) ~ HY (K, V @ U ) @ HY (K, F1V @ x) @ H' (K5, FTV @ X).

This shows the vanishing of Locg (Ko ( 1, gg*)), and the second equality in the theorem follows
from Lemma [3.5[and [DR17, Thm. 5.3]. O

Corollary 3.7. Assume that L(f ® g ® ¢*,1) = 0 and that L(f/K,x,1) # 0. Let (f,g,g*)
be the triple of test vectors from Theorem . Then LOCE(KZOO(f ag* )) =0, and

) C
Col"(Locy (oo (f. §8°))) = £w ™" - O (T) - /LU (f /K @ x,1) - (1 . afﬁx@) ' nfn]fv ’
P p )

where w € O[T]* and Cy, € K(x,p)* are as in Proposition .
Proof. This is the combination of Theorem [3.6] and the factorization in Proposition O
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Remark 3.8. Corollary places for the first time O/, (T) within the landscape of Perrin-
Riou’s vision [PRO0], whereby p-adic L-functions ought to arise as the image of p-adic fam-
ilies of special cohomology classes under generalized Coleman power series maps. For a dif-
ferent class of anticyclotomic p-adic L-functions introduced by Bertolini-Darmon—Prasanna
[BDP13], a similar result was obtained by the authors in [CH18al [Cas20].

4. ANTICYCLOTOMIC DERIVED p-ADIC HEIGHTS

The main result of this section is Theorem giving a formula for the anticyclotomic
derived p-adic heights in terms of the Coleman map introduced before. This generalizes a
formula of [Rub94] to arbitrary rank.

4.1. The general theory. Initiated in [BD95|] and further developed in [How04], the theory
of derived p-adic heights relates the degeneracies of the p-adic height to the failure of the p°-
Selmer group of elliptic curves over a Z,-extension to be semi-simple as an Iwasawa module.
Derived p-adic heights seem to have been rarely used for arithmetic applications in the previous
1iterature[|, but they will play a key role in the proof of our results. In this section we briefly
recall the results from [How04] (with a slight generalization) that we will need.

Let E be an elliptic curve over Q of conductor N with good ordinary reduction at p > 2.
For any number field F, let Sel,»(E/F) C HY(F, E[p"]) be the p"-Selmer group of E over F,
and put

Sel(F, T,E) LSel (E/F)

and Sel(F, V,E) = Sel(F, T,E) ®z, Qp. Let K be an imaginary quadratic field of discriminant
prime to Np, and let K /K be the anticyclotomic Z,-extension of K. Denote by K, the
subsection of Ko, with [K,,: K] = p", and put

Selye (E/Ko) = lim Selyeo (EB/Ky).

Finally, let A = Z,[Gal(K/K)] be the anticyclotomic Iwasawa algebra, and denote by J C A
the augmentation ideal.

Theorem 4.1. Let N~ be the largest factor of N divisible only by primes that are inert in
K, and suppose that

o N~ is squarefree,

e Elp| is ramified at every prime q|N—.
Then there is a filtration

Sel(K, V,E) = SSN(E/K) 2 S(E/K) 2 -~ 2 SY(E/K) 2
and a sequence of height pairings
hy o SP(E/K) x S§NE/K) = (') T) @7, Qp
with the following properties:
(a) SZ(;Hl)(E/K) is the null-space of h](f).

(b) S}(,OO) (B/K) =i Sﬁ) (E/K) is the subspace of Sel(K,V,E) consisting of universal
norms for Koo /K :

)E/K) = () corrc, i (Sel(Ko, V, E)),

n=1

1Perhaps by influence of cyclotomic Iwasawa theory, a context in which the p-adic height is conjectured to be
non-degenerate, see [Sch85]. In contrast, in the anticyclotomic setting, as noted in [BD94, p. 76], degeneracies
of the p-adic height pairing “seem to be the rule rather than the exception”.
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where corg, /i Sel(Ky, V,E) — Sel(K, V,E) is the corestriction map.
(c) hz(f) is symmetric (resp. alternating) for i odd (resp. i even).
(d) hj(oi)(a:T, y") = (fl)ih}(j) (x,y), where T € Gal(K/Q) is complex conjugation.
(e) Let
_ [dimg, (5" (B/K)/85 P (B/K)) i < oo,
- {dimeS,goo)(E/K) if i = oo.
Then there is a A-module pseudo-isomorphism
Selyoe (E/Koo)¥ ~ (A J)* @@ (A/J) @) @ A% @ M’
with M’ a torsion A-module with characteristic ideal prime-to-.J.

Proof. This follows from Theorem 4.2 and Corollary 4.3 of [How04] when N~ = 1. We explain
how to extend the result to squarefree N~ under the above hypothesis on Elp].

Following the discussion in [op. cit., §3] and adopting the notations there, we see that it
suffices to show the vanishing of

Hyy (Ko, S[p*]) = ker(H' (K, S[p"]) — H' (K", S[p*])). (4.1)
for every prime v { p inert in K, where S[p*] = lim Indg, /kE [p¥]. Since such primes v split
completely in K, /K, by Shapiro’s lemma and inflation-restriction we find

H! (K, S[p"]) ~ ker (H' (K, Ep*]) ® AY — HY(K", E[p"]) @ AY)
~ HYF,, E[p*") @ AY (4.2)
= (B[p""/(Fr, = D)EPF) @ AY,
where F,, is the residue field of K, Fr, is a Frobenius element at v, and AV = Homgz, (A, Qp/Zy).

Since N~ is squarefree, any prime v as above is a prime of multiplicative reduction for E,
so by Tate’s uniformization we have

E[p>] ~ ( e )

as Gi,-modules, where €.y is the p-adic cyclotomic character. Since pg, is ramified at v,
the image of ‘*” in the above matrix generates Q,/Z,. Thus we see that

E[p> )" /(Fr, = 1) E[p])" =0,
which by (4.2)) implies the vanishing of H! (K, S[p"]). O
We next recall Howard’s abstract generalization of Rubin’s height formula for derived p-
adic heights. For every prime v of K above p, let %,/ T, E be the kernel of the reduction map

T,E — TpE, where E is the reduction of E modulo v. Letting V = VpE, this induces the
filtration .#,fV C V. For every prime v|p of K write

Hin (Koo, V) = D H' (Koo, Z1V),

wlv
where w runs over the places of K, above v. The local pairings in (3.6)) induce a semi-local
pairing

<_7 _>Koo,v : Hl(KOO/U? V) X Hén(KOO,U? V) - A ®Zp Qp
which induces a perfect duality between the ﬁl(Kooﬂ,, V)/I?I}in(Koo,v, V) and ﬁ%in(KOOfW V).
Every class z € H! (K, V) defines a linear map
Lyu =Y (Locy(2), =)k, : (Koo V) = D (Ko, V) = A2, Qp,
vlp

v|p
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Let ord(L, ;) be the largest integer  such that the image of £, , is contained in J".

Theorem 4.2. Let r be any positive integer with r < ord(Lp ). Then z = prg(z) belongs to
SIST) (E/K) and for any w € SZ(,T)(E/K), we have

hz()r) (Z,’UJ) = _Ep,z(wp) (HlOd JT—H)

where Wy, = (Wy)|p € ﬁén(Koqp, V) is any semi-local class with pry (w,) = Loc,(w) for all
v|p.

Proof. This is a reformulation of part (c) of Theorem 2.5 in [How04]. Note that the existence of

w), follows from the definition of SI(,T)(E /K) in op. cit., and the fact that the image £, ,(w)) €
J7/J ! is independent of the choice of w), is shown in the proof. O

4.2. Derived p-adic heights and the Coleman map. Now we compute the local expres-
sion in Theorem for the derived p-adic height pairing in terms of the Coleman map from
83l yielding our higher rank generalization of Rubin’s formula.

We use the setting and notations introduced after Lemma In particular, (p) = pp splits
in K, with p the prime of K above p induced by our fixed embedding Q — Qp. Let Ko be
the closure of the image of K, in Qp under this embedding, and put

A~

I = Gal(Koo/K), Do = Gal(Kao/Qp),

so naturally I's is a subgroup of I'y,. Also, we put F' = H, for some fixed ¢ prime to p, and
F = H¢pe, which is a finite extension of K.
Let e € RY7=0 be a generator over 0[[G] such that e(0) = 1. Define

W =Qf (n@e) € H(Fy, V), (4.3)

where €){,, in is the big exponential map in Theorem
As in we let 09 € Gal(F/Qp) be such that oo|qur = Fr is the absolute Frobenius.

Proposition 4.3. Let Q" be the cyclotomic Z) -extension of Qp. Let ocye € Gal(FL/Qp)
be the Frobenius such that O‘CyC‘Q;yc =1 and O'Cyc|Q;r — Fr. For each z € H! (Km, V), we have

[F:QP}
(#,corp i (W) =pri_(Col’(2)) >

i=1

Uci: c’f{oo S
e o

Proof. We first recall that for every e € (R ®5 W)¥7=0, the big exponential map Q1 (n@e)
in Theorem is given by

vin®e) = (expp, v(Env(Ge)))n=012,., (4.4)

where G, € D(V) ® J4 o(X) is a solution of (1 — ¢ ® pr)G. =n®e and =, v is as in (3.4).
Taking

o oo
Ge=Ge=> (¢p@er)"(n@e)=> ¢"noe™,
m=0 m=0

we obtain
—(n+1)

Env(Ge) = p~ "D (oD @ NGET (e,

oo
_ m—(n+1)
=Y (o) "M@ e™ (€n—m)-

m=0

(4.5)
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Put z, = pry (2) and G, = Gal(K,,/Q,). From the definition of the Coleman map Col, and
using in (4.4) and (4.5)), we thus find that

[pr, (Cols(2).m] =

© -1 nt+l-m _ m—(n+1) n+l—m
Yo ey e ) Y () e @ e (en-m)™ Tl |
m=0 |e&, reGn

where exp}i{ v is the Bloch—Kato dual exponential map.
On the other hand, it is immediately seen that

(F:Qp]
. 1 i ;
P (Bcory i V) = ey 2 P (80 el
oo - Hoo] 4=

and from (4.6) we find that
o o7yt -
pry (270, whp)= Y (2" expg, v(Env(Ge))rm 7z,
’YEGAn
U*j -1 —
=Trp,/q, Z eXp}mV(zno ! )7’kma:n,V(Ge)
'yeén Vv
o0 [F3Qp] L
N _10_17]+n+17m _ rm,(n+1) i+n+l—m
=2 2 | 2 e, ), Y (o) " @ e (€n—m)70 7k,
m=0 i=1 veGn 7€Gn
F:Qp] i
= > [prg, (Cole(z™)7b). ]

=1

Taking the limit over n, we thus arrive at

<i,coer/Koo (W) =———>— [prkw(COIZ(i"J])Ué),n} 06

using (3.9) for the second equality. Finally, writing g, = p(1 + X) for the isomorphism p in
1) one has gZO Z(ei,l) = (pi € Q,°, which immediately implies the relation
pri (Col’(2)) - aéyc = prkw(Coln(i)"é).
Together with (4.7)), this concludes the proof. O
We shall also need the following result.
Lemma 4.4. The projection of w" to H(F,V) is given by
1— pflgofl
T T g).

prp(w') = €XPryv ( 1—o
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Proof. Let g =n® e and let G(X) € D(V) ® 74 o(X) such that (1 — ¢ ® pr)G = g. Then

G(eo) =n®e(eg) —n+ (1—) 'n,

and by definition,

prp(w") = corp, /p(Z0,v(G)), (4.8)
where 2oy (G) is as in (3.4). Equation and the fact that ¥ re(X) = 0 imply that

> (X @r () =0,

ceFFp]

from where we obtain
Trayp(G™ (@) = Y m@elq) —n+(l-¢) 'n=

reGal(Fo/F)

Together with , we thus see that

pp—1
1—o "
—

1

prp(w") = exppry Trg /p (PA‘PA(GH_I(EO))) =exppy (L—p e A —¢) '),

concluding the proof. O

Recall the identification K, = Q,, and let H. (Q,,V) € H'(Q,, V) be the subspace given
by HY(Q,, ﬂ;V). As is well-known, H} (Q,, V) agrees with the Bloch-Kato finite subspace.
Let logqy : H. (Q,,V) — D(V) be the Bloch-Kato logarithm map, and denote by log,,, »
the composition

lo. —w -1
log,,., - H(Q, V) —22Y, p(y) {E8t Jan, q (4.9)
For a global class z € HY (K., V), put
Col’(Locy(z)) == . Col"(Locg(z” ))o € W[l], (4.10)
OEFoo/f‘oo

where Locy : HY (K., V) — HY(KL, V) is the restriction map, and let .J be the augmentation
ideal of W[I's].

Theorem 4.5. Let z € ﬁl(Koo, V), and denote by v be the largest integer r such that
Col"(Locy(z)) € J" and Col"(Locy(2z)) € J",

where z = 7" for the complex conjugation 7 € Gal(K/Q). Then for every 0 < r < t, the class

z = pry(z) belongs to SI(JT)(E/K) and for every x € SS") (E/K), we have

1 —pilap

W) (z,x) = — -

. (Col”(Locp(z)) -log,, () 4 Col"(Locy(Z)) - longp(f)) (mod J"T1),

1—oap
where T = 27
Proof. The inclusion z € S,(,T) (E/K) follows immediately from Theoremm Let z € SI(,T) (F/K),

and put
Wy 1= corFoo/koo(W") c HL (Ko, V).

Then, since dimgq, H} (Qp, V) = 1, we can write
Locy(z) = ¢ prq, (wy)
for some ¢ € Q. Since prq (Wyg) = corp/q, (W"), from Lemma and (3.14)) we see that

-1
p

1—play’

1 11—«
(logq,,v(prq, (Wg)),we @t~ )ar = [F: Qp] -
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from where we deduce that

1-— p_la _
P Q) ok (),
P

Together with the formula in Theorem this gives the equality

C

1 fp_lap

r . —1
o1 — o1
X Z logwEm(x) - (Locg(z )’Wm>f<ooo + IngE,p($) - (Locy(z )’Wwf(ooa
O’Eroo/foo
in J7/J"*L. Since he =1 (mod J), as is immediate from the defining relation p(14+X) = he-e
and the fact that e(0) = 1, the result now follows from Proposition O

5. PROOF OF THE MAIN RESULTS

We begin by recalling the setting of Theorem [A]in the Introduction. Let E/Q be an elliptic
curve of conductor N with good ordinary reduction at the prime p > 3, and assume that F has
root number +1 and L(E,1) = 0 (so, of course, ords—1 L(E,s) > 2). Let K be an imaginary
quadratic field of discriminant prime to N in which (p) = pp splits, with p the prime of K
above p induced by our fixed embedding Q — Qp. Let ¢ be a ray class character of K of
conductor prime to Np, and as in Conjecture [I.2] assume that

(a) L(E®,1)- L(E/K,x,1) #0,
(b) x(p) # 1,
where x = ¢/¢7. In addition, we assume that

(c) Elp] is irreducible as a Gg-module,
(d) N~ is the squarefree product of an odd number of primes,
(e) Elp| is ramified at every prime ¢|N—,

where N~ is the maximal factor of N divisible only by primes inert in K. Let (f,g,g") be
the triple consisting of the newform f € Sp(T'o(IN)) associated to E and the weight one theta
series associated to 1 and 1!, respectively. Finally, put a = 1 (p) and 8 = 9 (p).

5.1. Generalized Kato classes. By construction, the Hida families

g=9,=0y(5), g =g, =0,1(5) € O[S][q]

considered in §2.4specialize at S = v —1 to g, and g’ _,, the p-stabilizations of g and g* with
Up-eigenvalue a and a1, respectively. Thus for every choice of test vectors ( f 2 G0:Gh-1) the
O[S]-adic class k(f,g,G5-1) in 1) specializes to the generalized Kato class

Faat (9,97 = 6(f,Gadl1)|5=v—1 € HY(Q, Vigg+),

where Viggr := V@ Vg @ V.
Varying over the possible combinations of roots of the Hecke polynomial at p for g and g*,
we thus obtain the four generalized Kato classes

Ra,a—1 (f7 g, g*)a Ra,p-1 (f: g, g*)a KRB a-1 (f7 g, g*>7 Kkp,p—1 (f: g, g*) S HI(Q7 Vfgg*)- (51)
Note the Gg-module decomposition ([1.7) yields
HY(Q, Vi) ~ HY(Q,V,E) @ H(Q, V,E ® ad’V,(g))
~HY(Q,V,E) & H(Q,V,EX) @ H'(K,V,E © X),

where F¥ is the twist of E by the quadratic character corresponding to K.
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Lemma 5.1. The projections to H(Q, V, E) of each of the classes in (5.1)) lands in Sel(Q, V, E).

Proof. Since we are assuming L(FE,1) = 0 and (a) above, the result follows from the vanishing
of Sel(Q, V,EX) and Sel(K, V,E ® x) by the same argument as in Lemma O

5.2. Vanishing of x, g-1(f,9,9") and x3 ,-1(f, g,g"). This part follows easily from the work
of Darmon-Rotger [DR21] and Bertolini-Seveso—Venerucci [BSV21].

Proposition 5.2. k, 3-1(f,9,9") = kga-1(f,9,9%) = 0.
Proof. Let
9o = 0ya(S2) € O[S]ld].  g5-1 = 0y-15-1(S3) € O[S3][d]
be CM Hida families as in but passing through the specialization (g, gg-1) rather than
(gors Ga—1)- Let
K<f79a9271>(s2783) e Hl(Q7V}ga9271) (5'2)

be the two-variable restriction of the three-variable cohomology class constructed in [DR21]
and [BSV21] (after a choice of test vectors g,, gz-1 that we omit from the notation), and
consider the further restriction

K= k(. 9ag5-) (v +T) = 1,v(1+T)7' —1) € HI(Q,V}ga(gZ_l)L),
where Vi ) = (V,E @ Ind2x) @ (V,E @ Ind¥WL7). Thus ' is the restriction of
to the line of weights (£,2 — ¢) (¢f. w(f,3g*) in , where the line (4, ¢) is considered).
Then by definition,
Kap-1(f,9,9") = k'(v—1,v—1).
As in Theorem by [DR21, Prop. 5.8] the restriction Loc, (k") belongs to the natural

image of H'(Q,, ﬂ++V}g in Hl(Qp,VJr ), where

a(g;_l)b) f9a(97 1)

1 _ -1 1— 1—
T Vg gy = WE X+ FIVE @ (U + W),

Thus the projection k4, of k* to H'(Q, V},E@Ind%\ﬂr}q) ~ HY(Ko, VpE) is crystalline at p,
and therefore defines a Selmer class for V,E over the K, /K. Since under our hypotheses the
space of such anticyclotomic universal norms is trivial by Cornut—Vatsal [CV05], we conclude
that k., = 0. As in the proof of Theorem it follows that r, g-1(f,9,9%) = 0. The
vanishing of rg ,-1(f,g,9") is shown in the same manner. O

5.3. The leading term formula. Let J C A be the augmentation ideal, and let
t=ord; (O k) :=sup{s > 0| Oy € J°}.

Since © ¢, is nonzero by [Vat03], ¢ is a well-defined non-negative integer, and since L(E/K, 1) =
0 under our hypotheses, t > 0 by the interpolation property. Let

Sel(K,V,E) =S 28 2. 280 ... D 5l (5.3)

be the filtration in Theorem where we have put SI(,i) = Sz(,i) (E/K) for the ease of notation,
and let

W) o S0 x S5 — (J1 /) @z, Q,
be the associated derived p-adic height pairings. Since we assume that N~ is the squarefree

product of an odd number of primes, we have SI(;OO) = 0 by part (b) of Theorem and the
work of Cornut—Vatsal [CV05].
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Theorem 5.3. Let v = ord;(Of/k). Then
Koo (f:9.97) € 5, (54)

and that for every for every x € Sz(f) we have
(¥ . L-poy o1
hp (’fa,a—l(fag,g ),x) = 1_70451 : @f/K : IngE,p(CU) -C (mod J™7), (5.5)

where o, is the p-adic unit root of X* —a,(E)X +p = 0 and C is a non-zero algebraic number
with C? € K(x, ap)*.
Proof. This is the combination of Corollary [3.7] and Theorem O

5.4. Non-vanishing of x, ,-1(f,g,9"). Here we prove the implication (1.10] in Theorem
Thus suppose that dimgq,Sel(Q, V,E) = 2. Since L(EX,1) # 0, we have Sel(Q, V,EX) = 0
by [Kol8§| (or, alternatively, [Kat04]), and therefore

Sel(K,V,E) = Sel(Q,V,E), (rt,7r7)=(2,0), (5.6)

where 7+ denotes the dimension of the +-eigenspace of Sel(K, VpE) under the action of the
complex conjugation 7. Since 7 acts as —1 on J/J?, part (4) of Theorem gives

h (@, y7) = (=1)"hi) (z,y), (5.7)

and hence from 1) we see that for < odd, the null-space of hg) (i.e., SZ(,HI)) is either zero or
two-dimensional, with the latter case occurring as long as S,()Z) # 0. Since on the other hand

)

hg) is a non-degenerate alternating pairing on S}f) / Sg“ for even values of 4, unless S,gi) =0,

it follows that (5.3) reduces to
Sel(Q, V,E) = S:z(Jl) — 51(72) — = ](77") ) Sg“) — = I()OO) =0 (5.8)
for some even r > 2. By Theorem[4.1] we deduce that there is a A-module pseudo-isomorphism
Selyos (B/ Koo)' ~ (AJ)®2 @ M,

where M’ is a torsion A-module with characteristic ideal prime-to-J. Therefore letting £, € A
be any generator of the characteristic ideal of Sely(E/Ko )Y, we have

ord (L) = 2r.

Finally, the divisibility (@? / i) 2 (£p) arising from [SUI4, §3.6.3] implies that r > v, and
hence Sz(f) = Sel(Q, V,E) by |D Since by our hypothesis that Sel(Q, V,E) # ker(Loc,)
we can find z € Sel(Q, V,E) with log x) # 0, the non-vanishing of x, ,-1(f,g,g") now

wpp(
follows from the leading term formula ([5.5)).

Remark 5.4. The same argument as above with 3 in place of « establishes the non-vanishing
of kg 3-1(f,g,g*) under the given hypotheses.

5.5. Analogue of Kolyvagin’s theorem for r, ,-1(f,g,g"). Here we prove the implication
(1.9) in Theorem [Al As in we see that Sel(K,V,E) = Sel(Q, V,E) and the non-trivial
jumps in (5.3]) can only occur at even values of i. Thus ([5.3) reduces to

Sel(Q, V,E) = Sl(?l) == 51()%) ) SISQ”H) == 5}(}27‘15) ») SZ()%H) == 5}(200) -0
(5.9)
for some 1 < r; < --- < 1y, and by Theorem we have

Selpoo(E/Koo)V ~ (A/JZrl)dl DD (A/JQTt)@dt @M’
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where d; = dime(Sz(,Qr") /Sy > 2 and M is as in Letting £, € A be a generator of
the characteristic ideal of Sel,(E/K)Y, we therefore have

ordj(Ly) = 2(r1dy + - - +1dy), dimqg,Sel(Q,VpE) =dy + --- + d. (5.10)
Suppose now that x, ,-1(f,9,9") # 0. By || it follows that Sl(f) # 0 and therefore
v < 2ny. (5.11)

On the other hand, the divisibility (£,) 2 (@?c / ) established in [BDO05| (as refined in [PW11])
implies that r1d; + -+ - 4+ rydy < t; together with (5.11]) this yields

2ry = ridy 4o rydy = 2(r1 + - 1),
from which we conclude that ¢t =1, d; = 2, and dimq,Sel(Q, V,E) = 2.

5.6. Proof of Theorem This will follow from essentially the same argument as in
but without the need to appeal to [SUI14].

Let the hypotheses be as in the statement of Theorem B and assume that ordr (0, ) = 2.
Then Theorem gives the inclusion

Ka,a-1 (f?ga g*) € 51(72)

As in §5.4) the assumption that L(EX 1) # 0 implies that Sel(K, V,E) = Sel(Q, V, E). Since
by 1' the 7-eigenspaces of Sel(K, V,E) are isotropic under hél), we see that

S{?) = Sel(K, V,E) = Sel(Q, V,E).
Finally, since our assumption that £(Q) has positive rank implies that Sel(Q, V},E) # ker(Loc,)

(see Remark [1.5) the non-vanishing of s, -1(f,g,g") follows from the leading term formula
of Theorem The same argument yields the non-vanishing of x5 3-1(f, 9,9").

5.7. Application to the strong elliptic Stark conjecture. We keep the setting from the
beginning of this section, but assume in addition that #II(E/Q)[p™] < oo.

As explained in [DR16, §4.5.3], the p-adic regulators appearing in the elliptic Stark conjec-
tures of [DLR15] all vanish in the setting we have placed ourselves in. As a remedy, in [DR16]
they formulated a strengthening of those conjectures in terms of certain enhanced requlators;
in our setting they are given (modulo Q*) by

Log,(P A Q) = P ®log,(Q) — Q ® log,(P)

where (P, Q) is any basis of E(Q)®zQ. The strong elliptic Stark conjecture then predicts that
the generalized Kato classes # o-1(f,9,9") and kg g-1(f, g,g*) both agree with Log,(P A Q)
up to a nonzero algebraic constant.

In the direction of this conjecture, our methods show that r, o-1(f, g,9%) and kg g-1(f, g, 9")
span the same p-adic line as Log,(P A Q) inside the 2-dimensional Sel(Q, V,,E).

To state the application, we identify J*/J"! with Z, in the usual manner by choosing a
topological generator of ', and let G(t/)K € Z, ~ {0} denote the image of O/ (mod JeH
under this identification.

Theorem 5.5. Let the setting be as in the beginning of Section@ and let v = ord (O ¢/ ).
Then, as elements of Sel(Q, V,E) ~ E(Q) ®z Q,, we have
(¥)

. 1-pla Ok
Ka,a—l(fagag ) =C- P _1p ) // 'Lng(P/\Q)a
L= 1p’(P,Q)

where C is nonzero and such that C? € K(x,ap)*. The same result holds of kgp-1(f,9,9%)-
Proof. Immediate from the leading term formula of applied to x = P and Q. O




26 F. CASTELLA AND M.-L. HSIEH

Remark 5.6. The term hz(;)(P, Q) recovers the derived p-adic regulator Ry, introduced in
[BD95]. Thus Theoremlinks the conjectural algebraicity of the ratio between x,, o-1(f, g,9")
and Log,(P A @), as predicted in [DRI6, §4.5.3], to a refinement of the p-adic Birch and
Swinnerton-Dyer conjecture in [BD96, Conjecture 4.3] formulated in terms of Rge;.

6. APPENDIX. NON-VANISHING OF K, o-1(f,9,9"): NUMERICAL EXAMPLES

In this appendix, we exhibit the first examples of elliptic curves F over Q of rank two with
non-vanishing generalized Kato classes by numerically verifying the conditions in Theorem [B]

Setting. In the examples tabulated below, we take elliptic curves E/Q with
ords—1 L(E, s) = 2 = rankgz E(Q)

of conductor N € {q,2q}, with ¢ an odd prime, and pairs (p, —d) consisting of a prime p > 3
and a squarefree integer —d < 0 such that:

e K = Q(v/—d) has class number one, ¢ is inert in K, and L(EX,1) # 0,

e p splits in K and E[p] is irreducible as a Gg-module.

Note that such pairs (p, —d) can be easily produced. Indeed, [Rib90, Thm. 1.1] implies that
E[p] must ramify at N~ = ¢, and the irreducibility of E[p| can be verified either by [Maz78|
when p > 11 or by checking (from e.g. Cremona’s tables) that E does not admit any rational
m-isogenies for m > 3.

For every such triple (E, p, —d), there is a ring class character x of K of ¢-power conductor
for some prime ¢ { Np such that L(E/K,x,1) # 0. (In fact, there are infinitely many such x,
as follows from [Vat03, Thm. 1.3] and its extension in [CHI8b, Thm. D].) Writing x = /1"
and letting g = 6y and g* = 6,,-1 we then have the class

’%oc,oﬁl(fv g,g*) € Sel(Q, ‘/pE)

as in (see Lemma . By Theorem B, to verify the nonvanishing of k, o-1(f,g,9) it
suffices to check that
OI‘dT(@f/K) = 2. (6.1)

Verifying order of vanishing 2. Let B be the definite quaternion algebra over Q of discriminant
q, let R C B be an Eichler order of level N/q, and let C1(R) be the class group of R. Let
¢5:Cl(R) — Z

be the Hecke eigenfunction associated to f by Jacquet-Langlands, normalized so that ¢ # 0
(mod p). Fix an isomorphism i), : R ® Z, ~ M3(Z,) and an optimal embedding O — R
such that K is sent to a subspace consisting of diagonal matrices, and for a € Z; and n > 0

put
—1,(1 ap™ =~
=i (5 ™) B

where B = B Ry, Z is the adelic completion of B. R
Consider the sequence {P¢},,>¢ of right R-ideals given by P¢ := (rp(a)R) N B, and define
the n-th theta element Ok ,, € Z,[T] by

pt—1
Opcnt= qrr 3 O (o 65(B) —on(PD) 047,
=0 a€pp—1

where a, is the p-adic unit root of 2% — a,(E)zr +p and u =1+ p.
By the definition of Ok (see e.g. [BD96, §2.7]), we have

Gf/KE@f/K,n (mod (1—|—T)pn—1)
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Since (p", (14+T)?" —1) C (p",TP), in the examples listed in the following tables we could verify
(6.1) by computing Ok, mod (p",T?) for n = 2 and 3, respectively. The computations
were done using the Brandt module package in SAGE.

TABLE 1. Examples with ordp(0y/x) = 2 determined mod (p?,T?)

E p | —d | Oy mod (p%,TP)

389al | 11| —2 | 1072 + 6973 + T4 + 103T° + 10617 + 667" 4 117% + 5577 + 110710

433al | 11| —7 | 8872 + 2273 + 86T* 4 71° + 1076 4 1277 + 2978 + 887" 4 487110

446¢1 | 7 | =3 | 2272 + 2773 +3T* + 161° + 1176

563al | 5 | —1 | 1872+ 973 +57*

643al | 5 | —1 |T?+21T*

709al | 11| —2 | 2772 4 11473 + 3T* + 1475 + 36T° + 1577 + 42T° + 44T° + 91710

718b1 | 5 | —19 | 372 42073 + 12T*

794al | 7 | —3 | 47T? + 2373 4 8T* 4 24T + 776

997bl | 11 | —2 | 71724+ 4173 4+ 83T* + 1975 + 11476 + 11177 + 10178 4 4677 + 102710

997cl | 11 | —2 | 5472 4 3873 + 36T+ + 81T° + 8276 + 18T7 + 72T + 9577 + 4710

1034al | 5 | —19 | 2272 4473 4+ 6T

1171al | 5 | =1 |6T?+ 673 + 207"

1483al | 13 | —1 | 12872 4 14873 + 127T* + 162T° + 3075 + 14977 + 14178 + 977° +
49710 4 1371 4 29712

1531al | 5 | —1 |16T?+ 773+ 2174

1613al | 17 | —2 | 12872 + 16573 + 224T* + 2871 + 1407 + 21177 4 147T® + 160T° +
5970 + 1227 4 195T"2 + 43T + 2077 + 214715 4 285716

1627al | 13 | —1 | 1017% 4 1517 + 58T 4 104T° + 3T° 4 16577 + 1287 + 637 +
1770 4 55T 4 166712

1907al | 13 | —1 | 7272 + 13173 + 327* + 14275 + 84T + 10477 + 90T + 10577 +
38710 4+ 92711 4 116712

1913al | 7 | —3 | 4172 + 1673 + 28T* 4 237" + 147T°

2027al | 13 | —1 | 5472 + 12873 + 65T* + 9375 4 8376 + 16177 + 11378 4- 13379 +
49710 + 15171 4 13712

TABLE 2. Examples with ordr (6, k) = 2 determined mod (p*,T?)
E p | —d | ©pk mod (p3,TP)
571bl | 5 | —1 | 10072 4 1007% + 157"
1621al | 11 | —2 | 10897 48077 +986T° + 5867 + 109877 + 7727° + 22877 4+ 1296T"°
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