ON THE p-ADIC VARIATION OF HEEGNER POINTS
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ABSTRACT. In this paper, we prove an “explicit reciprocity law” relating Howard’s system of
big Heegner points to a two-variable p-adic L-function (constructed here) interpolating the
p-adic Rankin L-series of Bertolini-Darmon—Prasanna in Hida families. As applications, we
obtain a direct relation between classical Heegner cycles and the higher weight specializations
of big Heegner points, refining earlier work of the author, and prove the vanishing of Selmer
groups of CM elliptic curves twisted by 2-dimensional Artin representations in cases predicted
by the equivariant Birch and Swinnerton-Dyer conjecture.
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2 F. CASTELLA

1. INTRODUCTION
Let f =32, ang™ € Sar(T'o(N)) be a newform of weight 2r > 2, fix a prime p { 6N, and

let L be a finite extension of Q, with ring of integers O containing the image of the Fourier
coefficients of f under a fixed embedding 7, : Q < Q,,. Denote by

pr: Gq = Gal(Q/Q) — Autr(Vy(r)) ~ GLo(L)

the Kummer self-dual twist of the p-adic Galois representation associated with f. Let K be
an imaginary quadratic field of odd discriminant —Dg < —3. Let O be the ring of integers
of K, and assume that K satisfies the classical Heegner hypothesis relative to IV:

(heeg) there is an integral ideal M of K with Ox /M ~ Z/NZ;
equivalently, every prime ¢ | N either splits or ramifies in K, with ¢> { N in the latter case.

The first purpose of this paper is to complete earlier work of the author [Cas13| comparing
two natural constructions of a cohomology class of “Heegner-type” attached to the pair (f, K).
For the first one of these classes, let Sel(K, V¢ (r)) C H' (G, V¢(r)) be the Bloch-Kato Selmer
group for Vf(r)|Ga1(6 /K)" By [Nek00], the image under the p-adic étale Abel-Jacobi map of

classical Heegner cycles [Nek95] on the (27 — 1)-dimensional Kuga—Sato variety of level N give
rise to a class

@?fK(AEeeg) € Sel(K, Vi(r)).
For the second class, assume that f is ordinary at 1,, i.e.:
(ord) a, € O.
Fix a Gq-stable O-lattice Ty C Vy, let py : Gq — GLa(kr) be the associated semi-simple
residual representation, where ky, is the residue field of L, and assume that

(irred) py is irreducible.
Let D, C Gq be a decomposition group at p. By hypothesis (ord), the restriction py|p, can

be made upper-triangular, and we shall assume in addition that
(dist) py is D,-distinguished;

i.e., the semi-simplification of p¢|p, is the direct sum of two distinct characters. Suppose that
r=1 (mod p— 1), and let

£=3 au eI

be the Hida family passing through f. Thus I is a finite flat extension of O[[X]], and for every
continuous O-algebra homomorphism v : I — Q,, satisfying v(1+ X) = (1 + p)*~2 for some
integer k, > 2 with k, =2 (mod p — 1), the g-series f, := >, v(a,)g" is such that

ky—1
p

v(ap)
for some p-ordinary newform f,, € S, (I'o(IV)), with f = f, for a unique v = vy with k, = 2r.
Under the above hypotheses, Howard’s construction of big Heegner points [How07b] produces
a class

f, = fu(q) — fu(d’)

30 S Hl(GK7 TT)7
where TT is a self-dual twist of the big Galois representation associated to f. Under some
additional hypotheses on py when (Dg, N) > 1, one can show that 3¢ lies in the so-called strict
Greenberg Selmer group Sela, (K, TT) ¢ H'(Gx, T1), and so its image under the specialization
map vy yields a second class v¢(3¢) € Sel(K, V(r)).
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Theorem A (Theorem 6.5). Assume in addition that p = pp splits in K, p¢|a, is irreducible,
and py is ramified at every prime q | N which is non-split in K. Then

(Y e
o= (1-3755) v par

where ug = |05 |/2.

This subsumes the main result of [Casl3], which only implies the equality in Theorem A
under the assumption of Howard’s “horizontal nonvanishing conjecture” [How07b, Conj. 2.2.2]
and the nondegeneracy of the cyclotomic p-adic height pairing. The class 3q is obtained from
Howard’s big Heegner point X; of conductor 1, and more generally Theorem 6.5 establishes
the relation between the Selmer classes constructed from clasical Heegner cycles of conductor
¢ > 0 prime to Np and the corresponding higher weight specializations of the big Heegner
point X.. Thus Theorem 6.5 answers a question raised by Howard (see [How07b, p. 93]).

As in [Casl13], the proof of Theorem A follows from relating the cohomology classes under
consideration to special values of L-functions. More precisely, extending work of Bertolini—
Darmon-Prasanna [BDP13| and Brakocevi¢ [Brall], in [CH18] we constructed an anticyclo-
tomic p-adic L-function .7, ,(f) interpolating central critical values of the L-function of f
twisted by certain Hecke characters of K. Moreover, we constructed a compatible system of
cohomology classes z interpolating the p-adic étale Abel-Jacobi images of (generalized) Heeg-
ner cycles of p-power conductor, and extending the p-adic Gross—Zagier formula of [BDP13]
we obtained an “explicit reciprocity law”

(1.1) (Low(zp),wp @t 72) = =% 4 (f)

relating %} (f) to the image of zy under a Perrin-Riou logarithm map. Let Hp~ = J,, Hp»
be the union of the ring class fields of K of p-power conductor. Denote by W the completion
of the ring of integers of the maximal unramified extension of Q,, and set Iy := H@sz. In
Section 2 of this paper, we construct a two-variable p-adic L-function

Zpe(f) € Iy[[Gal(Hp /K],

where £ is a certain [-adic anticyclotomic character of G, interpolating the p-adic L-functions
of [CH18] attached to the different specializations f, of f; in particular,

(1.2) vi(Ze(f) = Zu(f).
The key new ingredient in our proof of Theorem A is then the connection that we find between
%, ¢(f) and the system

300 € Hiy (Hpe /H1, TT) = l'&nHl(Hpn,TT)
n
of Howard’s big Heegner points of p-power conductor. To simply state that result, we suppose
that Hy = K in the next paragraph. By ordinarity, for each place v of K above p there is a
G,-stable I-submodule .# Tt C TT of rank 1, and as shown by Howard, the image of 3.
under the restriction map res, : Hj (Hye /K, TV) — H{ (Hpe ,,/K,, TT) lands in the image
of the natural map H} (Hyx /Ky, ZTTT) — HL (Hpe /Ky, TT). In particular, the twist
35;1 of 34 by the character €1 yields a class
—1
resp(35% ) € Hiy(Hpoo p/ Ky, F1T),
where Z1T .= ZTTt @ €71 Let
A =a, - eeyeOE ! (Froby) — 1,

where Frob, € G, is a geometric Frobenius element, and set iw = ]I[/\_1]®ZPW.
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Theorem B (Theorem 5.3). There is a Perrin-Riou big logarithm map
Lo+ H' (Hyee /Ky, Z1T) — T [[Gal(Hp /K]
for the local extension Hpe /K, such that

-1
Lo (resy(35, ) = Zpg(f) 0oy,
where 01 := recy(—1)[n 00 € Gal(Hpe/K).

The construction of the two-variable Perrin-Riou map [,Ef is given in Section 3, building
upon work of Ochiai [Och03] and Loeffler—Zerbes [LZ14], and the proof of the “explicit reci-
procity law” of Theorem B is obtained in Section 5 after a suitable extension of the calculations
in [Cas13]. With this result in hand, the proof of Theorem A follows easily by specializing
the equality in Theorem 5.3 at vy, using (1.2) and the interpolation property of the map ng,
and comparing it with the equality in (1.1).

The second purpose of this paper is to exploit the p-adic variation of Heegner points in Hida
families to establish certain new cases of the equivariant Birch—Swinnerton-Dyer conjecture
for rational elliptic curves with complex multiplication. More precisely, let A/Q be an elliptic
curve with CM, and let

0:Gq — Autg(V,) ~ GLa(E)

be a 2-dimensional odd and irreducible Artin representation factoring through a finite quotient
Gal(F/Q) and with values in a finite extension £ C C of Q. Let T,(A) be the p-adic Tate
module of A, and set V,,(A) := Q,®z,T,(A). Associated to the compatible system V},(A)®1,V,
of p-adic representations of Gq is a Artin-Hasse-Weil L-function L(A/Q, 0, s). This is defined
for Re(s) > 3/2 by an absolutely convergent Euler product of degree 4, and by [Hec27]
and [KWO09] it is known to admit analytic continuation to the entire complex plane, with a
functional equation relating its values at s and 2 —s. The equivariant Birch—-Swinnerton-Dyer
conjecture predicts that

(1.3) ords—1 L(A/Q, 0, 5) = dimgHomeg (V,, A(F) ),
and that
(1.4) Homgg (Vo, Ty (A/F) ) = {0}

for all primes p, where LI, (A/F) is the p-primary component of the Tate-Shafarevich group
of A/F, and for any abelian group M we have set Mg := M ®z E. Let Ny and N, be the
conductor of A and p, respectively, and denote by Sel(F,V,A) C H' (G, V,(A)) the Bloch—
Kato Selmer group of V},(A)\Gal@/F).

Theorem C. Let A/Q be an elliptic curve of conductor N and with complex multiplication
by an imaginary quadratic field K, let p{ 6NyN4 be a prime, and let P be a prime of E above
p. Assume that:

N, and Ny are coprime;

p = pp splits in K;

K satisfies hypothesis (heeg) relative to Ny;
o(Froby) has distinct eigenvalues modulo B.

If L(A/Q, 0,1) # 0, then

Homgq, (V,, Sel(F, Vp(A)) ) = {0}.
In particular, (1.3) and (1.4) hold.
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The conclusion that (1.3) holds under the nonvanishing of L(A/Q, g, s) at s = 1 was already
contained in earlier work of Bertolini-Darmon-Rotger [BDR15, Thm. A], while recent work of
Kings—Loeffler—Zerbes [KLZ17, Thm. 11.7.4] establishes an analog of Theorem C for rational
elliptic curves without complex multiplication (the CM case is excluded in [KLZ17] by the “big
image hypothesis” of [loc.cit., §11.1]). Thus the new content of Theorem C is the vanishing of
the o-isotypical component of I, (A/F)g for “half” of the primes p under the nonvanishing

of L(A/Q,0,1).

Let us conclude this Introduction with a few words about the proof of Theorem C. Denote by
L(f/K,x, s) the Rankin-Selberg L-function for the convolution of a cusp form f € Si(I'1(N))
with a Hecke character x of K. From the explicit reciprocity law of Theorem B, we deduce a
proof of the implication

L(fu /K, XNP/20) £0 = v(3.)X " #0,

forv:I— Qp of weight &k, > 0 and certain anticyclotomic Hecke characters x. Since Howard’s
systems of big Heegner points satisfies the compatibilities of an anticyclotomic Euler system,
one can deduce from Kolyvagin’s methods (as extended in [CH18, §7.2] to the anticyclotomic
setting) a proof of the implication

L(fu /K, xN*/20) £0 = Sel(K,V,,) = {0},
where Sel(K,V,,y) is the Bloch-Kato Selmer group for V¥, (k,/2)|q, ® x. Since by [KW09]
any Artin representation p as in Theorem C is attached to some g € S1(I'1(N,)), taking x so

that YIN/2 corresponds to the grossencharacter of A, f to be a Hida family passing through
g, and specializing the resulting 3., to weight one, the proof of Theorem C follows.

Some notations and definitions. For any place v of a number field E, let rec, : E} — G%bv and

recg : EX\AL — G’aEb be the local and global reciprocity maps, respectively, with geometric
normalizations. If ¢ : Z) — C* is a continuous character of conductor p", the Gauss sum of
¢ is defined by

g@) = Y. dwelu/p"),
u€(Z/p"Z)*

where e(z) = exp(2miz), and if x : Q, — C* is a continuous character of conductor p", we

define the e-factor of x by e(x) = p"x ' (p")g(x~ )~ .

2. p-ADIC RANKIN L-SERIES

In this section, we give the construction of a two-variable anticyclotomic p-adic L-function
%, ¢(f) attached to a Hida family f and an imaginary quadratic field K in which p = pp splits.
Such construction closely parallels the one-variable construction by Brakocevié¢ [Brall], and
was essentially contained in [Bral2].

2.1. Geometric modular forms. Fix a prime p, and let N > 3 be an integer prime to p.

Definition 2.1. Let k be an integer and let B be a Z,)-algebra. A geometric modular form
f of weight k on I'1(Np*°) defined over B is a rule which assigns, for every B-algebra C' and
every triple (A,7,w) ¢ consisting of:

e an elliptic curve A/C;
e a I';(Np*>)-level structure n on A, i.e., an immersion
n=n" ) py @ e — AN @ A[p™]

of group schemes over C;
e a C-basis w of HY(A, Qk/c),
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a value f(A,n,w) € C depending only on the isomorphism class of (A, n,w) over C' and such
that:

(1) For any B-algebra homomorphism ¢ : C' — C’, we have
f((Aﬂ?vW) ®c C,) = Qp(f(Aa"%w));
(2) For all A € C*, we have
F(Am, M) = AP (A, 0);

(3) Letting (Tate(q), Ncan, Wean)/B((q)) Pe the Tate elliptic curve G.,./q?% equipped with its
canonical level structure nc,, and differential wean, we have

f(Tate(q), Neans Wean) € Bllq]]-

Let Ig(N) /Z be the Igusa scheme parameterizing isomorphism classes of pairs (A4,7)/g
consisting of an elliptic curve A equipped with I'; (Np™)-level structure n over arbitrary locally
Noetherian Z,)-schemes S. The generic fiber Ig(N),q of Ig(N) is given by

(2.1) Ig(N))q = Im Y1(Np) /q,

where Y1(Np?) /q is the usual open modular curve of level I't (Np®), and a geometric modular
form f as in Definition 2.1 can be viewed as a section of a certain sheaf on Ig(N),z "

2.2. p-adic modular forms. For any p-adic ring R (i.e., R ~ @m R/p™R), let IAg(N)/R be
the completion of Ig(IN) /g along the closed subscheme Ig(N) /g ®r R/pR.

Definition 2.2. Let R be a p-adic ring. A p-adic modular form of tame level N defined over
R is a function on Ig(N)/g. Let Vj,(N; R) be the space of such functions, so that

Vo(N5 R) i= H(Ig(N) /i, Ogy ) )-

Denote by I'"* the group 1+ pZ, C Z). For k € Z, and € : T — p,(R), we say that a
p-adic modular form f € V,(N; R) has weight (k, ) if it satisfies

Fu)p(An) = F(A 0P, mpu) = e(u)u® f(A,n),
for all uw € TV and any point (A4,7) = (4,7®),n,) of IAg(N)/R valued in a p-adic R-algebra.

Associated with a geometric modular form f on I'; (Np>) defined over R there is a p-adic
modular form f € V,(N; R) defined by the rule

~

f(A ) = f(A,n,0(mp)),

where @ (1),) is the differential on A arising from the isomorphism of formal groups 7, : G, ~ A
induced by 7 : pryee — A[p™].

2.3. IT-adic modular forms. Let O be the ring of integers of a finite extension of L of Q,,
and set AZ" = O[[I™]].

Definition 2.3. Let I be a finite flat A%'-algebra, and denote by Xo(I) the set of O-algebra
homomorphisms v : I — Q,,. For any k € Z and & : I'™" — p o let

Vke ! Agt — Qp
be the 9-algebra homomorphism defined by u + &(u)u*~2 for u € T'"*. We say that v € Xy (1)
has weight (k,¢) if the composition

A —T1--Q,

is of the form v}, ., and we say that v € X (I) is an arithmetic prime if it has weight (k, ) for
some k € Zzp and € : I — 1,0
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Denote by X&(I) the set of arithmetic primes of I, which we may view (just as Xp(I) itself)
as a subset of Spec(I)(Q,). For each v € Xy (I), let F, be the residue field of ker(v) C I, and
O, C F, be the valuation ring.

Definition 2.4. Let ¢ : (Z/NpZ)* — O* be a Dirichlet character modulo Np, and let I be
a finite flat AF-algebra.

(1) An I-adic modular form of tame level N is a formal g-expansion

£= aug” €]
n=0

such that for all but finitely many v € X§(I) of weight (k, €), the g-series > >° v(a,)q"
is the g-expansion of a p-adic modular form f, € V,(N; O,) of weight (k, ). We denote
by G(N;I) the module of I-adic modular forms of tame level N.

(2) We say that £ € G(V;1) is arithmetic with tame character v if for all but finitely
many v € X§(I) of weight (k,¢), the p-adic modular form f, is the p-adic avatar ﬁ, of
a classical modular form

fv € My(To(Np®), 1hoew® ),

where s = max{1, ordy(cond(e)}, and w : (Z/pZ)* — Z, is the Teichmiiller character;
and we say that f is cuspidal if f,, is a cusp form for all such v. Denote by S®(N, 1g; 1) C
G(N;I) the submodule of cuspidal arithmetic I-adic modular forms of tame character

Yo-
(3) We say that £ € S%(N, ;1) is ordinary if f, is a Up-eigenvector for all but finitely

many v € X§(I), with the Up,-eigenvalue being a p-adic unit, and we let SO (N, 4hg; T) C
S%(N, ;1) be the corresponding submodule. Finally, we say that f is an ordinary
I-adic newform® if for all but finitely many v as above, f, is a p-stabilized newform of
tame level N, i.e., either f, is a newform of level Np®, or is the ordinary p-stabilization
of a p-ordinary newform of level V.

Define
(2.2) Vo (N;T) := V,(N; O) &0,

and let [z] : Z; — O[[Z;]]* be the natural inclusion as group-like elements. The space
Vp(N;1) is equipped with two different actions of z € I'"': one via the diamond operators
(z)p acting on the first factor of (2.2), and the other via multiplication by [z] on the second
factor, composed with the structure map O[[Z)]]* — T*.

Proposition 2.5. There is a canonical I-module isomorphism
G(N;I) = {f € V,(N;I) : f[(z), = [2]f, VZGZ;}.
Proof. See [Hid00, Thm. 3.2.16]. O

Thus, in light of Proposition 2.5, we may evaluate any I-adic modular form f € G(N;1) at
a point = € Ig(N)(I), producing an element f(x) € I such that

(2.3) v(f(z)) = £, (z)

for all v € Xp(I). (Indeed, this follows from the g-expansion principle, since by definition the
specialization property (2.3) holds when z is coming from a Tate curve.) This will be used in
§2.4 to define measures associated with f which, for appropriate choices of x (defined in §2.5),
interpolate special values of L-functions.

Lor alternatively, a primitive cuspidal Hida family, or just a Hida family in this paper.
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2.4. Modular measures. For a compact totally disconnected topological space X (which in
our application will be X ~ A x Z,, with A a finite group) and a p-adic ring R, we denote by
Cont (X, R) the space of continuous R-valued functions on X. Let

Meas(X, R) := Homgs(Cont(X, R), R)

be the space of R-valued measures on X. As usual, if y € Meas(X, R) and ¢ € Cont(X, R),
we denote by [y ¢(z)du(z) € R the value of p at ¢. For X = Z,, the Amice transform of a
measure p € Meas(Z,, R) is the power series «7,(T") € R[[T]] given by
A (T) = em(p)T™,
m=0

where ¢, (1) = fz,, (7)du(z). One easily checks that

[ srante) - (75) s

for alln > 0, and by Mahler’s theorem the rule y +— o7,(T") defines an isomorphism Meas(Z,, R)
R][[T]] of p-adic Banach algebras.

I

Let d be the operator on V,,(NN; R) given by
oo oo
d: Zanq” — Znanq”,
n=0 n=0
and for each m € Z~ let (i) denote the operator given by Y anq¢™ — ), (:;L) ang™.

Definition 2.6. For g € V,(N; R) and z € Ig(N)(R), let pg . € Meas(Zy,, R) be the measure

/ I g,fﬁ( ) d g(x)7

Let U = U, and V be the operators on V,(N;R) given by > anq" — >, anpq" and
donang™ = >, ang™, respectively, in terms of g-expansions. If g € V,,(IN; R) has g-expansion
> o, ang"”, setting

for all m > 0.

¢ =gl1-UV)= > ang" € V,(N;R),
(n,p)=1
it is easily seen that the associated measure p . is supported on Z;.

2.5. CM points. Let K be an imaginary quadratic field of odd discriminant —Dg < —3, let
p > 2 be a prime split in K, and write

pOKf:pﬁ
where p is the prime of K above p induced by our fixed embedding 12, : Q < C,. We shall

assume throughout that K satisfies the following Heegner hypothesis relative to a fixed integer
N > 0 prime to p:

(heeg) there is an ideal Mt C Ok with O /M~ Z/NZ.

The existence of such 91, which will be fixed from now on, amounts to the requirement that
every prime ¢ | N is either split or ramified in K, with ¢? { N in the latter case.

For each positive integer c let O, = Z+cOg be the order of K of that conductor, and let H,
be the corresponding ring class field, so that Gal(H./K) ~ Pic(O.) by the Artin reciprocity
map. For each invertible O.-ideal a prime to Np, let Ay/H. be the CM elliptic curve with the
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complex uniformization Aq(C) = C/a~!. Let a € K* be such that a0, N K = a, and equip
Aq with the T'; (Np)-level structure
Na : My @ Hpeo = Aa[N] @ Aa[p™]
defined in [CH18, p. 576]. The pair (Aq,7,) defines a point z4 € Ig(NN)(V) over the valuation
ring
V= z;l(Ocp) NnK™®,

where K?P is the maximal abelian extension of K. For the ease of notation, set z, := 0,

Write ¢ = ¢,p™ with pt ¢,, and decompose ¢, = ¢} ¢, with ¢} (resp. ¢, ) only divisible by

primes which are split (resp. non-split) in K. We similarly decompose N = NTN~, and set
€t :=cr Ok and N+ := NTOk. Fix a square-root v/—Dg € K, and set

9 := (D +/~Dkg)/2.
Following [CH18, §2.4], we define the matrix ¢(>) = (¢,) € GL2(Q) by
g =1 iqufC;rNjZ%
o g =W-v)" (119 f) if Ok = qq with q | €0 Fp,
and the matrix v, = (y¢,q) € GL2(Q) by
® Yeq=1,if gf cNp,

o= (DY 0k = g with | et
c,q 0 1 ) K qq q p?

1 0 . o
® Yeq = <0 qordq(c)—ordq(N)>a if ¢ ‘ Co NT,

and set &, := ¢(®)y,. Under the complex uniformization

~

[]: 9 x GL2(Q) — Ig(N)(C)

coming from (2.1) and the complex uniformization of Y7 (Np®), we have [(¢,&.)] = x.. More-
over, by Shimura’s reciprocity law, if a is an invertible Oc-ideal prime to 91p and a € K (ep)x
is such that a = aO. N K, then

o = [(9,a7&)] = al" € Ig(N)(He(p™)),

where oq = reck (a7 )| g, (poo) € Gal(H,(p™°)/K) is the Artin symbol of a over the compositum
of H. with the ray class field of K of conductor p*°, and a — @ denotes the action of the
non-trivial automorphism 7 € Gal(K/Q) on Ag.

2.6. Anticyclotomic Hecke characters. We say that a Hecke character ¢ : K*\Ax — C*
has infinity type (¢1,¢2), with (1,42 € %Z such that ¢1 — ly € Z, if
Voo(2) = 211782 (22)"%2,

where for each place v of K, we let ¢, : K0 — C* be the component of ¢ at v. The conductor
of ¢ is the largest ideal ¢ C Ok such that ¢q(u) =1 for all u € (1 + Ok ¢)* C K. If ¢ has
conductor ¢, and a is any fractional ideal of K prime to ¢y, we write 1(a) for ¥(a), where

a € K©)* is such that a@K N K = a. As a function on fractional ideals, 1 satisfies

() = a2 (am) "
for all « € K* with o =1 (mod cy).
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Definition 2.7. Let 1) = 9n1o be a Hecke character of K with infinity type (¢1,¢2). The
p-adic avatar ¢ : K>*\K>* — Cx of ¢ is defined by

V(2) = i (Vin(2)) 2! 252
Via the reciprocity map recg, we shall often regard 1Z as a Galois character 12 :Gg — CJ.

We say that a Hecke character ¢ : K*\Ax — C* is anticyclotomic if 9| Ay = 1. The

infinity type of an anticyclotomic 1 is of the form (¢, —/¢), and the correspondence 1) @E
establishes a bijection between the set of anticyclotomic Hecke characters of K of conductor
dividing p*° and the set of locally algebraic C,-valued characters of Gal(Hp~ /K), for Hpe
the union of the ring class fields of K of conductor p-power conductor.

2.7. A two-variable anticyclotomic p-adic L-function. Let f € S%(N,¢g;I) be an ordi-
nary [-adic newform of tame level N and character ¢ : (Z/NpZ)* — O as in Definition 2.4.

Recall the Teichmiiller character w : (Z/pZ)* — Z,, and let ecye : Gq — Z,; be the cyclo-

tomic character. By composing it with €.y mod p, we shall also view w as a Galois character
w:Gq—Z;.

Let A : K*\Aj — O* be the p-adic avatar of a fixed Hecke character of infinity type (1,0)
and conductor ¢p for some ideal ¢ C Ok with (¢, Np) = 1. Let D/Xtor be the maximal Z,-free
quotient of 9, and let W C D/Xtors be the subset topologically generated by the values of A.

Then W is isomorphic to Z,, and it naturally contains (the image of) I'"* = 1 + pZ,,. Write

p’ = [W : T and let J = O[[S]] be the extension of AE defined by (1+ S)?" =1+ p. Upon
enlarging I if necessary, we shall assume that 1 D J.

Definition 2.8.
(1) Let i € Z/(p — 1)Z be such that to|(z/pz)x = w', and define the critical character

©:Gq — AVEX by
O(0) := w"?(0) - [(ecye(0)) 7],
where (-)1/2 Z) — '™ is the composition of the projection () : Z — I'* with the

map z — /2, and []: TV — A% is the inclusion of group-like elements.
(2) Take a finite order Hecke character xo of K of conductor dividing 9 such that

X0|Aa =¥y (z/Nz) s
an define the I-adic character x : K*\Aj — I* by
x() := 1o(2)O(recq(Nk/q(x))),

where O is viewed as taking values in I* by composition with the structure morphism
AV — T
(3) Denote by (\) the composition of A with the projection onto D/Xtors. Let w € W be a

topological generator, and define the I[-adic character Z: K*\Aj — J* — I* by
E(z) = A2)(1+ 9@, (Ma)) = w'™®.
Finally, define € : K*\Aj — I* by
&(z) = E(z)E7(2).

Remark 2.9. Recall that we assume p > 2 and note that implicit in Definition 2.8 is the
choice of a lift of i to Z/2(p — 1)Z; we fix either one of the two possible choices, c¢f. [How07b,
Rem. 2.1.3].
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Let ¢,Ok be the prime-to-p part of the conductor of the anticyclotomic character A(z)\~1(z),
and for any O, -ideal a prime to 9p, let x4 € Ig(N)(V) be the CM point constructed in §2.5.
Since p 1 ¢,, the point x4 admits a model over the discrete valuation ring

V=W K,
where W = W (F,) is the ring of integers of the completion of the maximal unramified exten-
sion of Q,. Let
Iy = I®z, W.

In light of Proposition 2.5, extending scalars we view f as an element in V},(N;Iyy). Letting x4
still denote the pullback of the above point 4 under the structure map Spec(Ilyy) — Spec(W),
we let ug , € Meas(Zy,Iy) be the measure of Definition 2.6, and let sz be the measure on
Z,, characterized by ’

-1/ —1
%ufg (T) = A, ((1+ TN P —1).

. . % .
Since ogp gz, 18 supported on Z;, so is the measure fhgs -

For each integer ¢ > 0, let H, denote the composition of the ring class field H. with the ray
class field of K of conductor M, and set I := Gal(H, poo/K). Let rec : KX\A% — G2 — T
and recy : Q) = K — G}*}) — T be the global and local-at-p reciprocity maps, respectively.

Definition 2.10. The two-variable anticyclotomic p-adic L-function attached to f and & is
the Iyy-valued measure %} ¢(f) on I given, for all ¢ : I' — Oép, by

HeD@) = L e @N@ T [ (el g ),

oce€Gal(H,, /K)

where a corresponds to o under the Artin map, and ¢|[a] is the character on Z; defined by

¢l[a](z) := ¢(orecy(2)).
Now we describe the interpolation property satisfied by %, ¢(f). For the statement, recall
that if f =), anq™ is a normalized newform of weight k and nebentypus ey, x is a Hecke
character of K with central character x| Ay = 5]71, and v is an anticyclotomic Hecke character

of conductor cOf, the Rankin L-series L(f/K,x1,s) is given in terms of automorphic L-
functions by the equality

(2.4 LK) = 2 (5= 25 o ),

where 7 is the base change to K of the automorphic representation of GLy(Aqg) generated
by f. Thus since mx ® x1 is self-dual, L(f/K, x, s) satisfies a functional equation relating
is values at s and k — s.

By the calculation in [How07a, p. 808] and our definition of the I-adic character x (which
differs from that in [How07a, §3] by the factor y¢ in order to allow non-trivial N-part of the
nebentypus), for every v € Xo(I) such that f, classical the specialization y, of the I-adic
character x in Definition 2.8 is such that x| Ay = =€, f . For such v, and 1 an anticyclotomic

Hecke character of K of conductor c,p" Ok Wlth P 1 Co, define the p-adic multiplier &,(f,, x,¥)
by
Hel2) (1= (WP () ) i =0
& forwts) = £ (L= 7(@) Ca)splp™™ ) (1 = Cav)s(p)p p ‘ :
P(f X 1/}) { ((wa)p 1) ifn > 1,

and set

[k, +0)T(£+1) L(f, /K, xu, k, — 1)
1 — ) Y

Lag(fu/Ka Xvt, ky — 1) T (27r)kv+2€+1(1m ﬁ)ku—l-% ’ Q2ku+45 )
K
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where Qg € C* is a complex period attached to K as in [CH18, §2.5].

Theorem 2.11. Let v € Xo(I) of weight (k,1) with k > 1 be such that f, is classical, and
let ¢ be the p-adic avatar of an anticyclotomic Hecke character ¢ of K of infinity type (£, —)
with £ > 0 and conductor c,p" O with p1c,. Then:

Ze(£))(9)?
I/(ggm = Lalg(fu/Ka Xvévd, by — 1) - g’p(fV)XI/fl/qb)z ) @Z)(mil) .23 coe(fu) - w%{ V Dk,

where £(f,) is the global root number of f,, wi = |Ok|, and Q, € W* is a p-adic period as
in [CHI1S, §2.5].

Proof. Let v be as in the statement and set f = f,. Then ©,(z) = 2k/2=1 for all z € Z;, and
hence

(2.5) yoa) = N(@)/21,
From (2.3), it follows that V((d)f(x)) = (i)f,,(a:) for all m > 0, and hence for the measure

pig, o of Definition 2.6 we have "

o[ anes) = [ penna(c)

P P
for all p: Z, — Oc,. Thus specializing %} ¢(f) at v we see that for any ramified character p
on ZX:
P

W Ge®)p) = Y fu(a)N(a)_’“/z/ (plla])(2)dp g (2)-

= Zx
seGal(H,, /K) P
where f7 is the p-adic avatar of f°. Let f” ® (p|[a]) be the p-adic modular form f* twisted by
pl|[a]. Setting T'=t — 1 and tracing through the definitions, we see that

— —1
(2.6) | D@ ) = Oy
2 ; llal)

Since the right-hand side of (2.6) agrees with the expression (fﬂ ® pl[a]) (A, 7a) appearing in
[CH18, Def. 3.7] and &, is the p-adic avatar of an anticyclotomic Hecke character of infinity
type (k/2,—k/2), the above shows that v(.Z} ¢(f)) agrees with the W-valued measure .2, ¢, (f)
on I constructed in [CH18, §3.3] (or rather its immediate extension in the slightly more general
setting considered here). The result this follows from [loc.cit., Prop. 3.8]. (Note that in [CH18]
only cusp form of even weights k > 2 are considered, but the construction of .2, ¢ (f) readily
extends to any k € Z>1, and the results quoted from [Hsil4| are available in this level of
generality.) O
Remark 2.12. Note that by (2.5) we have L(f,/K, x,& ¢, k, — 1) = L(f, /K, &0,k /2), and
so the L-values appearing in Theorem 2.11 are central critical values.

Corollary 2.13. For every v € Xo(I) of weight (k,1) with k > 1 such that f, is classical,
the p-adic L-function v(%, ¢(£)) is not identically zero.

Proof. As shown in the proof of Theorem 2.11, the specialization v(.Z, ¢(f)) agrees with (the
natural extension of) the p-adic L-function %, ¢ (f) constructed in [CH18, §3.3] with f = f,,
and so the result similarly follows from [loc.cit., Thm. 3.9]. O

3. BIG LOGARITHM MAPS

In this section we construct a Perrin-Riou big logarithm map adapted to our global anticy-
clotomic setting. Starting with [PR94], the cyclotomic theory of these maps has been widely
studied in the literature; see e.g. [Ber03] and the references therein. The construction we give
here combines work of Ochiai [Och03] and Loeffler—Zerbes [LZ14].
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3.1. Review of p-adic Hodge theory. Let F' and L be finite extensions of Q,. For a finite-
dimensional L-vector space V equipped with a continuous linear action of G, we denote by
Dgr,7(V) the filtered (L ®q, F')-module

Dar r(V) == (V ®q, Bar)“",

where Bggr is Fontaine’s ring of p-adic de Rham periods. If V is a de Rham G p-representation
(i.e., dimpDgr r(V) = dim V), then for any finite extension E/F there is a canonical iso-
morphism Dgr g(V) = E @p Dgr,#(V). Denote by (, ) the de Rham pairing

< , > : DdR,F(V) X DdR,F(V*(l)) — L QQ, B — Cp’

where V* = Homp,(V, L). Denote by Fj the maximal unramified subfield of F. Let Bs C
Bgr be the crystalline period ring and define

Dcris,F(V) = (V ®Qp Bcris)GFS

this is an (L®q, Fo)-module equipped with the action of a semi-linear crystalline Frobenius ®.
If V is a crystalline Gp-representation (i.e., dimp Deris,7(V) = dimz V'), we have a canonical
isomorphism F' @ Deris, (V) = Dgr, (V). Suppose further that

Deis,r(V)*=! = {0}.
We denote by log, the Bloch-Kato logarithm map
Dgr,7(V)
Fil'Dyg #(V)

where H{ (F,V) C HY(F,V) is the Bloch-Kato finite subspace [BK90, (3.7.2)], which under
the above hypothesis agrees with the image of the Bloch—Kato exponential map

Dar, r(V)
Fil’Dgg p(V)

that we shall denote by exp,,. Also, let expj, denote the dual exponential map

exphyy : H'(F,V) — Fil’Dgg (V)

logpy : Hf (F,V) — =~ Fil'Dyr r(V*(1))Y,

expry — HY(F,V),

obtained by dualizing expp -« (1) with respect to the de Rham and local Tate pairings (see e.g.
[LZ14, §2.4]).

For the ease of notation, we shall write Dgr (V') and Deis(V') for Dgr,q, (V') and Deis,q, (V),
respectively.

3.2. Ochiai’s map for nearly p-ordinary deformations. We keep the notations intro-
duced in §2.3 and §2.7; in particular, O denotes the ring of integers of finite extension of L

of Q, and I is a finite flat extension of A" = O[[T"™']]. We also identify Gq, := Gal(Q,/Q,)
with the decomposition group D, C Gq determined by our fixed embedding 2, : Q— Qp.
Definition 3.1. Let T be a free I-module of rank 2 equipped with a continuous linear action
of Gq. We say that T is a p-ordinary deformation if:
(i) the action of Gq on det(T) is given by
@72553,1(3 :Gq — I,
where ey : G — Z; is the p-adic cyclotomic character, viewed as taking values in
I by the inclusion of scalars Z, C O* C Agt’x c I
(ii) there exists a filtration as Gq,-modules
(3.1) 0—FT—T—FT—0

with .ZF*T free of rank 1 over I, and with the action on .Z T being unramified.
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Fix a p-ordinary deformation T as in Definition 3.1. Let I'cyc be the Galois group of the
cyclotomic Zy-extension of Q,, and let Acyc be the free Zy[[I'cyc]]-module of rank 1 where Gq,
acts through the tautological character Gq, — I'eye = Zp[[[eyc]]™-

Definition 3.2. Set Z := I®Z,[[[cyc]]. The nearly p-ordinary deformation associated to a
p-ordinary deformation T is the Z-module

T = T@szCyC

equipped with the diagonal Gq,-action. From (3.1), 7 fits in an exact sequence of Z[Gq,]-
modules

0—F'T —>T—FT—0
with ZF+T = %\iT(@szcyc.

Let € : I'cyc ~ 1+ pZ), be the isomorphism induced by the p-adic cyclotomic character. We

denote by X§(I'¢yc) the set of continuous characters o : I'cye — Q; of the form o = %7, for
some w, € Z, called the weight of o, and some finite order character o,. We say that ¢ has
conductor p" if o, has conductor p" when seen as a character of Z,.

Recall the set X&(I) from Definition 2.3. For every pair (v,0) € X&(I) x XA (Teye) let O 5
be the extension of O, generated by the values of o, and let O, ;(o) be the free O, ;-module
of rank 1 where Gq, acts via the character o. For a p-ordinary deformation T define

T,:=T Ly Oy, Vi, =1, ®Zp Qpa
TI/,O’ = T®I,(1/,U) OV,O'(U)’ VV,O' = TI/,O’ ®Zp Qp’
%\iTyvg = FET 7 (v,0) Ov,o(0), givy,g = ﬁiTy,g ®z, Qp,

and for every finite extension F' of Q,, let
(3.2) Sp,o : H(F,.Z1T) — H'(F,7%T,,) — H'(F,F"V,,)
be the induced maps on cohomology.
Definition 3.3. Let T be a p-ordinary deformation, and set
(3.3) D := (FT&z,Z) %,
where the Gq,-action on ff‘*"ﬂ‘@zp 2]10” is the diagonal one. Also set
D= ]D)@szp[[rcycn

Let F be a finite unramified extension of Q, with ring of integers Op. Since Z 1V, is an
unramified Gq,-representation, we have Dgr(F*V,) = (F1V, ® Q;r)GQP. Let

(3.4) Sp, : D Xz, Op — DdR’F(cg‘\J'_V,,)

be the specialization map induced by the G p-invariants of the natural map .# +'JI‘QAQZP Z;r —

FTT, V@azpi;r . Fix a compatible system ( = ({p»)n of p-power roots of unity; this defines a
basis vector e of Qp(1) and an element ¢ € Bqg (Fontaine’s p-adic analogue of 27i), so that
0Q,(1) = t~!®e gives a Qp-basis of Dar(Q,(1)). For o € X&(Leye) of weight w and conductor
p", let Sp, 1 Zp[[Leye]] = Dar(Ks(0)) be defined by

Sp, Zp[[FCyCH — DdR(Qp(w)) ®Q, Qp(ﬂp") = DdR(Qp(w) ®Q, Qp[(z/pnz)x])
% Dar(Qp(w) ©q, Ko (09)) = Dar (K4 (0)),
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where the first arrow is given by g — 58“’(1) ® an and the isomorphism is given by Shapiro’s
P
lemma. For every pair (v,0) € X§(I) x X§(I'cyc) we thus obtain the specialization map

Sp,®1 -
Sp, . : D ®z, OF 2 Dar, 7 (F V) @z, Zy[[Leye]

1®Sp, ~
—Pa, Dyr,7(-ZV,) ®q, Dar(Ks(0)) = DdR,F(erVu,cr)-

(3.5)

Theorem 3.4. Let T be a p-ordinary deformation, and define
T = (¥(Frp) —1,7% —1) € I,

where W : Gq, — I* is the unramified character by which Gq, acts on F1T and v, € Teye
be a topological generator. Then for every finite unramified extension F' of Q,, there exists an
injective L-linear map

Ep7: J(D @z, O) — H'(F,F*T)
with pseudo-null cokernel and such that for every v € X§(I) and o € X§(Leye) of weight w > 0
and conductor p", the following diagram commutes:

EFcyc

J(D ®z, OF) r HY(F,.Z*T)

\Lspu,g lspu,d

Dar,r(F*V,,) HYF,7%V,,),

where the bottom horizontal map is given by

w1 U, (Frp)\—1 . )
(1 - \IJIZ(Fr,,)_)l(l - ;Ew p)) if n=0;
9(00_1)(\1?Tpm)n ifn > 1,
with ¥, (Fr,) € F, the image of V(Fr,) € I under v.

Proof. See [Och03, Prop. 5.3]. O

(—1)* "t (w —1)!- exp,, X {

3.3. Going up the unramified Z,-extension. Let I’ be a finite unramified extension of
Qp. and let Fio/F' be an infinite unramified p-adic Lie extension with Galois group U (so U
is isomorphic to Z) x A with A finite). Write Fio = U,,,5¢ Fim With Fp/F a finite extension
and F,,/Fy having degree p™. Set Uy, := Gal(F/Fy,). Let yn, : O, — OF, [U/U,] be the
Z,-linear map defined by

ym(@) = Y a%o7],
ceU/Upn
and let S, C Op,, [U/Up,] be the image of y,.

For any = € Op,,,, it is readily seen that the image of yp,11(z) in Op,,_,[U/Up,] agrees
with the image of ym(Trg, ., /F,, (7)), and hence passing to the inverse limits with respect to
the trace maps, we obtain an isomorphism

(3.6) lim g, : im O, — Seo = lim Sp.

Let O r., be the completion of the ring of integers of Fi.
Proposition 3.5. The module Sy is free of rank 1 over Zpy[[U]], and it is identified with
{9 € O [IU)] : ¢" = [ulg for allu e U},

where g* denotes the action of u on the coefficients @Fw and [u]g denotes the action of u via
multiplication as group-like element.

Proof. See [LZ14, Prop. 3.2, Prop. 3.6]. O
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3.4. A two-variable regulator map for p-ordinary deformations. Let F//Q, and Fi./F'
be unramified extensions as in §3.3, set Loo := Fuo(1p=), and let G := Gal(Loo/F) = U x Z,;.

As in §3.2, we let T be a p-ordinary deformation in the sense of Definition 3.1, and let
VU : Gq, — I* be the unramified character giving the Gq,-action on the subspace FTT CT.

Definition 3.6. An arithmetic prime v € XZ(I) is exceptional for T if v has weight (k,e) =
(2,1), and ¥, (Fr,) = 1.

For any finite extension F’ of Q,, contained in L, and any subquotient M of T define
Hiy (Loo/F', M) := lim H'(L, M),
L
where L runs over the finite extensions of F’ contained in L., and the transition maps are
given by corestriction. By Shapiro’s lemma, we have Hl, (Lo /F, #TT) = H'(F,T®z,Z,[[G]]),

and in the same manner as in (3.2) and (3.5), for every v € A*(I) and Hodge-Tate character
¢ of G we have specialization maps

Spy.¢ : Hiy(Loo/F, FTT) — H'(F, FV,4)

and
SPug : DOz, 2y [[G]] — Dar,r(F V).

Note that if ¢ has weight Hodge Tate weight? w > 0, then FilODdep(ﬂ”rV,,’(b) = {0}, and
the Bloch—Kato logarithm becomes an isomorphism

log, : H{ (F, 7'V, 4) = H'(F, 7"V, 4) — Dar p(F 'V, 4).

Theorem 3.7. Let T be a p-ordinary deformation, and set X := V(Fr,) — 1 € I. Then there
is an injective 1[[G]]-linear map

LG HE(Loo/F, F*T) — A~ J(D&g, Or. [[G]))

such that for every non-exceptional v € X§(I) and every Hodge-Tate character ¢ : G — L*
of conductor p" and Hodge—Tate weight w > 0, the following diagram commutes

EG

HL (Loo/F, Z+T) A7 T (D&z,0F, [[G])

lSpw¢ lSPw¢

HYF, 7%V, ) Darr(F 1V, ),
where the bottom horizontal map is given by
_1yw—1 0, (Frp) oWl =l
g—llggT-logp- (1 pwll)(l wyaww> ﬂfn-—(h
(w— 1)1 ()W, (Fr,)" ifn>1

Proof. For each m > 0, let
£ T(D @z, Op,) — H (Fy, F+T)

be the big exponential map of Theorem 3.4 for the unramified extension F,/Q,, and using

(3.6) define
£9 = lm Y J(DBg,8x) — Hiy(Foo/ F,. 71T,

2In this paper, we adopt the convention that the Hodge-Tate weight of ecyc is +1. Thus the Hodge-Tate
weights of a p-adic de Rham representation V' are the integers w such that Fil=*Dgagr(V) 2 Fil"“ ™ Dggr (V).
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By Shapiro’s lemma, we view £ as taking values in H} (Lo /F, Z*T). Since each 5;;” has

cokernel killed by A, it is readily seen that £ is an injective I[[G]]-linear map with cokernel
killed by A, and hence given any Qoo € H} (Loo/F, Z# TT), the product

LEYDoo) = AT ()T Do)
is a well-defined element in
AL T (D&2z,8%) = A T (D&z,0r, [[U]]) ~ A1 - T (D&z,0p,, [[G]).

Thus constructed, the claimed interpolation properties of £& for each non-exceptional v €
X§(I) follow as in [LZ14, Thm. 4.15]. O

Next we consider the specialization of the map £ of Theorem 3.7 at Hodge Tate characters
of ¢ of G of weight w < 0.

Definition 3.8. Let f € I[[g]] be an ordinary I-adic newform of tame level N (prime to p).
We say that an arithmetic prime v € X&(I) is p-old if f, is the p-stabilization of a p-ordinary
newform of level V.

If v € A(I) has weight (k, 1) with k > 2, then v is p-old (see [How07b, Lem. 2.1.5]). Note
also that any p-old arithmetic prime is necessarily non-exceptional. For any p-old v € X§(I)
and any Hodge—Tate character ¢ of G of weight w < 0, the Bloch—Kato dual exponential map
becomes an isomorphism

exp;; . Hl (F, §+Vy’¢) i) FilODdRF(ﬂ\JrVV’(Zg) = DdR,F(ngVy,q&)-

Corollary 3.9. Let v € X3(I) be a p-old arithmetic prime. If ¢ : G — L* is a Hodge—Tate
character of weight w < 0 and conductor p™, then the following diagram commutes

HY (Loo/F, Z+T) — 5= A"1. (D&, O, [[G])

lSpm¢ lSPm¢

H\(F, Z+V, ) Dar,r(F1V,,).

where the bottom horizontal map is given by

\I’u Fr w—1 —1 .
(—w)! - exp) - (1 N 257“ p)) (1 - \yl,?,(Frp)) ifn =0,
P e(o) W, (Frp)" ifn > 1.

Proof. Since v is non-exceptional, the composition of the map £& of Theorem 3.7 with the
specialization map (3.4) at v factors through Hy (Loo/F, ZTT) — HL (Loo/F, Z+T) @1 F,
giving rise to an F),[[G]]-linear map

LS : Hi(Loo/F, Z*T) @1 F, — Dar p(FV,) 2, Op, [[G]].

By Theorem 3.7, this map enjoys the same interpolation properties at a dense set of characters
of G as the restriction via

Hi (Loo/F,FtT) @ F, < H{, (Lo /F,F1V,)

of the map L} constructed in [LZ14, Thm. 4.7] for V = Z#+V,,. (Note that since v is assumed
to be p-old, Z1V,, is a “good crystalline” G p-representation in the sense of [LZ14, Def. 4.1].)
Since ﬁg”vu is uniquely determined by its values at such characters (for every given class in

H} (Loo/F, Z%V,)), the result follows from [LZ14, Thm. 4.15]. O
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4. BiG HEEGNER POINTS

Fix a prime p > 3, and let f = >, a,q¢™ € Si(I'1(N)) be a p-ordinary newform of weight
k > 1, level N prime to p, and nebentypus €. Let K be an imaginary quadratic field as in
§2.5. (However, note that the assumption that p splits in K will not needed in this section.)
Let L be a finite extension of Q, with ring of integers O containing the Fourier coefficients of
f. In this section, we briefly recall Howard’s construction of big Heegner points associated to
the ordinary I-adic newform passing through f.

4.1. Galois representations associated to Hida families. Denote by X s/qQ the compacti-
fied modular curve whose non-cuspidal points classify isomorphism classes of triples (E, ty,t,)
with:

e FE an elliptic curve over an arbitrary Q-scheme S

e ty a point of F of exact order V;

e t, a point of I of exact order p®.

For any field extension M/Q, set
Jo(M) := Jac(X,)(M) @z O,
where Jac()N( s) is the Jacobian variety of X,. Denote by b, the O-algebra generated by the

Hecke operators Ty for £ { Np), the operators Uy, for £ | Np, and the diamond operators (a)np
for a € (Z/Np°*Z)*, acting on J5(C) by Albanese functoriality, and let

. !
e — lim U™
m—oo0 P

be Hida’s ordinary projector. Following the convention in [How07b, §2.1], we make b into a
O[[Z;]]-algebra via [z] — (z)p, where [2] € O[[Z]]* is the group-like element corresponding
to z € Z, and (-), denotes the p-part of the diamond operator (-)n,. By [Hid86b, Thm. 3.1],
the algebra h°ord = @S e°"p, is finite flat over A¥': in particular, h'9 is a semi-local ring
equal to the product of its localizations at its maximal ideals. Our fixed newform f defines an
algebra homomorphism Ay : hord — 9, and we let ho'd be the direct summand of h°™ through
which A, factors.

Definition 4.1. Let o, and 3, be the roots of the Hecke polynomial X? — a,X + sf(p)pk_l.
We say that f is regular at p if oy # B,.
Of course, since f is assumed to be ordinary at p, it can be non-regular at p only if k = 1.
Lemma 4.2. Assume that either:
(a) k> 2;
(b) k=1 and f is reqular at p.
Then the localization of ho'd at ker(\y) is a discrete valuation ring.

Proof. In case (a), this is a classical result of Hida (see [Hid86a, Cor. 1.4]). The result in case
(b) is recent work of Bellaiche-Dimitrov [BD16, Thm. 1.1]. O

Assume from now on that one of the conditions in Lemma 4.2 holds. Thus there is a unique
minimal prime a C ho'd containing ker(\s), and we set

m
I:=ho4/a.
For each i € Z/(p—1)Z, let ¢; be the idempotent of O[[ZX]] projecting onto the w'-isotypical

component for the action of (Z/pZ)* C Z,, and note that hord = e, _ohord. Letting a,, € I be
the image of T,, the formal g-expansion

£=3 ang” € 1]
n=1
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is an ordinary I-adic newform of tame level N and character ¢ fwk_z in the sense of Defini-

tion 2.4.

Let k1, be the residue field of L and denote by py : Gq — GLa(kr) the semi-simple residual
representation associated with f.
Theorem 4.3. Assume that py is irreducible and p-distinguished. Then the following hold:
(1) The module

T — (m eOI‘d(Tap(JS) ®Zp D)) ®hord H

1s free of rank 2 over I, and the resulting Galois representation
ps : G — Auty(T) ~ GLo(I)
1s unramified outside Np with
trace pe(Fr, ') = ay, det pg(Fr; ) = e (0)[(]¢,
for all €1 Np, where Fre_1 is an arithmetic Frobenius.
(2) There is an exact sequence of 1[Gq,]-modules
(4.1) 0—FT—T—F T—0
with FET ~ 1, and with the action of Gq, on # T given by the unramified character
a:Gq, — I* sending Fr];1 to ay,.
Proof. Part (1) follows from [MT90, Thm. 7], and part (2) from [Wil88, Thm. 2.2.2]. O
4.2. Howard’s big Heegner points. Fix a positive integer ¢, prime to Np. For n > s, the

CM points z,» € Ig(N)(C) constructed in §2.5 descend to points P, ,n s € )}S(ﬁcopn (pps))s
where H ,n is the composition of H,,,» with the ray class field of K of conductor M.

Proposition 4.4. The following hold:
(1) Letn> s> 0. Forallo € Gal(ffcopn (HpS)/fNIchn), we have

P on s = (9(0))p - Pegpn s,

where ¥ : Gal(ﬁcopn(ups)/ﬁcopn) — Z) [{=£1} is such that 9* = ecye.
(2) If n > s > 1, then

Z &S(Pc(;p"ys) =Up - Peopn 51,
UeGaI(ﬁcopn (Hps )/ﬁcopnfl (kps))

where &y : Xy — Xs_1 is the degeneracy map given by (E,tn,tp) — (B, tn,p-tp) on
non-cuspidal moduli.
(3) If n > s > 1, then

o —
Z Peoprs = Up - Pegpn1,s-
o€Gal(Heppn (1ps )/ H, -1 (11ps))

Proof. Let X be the compactified modular curve for the congruence subgroup I'o(N) NIy (p®),
and consider the degeneracy map Sy : X, — X, given by (E,tn,tp) — (E,Cn,t,) on non-
cuspidal moduli, where Cy denotes the cyclic subgroup of E[N] generated by ty. From the
construction of z. ,» given in §2.5, it is immediate to see that for n > s the image By (P pn s)
agrees with the point A, ,n-s ¢ € Xs(C) constructed in [How07b, §2.2], i.e., corresponding to
the triple (A pn—s g, Mo pn—s g5 Teopn—s ) With:

® Acop"—s,s(c) = C/Ocop”;

on = A pn—s [N O pnl;

Cop™™¥,s
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® T s s a generator of the kernel of the cyclic p*-isogeny C/O,pn — C/O, 0.

Thus properties (1), (2), and (3) follow immediately from Corollary 2.2.2, Lemma 2.2.4, and
Proposition 2.3.1 of [How07b], respectively. O

Set EQS = Ncps (ttps), and keep the notations from Proposition 4.4. As in [How07b, p. 100],
one easily checks that for ¢ > 0 and o € Gal(L, s/ H, pt+s) we have the equality ©(c) =
ord Jo(Le,pt s), and so (using that U, has degree p and we

t+s ¢ define classes

(¥(0))p as endomorphisms of ej_se

are taking ordinary parts) the points ek_georchop

Yeopt,s € eord:fs(zcopt,s)
which satisfy
(4.2) Yoopt.s = O(0) * Yept.s
for all o € Gal(icopt,s/flcopms).

Definition 4.5. For any A%*-module M equipped with a linear Gq-action, we let M T denote
its twist by the character ©~ 1.

Thus (4.2) amounts to the statement that
Yeopt,s € HO(HcothFS, eordJS(Lcopt,s)T)'

For any number field F' let & i be the Galois group of the maximal extension of F' unramified
outside the primes above Np. By Proposition 4.4, the image of . ,: ; under the composite
map

HO(H, e, €T (Lo o)1) <2 HO(H, e, €Ty (Lepr o)1)

copts

Kum

Ky 1l (e Tay(],)1)

defines a class X, ¢ s satisfying
QsxXopt,s = Up - Xegpt -1
under the map

g H1(®~

a ’eordTap(j;)T) — H1(®~ 760rdTap(JNs_1)T)

copt Heopt

induced by a; : X, = Xoq by Albanese functoriality.

Definition 4.6. Let ¢ > 0 be an integer prime to N. The big Heegner point of conductor c
is the class

X.€ H' (65 ,T)
defined as the image of @s Up_ ¥ . X,,s under the natural map

lim /(& 7, €™ Ta,(J,)1) — H'(65 , T").

By inflation, we shall view X, as a class in H!(H,, TT).
As in [How07b, Prop. 2.3.1], it follows easily from Proposition 4.4 that the classes

(4.3) Beot = Up "t X, 0 € HY(H, e, TY)
are compatible under the corestriction maps, thus defining a class

Feaio 1= y%nsc"’t < Hllw(Hcopoo/HcoaTT) - miHl(@ﬁc t’TT)-

oP

We conclude this section by recalling some of the local conditions satisfied by these classes.
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Lemma 4.7. Let F be a finite extension of K, and let v be a prime of F' above a prime ¢
dividing (Dgc, N). If py is ramified at £, then H'(F\, T) is I-torsion free.

Proof. This is well-known; see e.g. [Biiyl4, Lem. 3.12]. O

For F a finite extension K, let Selg.(F, Tt) ¢ H (&, T!) be the strict Greenberg Selmer
group of [How07b, Def. 2.4.2].

Proposition 4.8. If py is ramified at every prime ¢ dividing (Dg, N), then X € Selc, (H,, TT)
for all positive integers ¢ prime to N.

Proof. The proof of [How07b, Prop. 2.4.5] shows that the localization loc,(X.) of X. at any
place v of H, lies in the local subspace H} (Hey, Th ¢ H(H,,, T') defining Selg, (H., T1),
except possibly at primes v | £ | N which are non-split in K, in which case it is shown that

HY(H™ T )

c,v)

H? (ﬁéﬁa TT)tors

loc, (%X;) € ker (Hl(flw, T —

where Hl(ﬁé‘g, T iors € H(H™, T1) is the I-torsion submodule. In light of Lemma 4.7, the

(XN
result follows. O

5. EXPLICIT RECIPROCITY LAW

In this section is we prove Theorem 5.3, the main technical result of this paper. We keep
the setting introduced at the beginning of Section 4.

5.1. Regulator map for the anticyclotomic Z,-extension of K. Recall the [-adic Hecke
character £ : K*\Aj — I introduced in Definition 2.8. With a slight abuse of notation, we
also let & : Gxg — I be corresponding Galois character, and set

(5.1) T:=T|g, 0 ¢

Since p = pp splits in K, by Theorem 4.3 the restriction of T to a decomposition group at
p takes the form

a e pey O *
(5'2) T‘GKp : ( / Oy ¢ 04@1{_1)

on a suitable I-basis. Since
(5.3) Ui=a lepey 06!

is an unramified character of G, the local representation (5.2) is a p-ordinary deformation
in the sense of Definition 3.1, and so associated with it we may consider the regulator map
LS of Theorem 3.7. Here, we take F to be the completion at a prime above p of the ring class
field H., of K of conductor ¢, (prime-to-p), Foo/F an infinite unramified extension as in §3.3,
and

G = Gal(Lo/F), where Loo = Foo(ptpe).
Recall the I-module D of Definition 3.5, which by [Och03, Lem. 3.3] is free of rank 1.

Lemma 5.1. There exists a canonical isomorphism of I-modules wg : D — 1 such that for
everyv € X§(I) and every Hodge—Tate character ¢ of G of weight 0 < w < k, —1 the following
diagram commutes

wr®1

D&z, 0r([G]] 182, 0r[[G]]

l SpV»d’ l Spu,q&

DdR,F (9+Vy7¢) Fy,¢> ®Qp F7
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where the bottom horizontal map is given by pairing with the differential wy, & ¢! under the
canonical identification

Dar,r (Vi)
Fil’Dag p(F 1V, 4)

12

Dag,7(F V) = Fil' Dar,# (V)"

Proof. The first isomorphism in the last part of the statement is explained in [Och03, Lem. 3.2]
and the second isomorphism is given by the de Rham pairing (, )qr. The result thus follows
from [KLZ17, Prop. 10.1.1(1)]. O

Set A := W(Fr,) — 1 € [, and define Ty := I[A\~1]&z7, W.

Proposition 5.2. Let K /F be a Z, -extension contained in Lo obtained by adjoining the
torsion points of a relative Lubin-Tate formal group over F/Qy, and let I' = Gal(K«/F) be
the corresponding quotient of G. There exists an injective Iyy[[[']]-linear map

L5+ Hiy(Koo/F, F5T) — Ty[[1]

with pseudo-null cokernel such that for every Hodge—Tate character ¢ of I' of weight w > 0
and conductor p", if Voo € Hi, (Koo/F, FTT) then

-n (I-v(@p)xoé& "¢~ tm)  p
3Pu0(Lug (Voc) = Ao A TSR M A
v(ap)er (0" )xuéo (y) | 1 J—
(-1

x m ' <10gp(spu,¢(gjoo))awfu b2y ¢71>dR-

Proof. By (5.2), the action of Gq, on .Z*T is given by the unramified character sending Fr,
to a, - 5fscyc@£_1(Frp) =a,- Xﬁ_l(pp)sf(p)p, where p, is the idele of K with p-component
equal to p and 1 everywhere else. Thus the map £& of Theorem 3.7 can be applied to .# 1T,
and we define £, : Hf, (Loo/F, ZTT) — Tyw([[G]] by the composition

LG | _ ~ 3 ®1 =
LS Hi(Loo/F, Z1T) =5 A1 J(D8g, 0. [[G]]) 22 Tw([G]],
where wg®1 is given by Lemma 5.1. Let J be the kernel of the natural projection I[[G]] — I[[I']].
The corestriction map
Hiy(Loo/F, FT) /3 — Hiy(Koo/F, ZTT)

is injective, and its cokernel is contained in the J-torsion submodule of H?(L,.#*T), which
vanishes since H%(Koo, #Z+T) = {0} (as one can see e.g. by the argument right before [CH18,
Lem. 5.5]). Quotienting ng by J we thus obtain a map

Ll Hiy(Koo/ F, F1T) 2 Hi(Loo/ F, F4T) /T — Ty [[T]
having the desired properties by virtue of Theorem 3.7 and Corollary 3.9. O

5.2. Explicit reciprocity law for big Heegner points. Recall the character A\ used in the
construction of &, and let c,Ok be the prime-to-p part of the conductor of A(z)A~!(Z). Let
3ep,00 € Hllw(ﬁcop"o/ﬁco, T1) be Howard’s system of big Heegner points, as recalled in §4.2.
Since Tf ® ¢! = T by (5.1), the twist 355; lies in Hllw(flcopoo/f]co,’]l‘).

Let F' be the completion of ffco at a prime v above p (so F' is a finite unramified extension
of Qp), and let ﬁcopoo,v be the completion of ﬁcopoo at the unique prime above v. By [How07b,

-1
Prop. 2.4.5], the class resv(ngoo) goes to zero under the second arrow in the exact sequence

HIlw(ﬁcopm,v/Fv 9+T) — Hllw(f[cop“’,v/Fv T) — Hllvv(ﬁcop“,v/F?giT)
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induced by (4.1); since the first arrow is injective by [How07b, Lem. 2.4.4], we naturally have
1 ~
resv(Bgo,oo) € Hllw(Hcop"o,v/Fv FTT).

The extension H, copw/ F 18 totally ramified and is well-known to agree with the Z-extension
obtained by adjoining the torsion points of a Lubin—Tate formal group relative to the extension
F/Q, (see e.g. [Shnl6, Prop. 39]). Thus for I' = Gal(H,, p~ +/F) we have the regulator map

LL, of Proposition 5.2, and we may let £, (resp(Sg;éo)) € Iy[[I']] be the image of res, (35;:,0)
under the composition

Hiy(Hegpe o/ F, 7 7T) B, T [[T]] 2 T ([Gal(He,p /He, )]

COT 77
HCO/K ~ ~

Iw[[Gal(He,pe / K)]]

— P T[],

where [ = Gal(flpoo /K). We can now state and prove the explicit reciprocity law for Howard’s
big Heegner points, where we let .Z, ¢(f) be the two-variable p-adic L-function constructed in
§2.7.

Theorem 5.3. The following equality holds in Tyy[[T]]:
-1
Lo (resy(38, 00)) = Lo e(£) - o1,
where o1 := recy(—1)|H,0 € r.
We shall deduce Theorem 5.3 easily after the proof of the following result.

Proposition 5.4. Let v € X§(I) be an arithmetic prime of weight (2,e) with € : T™" — 00

of conductor p*, and let qg: T — L* be the p-adic avatar of an anticyclotomic Hecke character
¢ of K of infinity type (1,—1) and conductor p™ with n > s Then

~1_ a(-Dely)
Lpe(B) (v, 071 = ——
V(ap)gfxl/fV (Frp)
Proof. Our hypotheses imply that the character &,¢~! has finite order and it factors through
the Gal(H,, ,n+1/K). By the same calculation as in the proof of [CH18, Thm. 4.9] (see esp.
[loc.cit., (4.8)]) we obtain

(54) Le®w ) =al W 0" S &0 (o) d B ),

G'GGal(HCOanrl /K)

- (1og, (resp(Spy.6-1(38, 50)))s W, @ B)ar-

where d_lfy is the p-adic modular form of weight 0 given by

17 . 1 t7h -1 n
A7l = lim d'fy =y vian)nle"
(n,p)=1
To proceed with the proof, we need to recall the definition of the Frobenius operator Frob
on the space V,(N; R) of p-adic modular forms, where we take R to be a complete discrete

valuation ring containing O,. If z = [(A4,7®), )] is a point in IAg(N)/R with
(1, mp) : By @ e = AIN] @ Ap™],
then 7, amounts to giving an isomorphism 7, : ém ~ A of formal groups, and we set

Frob(z) := (Ao, U(()p)vWO,p)’

where:
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e A := A/np(m,) is the quotient of A by its canonical subgroup, and we let Ao : A — Ay
is the natural projection;

. n(()p) =X on®) : py — Ag[NT; L

® 10,p : Hyeo — Ao[p™] induces 7o, := 7 o o, Where fig : Ag ~ A is the isomorphism of
formal groups induced by the dual isogeny po = \j.

The action of Frob on V,(N; R) is then defined in the obvious manner, setting
Frob(g)(z) := g(Frob(x)).

for every g € V,(N; R) and x € ITg(N)/R.

Now let Fi,, be the Coleman primitive of the differential wy, , normalized so that it vanishes
at the cusp oo; this is a locally analytic p-adic modular form (as defined in [BDP13, p. 1083])
of weight 0 satisfying

dFy, =uws,
and characterized by the further requirement that
v(a _
(5.5) F,, — (pp)Frob(wau) =d'p
(cf. [Casl3, Cor. 2.8]). In particular, note that UpF,, = ”(zp)wau.

Let F,, s be a finite extension of Zp(Ecopn+l7S) in Qp such that the base-change of )ZS/QP to
F,, s admits a stable model. The calculation in [Cas13, Prop. 2.9] applies to f and the classes

Acopn+175 = (Pcop"+1,s) - (OO)’ Acopn+1+s7s = (PCopn+1+S,S) - (OO)
in i(Fms), yielding the formulae
(5,6) logwfu (Acop”‘H,s) = wau (Pcop”+1,s)v logwfy (Acopn+1+s7s) = wau (Pcopn+1+s7s),

where log,, L(Fns) — C,, is the formal group logarithm associated with wy, .
Now define Qcopn+l’s S :];(Ecopnﬂ,s) ®z F, by

(5.7) Qeoprtt,s = Z Agop"““,s DX, (6),

UEGaI(ﬁCOpn+1+S /flcopn+1 )

where for each o € Gal(ﬁcopn+l+s/ﬁcopn+l ), & is an arbitrary lift of o to Gal(zcopnﬂ,s/flcopnﬂ )
by (4.2), the point Q. ,n+1 ¢ does not depend on the particular choice of lift. Taking lifts &

in (5.7) which act trivially on pp,s (as we may, since ﬁcOpn+1+5 N ﬁcopn+1(/,bps> = ﬁcOpn+1) and
extending the map log,, ; by F)-linearity, we deduce from (5.6) that

J— T
Ingfu (Qcopn+175) - Z wau (PCopn+l+s,S)
TEGal(ZCopn+1 /ﬁCOpn+1 (11ps))

(5.8) = Fu,, (Uy - Pp pntits )

Cop
S
N <V(Zp)) . waV (Pcoanrl:S)’

using Proposition 4.4 for the second equality. Since as noted at the beginning of §4.2 the points
Zeopn,s € Ig(N)(C) descend to the points P pn s € Xs(Heypn (pps)) for n > s, substituting (5.8)
into (5.4) and using (5.5) we thus arrive at

Ze()(r,67) = a(dy )p " (0")
59 (L) T e ) b, @)

via
() o€Cal(H,, ns1/K)
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Recall that TT denotes the twist T ® ©~!, and note that Tt @y F, ~ T ®p F, as GQ(%S)—
representations. By Hida’s control theorem (see e.g. [Hid86a, Thm. 3.1(i)]), the natural map
T — T ®r F, factors as

T — ¢”Ta,(J,) — T @1 F,,

and tracing through the definition of X, ,n+1 in §4.2 we see that the image of (), yn+1 ¢ under
the induced map

Kumoe°rd

Js(Lepnt1 ) ® F HY Lyt 5, €9 Tay(J5) @ F,)) — H' (Loyprin o, T @1 F)

agrees with the image of U, - v(X, pn+1) under the restriction

H'(H

comelJrs,'I‘Jf &1 Fy) — H! (Ecop"+1,57 Tf &1 Fy) ~ Hl(icopn+178, T ®p Fy),

and hence

(5.10) 10, (Qeprst ;) = (fj)) 1og,,, (resy (V(Xpne1)).

Note that e(¢p) = g(d),,_l)cﬁp(—p”). Thus substituting (5.10) into (5.9) and using (4.3) for
the second equality, we conclude that

Zoe(®)(,67") = dp(=De(@p)p ™" > &' 0(0) -log,, (resy (V(Xpppn+1)7))

o€Gal(H, n+1/K)
Pp(—1)e(gp)p™ e
: <10g (res (Spu —1(300 oo)))vwf ® ¢>dR7
vag)er( s mp) T e
as was to be shown. O

Proof of Theorem 5.3. In light of Proposition 5.2, the content of Proposition 5.4 amounts to
the equality

Lh (resp(38 ), 67Y) = (Le(f) o1, d7Y),

for all pairs (v, ¢) as in the statement of that result. Since an element in Lyy[[T']] is uniquely
determined by values at such a collection of pairs, the result follows. O

An immediate consequence of Theorem 5.3 is the following nontriviality statement for the
classes 3¢, 00- For ¢, = 1 and under the additional hypotheses that (Dg, N) =1 and p{ ¢(N)
(Euler’s totient function), this result was first shown by Howard (see [How07b, §3.1]) building
on the methods of Cornut—Vatsal.

Corollary 5.5. Let ¢, be a positive integer prime to p, and let FC = Gal( ¢ poo/H ). Then
the class 3¢, o0 is not I[[T.,]]-torsion.

Proof. Note that it suffices to show the nontriviality statement for a character twist of 3, oo-
Let v € Xp(I) have weight (k,1) with & > 1 and be such that f, is classical, and let B be
the kernel of the map ]I[[F = I[[Te,]] @1 Fy. Then P is a height 1 prime of I[[I'. || at which

the specialization of 300 oo is nontrivial by Theorem 5.3 and Corollary 2.13. Since there are

infinitely many such 3, it follows that 300,00 is not I[[T.,]]-torsion, whence the result. O

6. ARITHMETIC APPLICATIONS

In the following, for a prime p > 3, we let f € S(I'1(N)) be a p-ordinary newform of weight
k > 1 and level N prime to p with associated Galois representations

pf: Gq — AutL(Vf) ~ GLy(L),
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where L is a finite extension of Q, with ring of integers . Also, we let K be an imaginary
quadratic field of odd discriminant — Dy < 0 satisfying hypothesis (heeg) relative to N and
in which p = pp splits.

6.1. Preparations. Let x be the p-adic avatar of an anticyclotomic Hecke character of K of
infinity type (j, —j) with j — k/2 € Z, and set

Vi = Vi(k/2)|ax @ Xx-
For S a finite set of places of K containing the primes above Np, and for every finite extension

F of K, let &r g be the Galois group of the maximal extension of F' unramified outside the
places above S. Recall that the Bloch-Kato Selmer group Sel(F,Vy ) is defined by

HY(F,,Viy)
(6.1) Sel(F, Vy, ):ker(Hl(esF,S,V, ) — x)
™ I 1:[ Hfl(F’U’Vf,x>

where v runs over all places of F, and
1 1 ur : .
H(Fy, Vi) = ker HI(F,,, Vi) = Hl(Fv Vi) it vt p;
’ ker (H'(F,,Viy) = HY(F,, Vi ®q, Bais)) if v | p.

Fix a Gq-stable O-lattice Ty C V; and set Ty, := T¢(k/2)|q, ® x. We define Sel(F, T} )
by the same recipe (6.1), replacing H{ (F,, V},) by their natural preimages in H'(F,, T} ,).
Let F, denote the completion of F' at any place above p, and similarly for Fy.

Lemma 6.1. If the infinity type of x is (j, —j) with j —k/2 € Z and j > k/2, then:

Hfl(Fﬁv Vix) =10}, Hfl(Fp’Vf,x) = Hl(Fm Vi)

In particular, the classes in the Bloch—Kato Selmer group Sel(F,Vy ) are trivial at all primes
above p and satisfy no local condition at the primes above p.

Proof. From our conventions (see the footnote in Theorem 3.7), we find that the Hodge-Tate
weights of V; := V|, are k/2—j and 1—k/2—j; since these are non-positive integers under

p

the above hypotheses, it follows that FilODdR FF(VE> = Dgg, FF(VE)' Similarly, the Hodge—Tate
weights of V,, := Vf,x’GFp are the strictly positive integers k/2+j and 1—k/2+j, and therefore
Fil’Dgr,, (V;) = {0}. The result thus follows from [BK90, Thm. 4.1(ii)]. O

We will also have use for the following generalized Selmer groups obtained by changing in
definition (6.1) the local condition at the places above p. For v | p and £, € {0, Gr,0}, set

HY(F,,Viy) if £, = 0;
(6.2) H} (Fy, Vi) =4 HYF,, #1V;,) if £, = Gr;
{0} if £, =0,

and for £ = {L,},|,, define

H}(F,V;,) := ker (Hl(qsp,s, Vi) — H

HI(F’lHVf:X) X H Hl(Fv7vf7X) >
vfp H

fl(Fme,x) olp HEU(FMVJ”,)J

In addition, we define H}(F,, T}, taking preimages just as before.
Remark 6.2. By Lemma 6.1 we have
(6.3) Sel(F, Vi) = Hyo(F, Vi)
Remark 6.3. Taking £, = Gr for all v | p we get
(6.4) HE(F, Vi) = Sela(F, Viy),
where Selg; (L, Vy,y) is the Greenberg Selmer group considered in [How07b, Def. 2.4.2].
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6.2. Higher weight specializations of big Heegner points. In this section we relate the
higher weight specializations of Howard’s big Heegner points to the étale Abel-Jacobi images
of classical Heegner cycles [Nek95]. A first result in this spirit was obtained in [Cas13] under a
certain nonvanishing hypothesis (see [loc.cit., Thm. 5.11]). In Theorem 6.5 below we remove
that hypothesis, and find a relation between the global cohomology classes themselves, rather
than just their cyclotomic p-adic heights.

Assume that f has even weight & = 2r > 2 and trivial nebentypus. Fix an integer ¢, prime
to p, and set

Selar(He,poo /He,, Tt (1)) := @1 Selgr(He,pm, Tt (7)),

where Selgy (Hepn, Tf(r)) = HE(Heypn, T¢(r)) as in Remark 6.3. In particular, for every place
v of He,yn above p, the restriction map res, : Selg,(He,pn, T(r)) — H(Heopn o, T¢(r)) has
image contained in H'(He pn v, F TT¢(r)) C H (Heopn o, T#(7)).
Let f be the ordinary I-adic newform of tame level N passing through f, and let
300,00 € HIIW(HCDPOO/HC07 TT)

be Howard’s system of big Heegner points attached to f and K. (Note that since we assume
here that f has trivial nebentypus, the classes 3., are defined over the ring class fields H..
+ considered in §4.2.)

rather than their extensions H, ,

Lemma 6.4. Assume that pflg, is irreducible. Then for every place v of H., above p the
restriction map

res, : Selar(Hepoe /Heys T(r)) — Hiy (Heopoo o/ Hey w0 F T T5(1))
18 injective.
Proof. Let Ap = O[[Gal(H,,po/He,)]]. Since Sela(He,p/He,,T¢(r)) is Ap-torsion-free by
our irreducibility hypothesis (see [How04, Lem. 2.2.9] and [PRO00, §1.3.3]), it suffices to show
that the kernel of res, is Ap-torsion; for this, it will suffice to show that for infinitely many
¢ : Gal(Heypo /He,) — (’)ép, the ¢-specialized map

res, : Selay(He,, Vi(r) @ ¢) — H' (He,p, FTVi(r) @ ¢)

is injective. By considering twists for each of the characters of Gal(H,,/K), it will suffice to
show that for infinitely many ¢ : I' = Gal(Hp~ /K ) — Oép, the restriction map
(6.5) resy : Sela, (K, Vy(r) ® &, ¢) — H (Ky, Z1Vi(r) @ €, 9)
is injective. Let v € X§(I) be such that f, is the ordinary p-stabilization of f. By Corol-
lary 2.13, we have v(%,¢(f))(¢) # 0 for all but finitely many characters ¢ of I', and by
Theorem 5.3 this shows that resp(SpV@(Sg;@)) # 0 for every such ¢, where Spy7¢(3§;;) is

the image of 3’5; ;o under the composition
_1,\ Sp, _ _
H(Hoppoe /Hop, TV @ €71) 22 HY (Hoppoo /Ho, Ty(r) @ 6,1 & HU(K, Ty(r) @ €, 9),

and we view ¢ as a character on Gal(H,,p~/H,,) via Gal(H,p~/H,) C Gal(Hc po /K) — T

By the results of [How07b, §2.3], the class Spy7¢(3§; ;o) is the base class of an anticyclotomic
Euler system for T(r) ® &, 1¢ with the Bloch-Kato local condition (see [CH18, Def. 7.2]),
and so by [CH18, Thm. 7.7] we have the implication

SPyo(36 o) 0 = Sela, (K, Vi(r) @& ') = L.Sp, (3¢ o),

noting the equality between the Greenberg and the Bloch—-Kato Selmer groups in our setting
(see e.g. [How07b, Eq. (23)]). We thus conclude that (6.5) is injective, whence the result. [
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We are now ready to prove Theorem A in the Introduction, the strenghtening of the main
result of [Cas13] advanced in [CH18, §1].
For a p-ordinary newform g = f,, of even weight k, = 2r, > 2, let

Zf,.coax € Hllw (Hcozoc"> /He,, Tg(TV))

be the Ap-adic class constructed in [CH18, §5.2], which by its geometric construction and the
equality (6.4) lands in Selgy(Hc,pe /He,, Ty, (7). We refer the reader to [Casl3, p. 1250] and
[CH18, Eq. (4.6)] for the definition of the p-adic étale Abel-Jacobi images

(6.6) Yy (ARE), &F 4 (ARDY) € Sel(H,,, Ty, (r))

Co,Tv Co,Tv

of classical [Nek95] and generalized [BDP13] Heegner cycles, respectively, attached to f, and
K. On the other hand, as before let 3., oo € Hi, (Heopoe/He,, TT) be Howard’s system of big
Heegner points attached to K and the Hida family f = Y ° | a,¢" € [[[q]] passing through f.

Theorem 6.5. Assume that:

e k=2 (mod p—1);

e py is ramified at every prime q | (Di, N);

e p; p-distinguished;

e ptlay is irreducible.
Then for all v € X§(I) of weight 2r, > 2 with 2r, = k (mod 2(p — 1)) and trivial character,
we have

V(3cos00) - CZ”_l = Zf,,cox

as elements in Selgy(He,poo /He,, Ty, (1)), where a = v(ap). In particular, for all such v we
have

r,—1\ 2 ét heeg
(6.7) V(3ep0) = <1—p > P, Beori)
v(ap))  ue,(2y/=Dg)!

where uc, = |OF|/2.
Proof. Let v := £, be the specialization of £ as v, and let
1 ~
ﬁ’;ﬁp = <£pﬂ/}(_)7wfu ® t1727‘l’> : HIlw(HCopoo/HC(ﬂ cgﬁ‘k‘/fu (rV) ® wil) — AW[[PH
be the map introduced in [CH18, §5.3]. By construction, the map [,Ef in Proposition 5.2

-1
specializes at v to the map £}ﬁp , and using Theorem 5.3 for the second equality we have

—1 1 —1
(6.8) Ll (38, 00)) = V(L5 (resp(3F, o)) = V(Ze(F) - 0-1p)-
On the other hand, as shown in the proof of Theorem 2.11, %, ¢(f) specializes at v to the

p-adic L-function .Z, ,(f,) of [CH18, §3.3], and so by the explicit reciprocity law of [loc.cit.,
Thm. 5.7] we have

-1
(6.9) U Loe(£) - 0-1p) = Loy (f0) - 0m1p = Lip (Bfcoa @07 -7,
where o = v(a,,), since this is the U,-eigenvalue of the p-stabilized newform f,.
Comparing (6.8) and (6.9), the proof of the first statement in Theorem 6.5 follows from

Lemma 6.4 and the injectivity of Eﬁ;l. (The injectivity of this map is not explicitly stated in
[CH18, §5.3], but it follows from the construction in [loc.cit., Thm. 5.1] and [LZ14, Prop. 4.11].)
In particular, by the construction of zy, ., o in [CHI8, §5.2] (see [loc.cit., Def. 5.2]), we obtain

the relation
1 PN BDP\ 1—r
_ € —Tv
V(3eo0) = Ue, <1 a I/(ap)> '(I)mecD(Aco,ru) Co

where u., = |OX |/2, and by [BDP17, Prop. 4.1.2] (with r; = 2r,—2, 73 = 0, and sou = 7, — 1)
the equality of classes (6.7) follows. O
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Remark 6.6. For f, of weight 2 and trivial character, the classes (6.6) both reduce to Kummer
images of classical Heegner points, and if f, is the ordinary p-stabilization of f,, the argument
in the proof of Theorem 6.5 applies verbatim, yielding the same relation between classes. This
excludes the case of arithmetic primes v of weight 2 and trivial character for which f, has
conductor divisible p, which is the subject of [Cas18].

6.3. Proof of Theorem C. Keeping the notations as in the statement of Theorem C in the
Introduction, let V,” br the contragredient of the representation V,, and let g € S1(I'1(N,))
be an eigenform whose associated Deligne-Serre representation Vj is isomorphic to VQV. (Note
that the existence of g is a consequence of the proof [KW09] of Serre’s modularity conjecture.)
For ‘B a prime of £ above p, we shall view g and Vj as defined over the finite extension of Q,
given by the completion L := Eg, and let T, C V;; be any Gq-stable O-lattice.

Let g, € S1(I'o(p) NT'1(N,)) be a p-stabilization of g. By [Wil88, Thm. 3], there exists a
ordinary I-adic newform f of tame conductor N, such that v(f) = g, for some v € Xp(I) of
weight 1. Note that our hypotheses on ¢ guarantee that the associated residual representation
pr is irreducible and p-distinguished; in particular, f is unique by Lemma 4.2.

Let A be the grossencharacter of K associated to A by the theory of complex multiplication,
and let %} ¢(f) be the two-variable p-adic L-function of §2.7 constructed with the correspond-
ing I-adic character €. As usual, let ¢,Ok be the prime-to-p conductor of A(z)A~1(Z), and
let 3¢,.00 € Hi, (Heypoo /He,, TT) be Howard’s system of big Heegner points attached to f and
K. As already noted (see the comments right before the statement of Theorem 2.11), the
specialization of the I-adic character x at v has central character x| A% = 59_1. Noting that

A(a)A(a) = N(a), we thus see from Theorem 2.11 and Theorem 5.3 that
L(A/Q.0.1) #0 = L(g/K, xv&N""2,0) #0
(6.10) — v(Le(f)(1) #0
= xesy(Spy.p (35,,00)) # 0.

and so res(Sp,, 1 (350700)) # 0 by the action of complex conjugation.

Let ¢ := £,. The Euler system relations established in [How07b, §2.3] imply that Sp, 4 (3§0_ ;o)
is the base class of an anticyclotomic Euler system for T, 4 := T4(1/2) ® x,¢ in the sense of
[CH18, Def. 7.2] for the local conditions defining the generalized Selmer group HéLGr(K Va.s)
of (6.2), where V, 4 = Ty 4[1/p]. Thus as in the proof of [CH18, Thm. 7.9] the last nonvanishing
in (6.10) implies that

-1

Hér,Gr(Ka %,(]5) =L- Spu,ﬂ (350700)7— =L- Spu,ﬂ (350,00)7
and since resﬁ(Sle(Bfmoo)) # 0, this implies that
(6.11) Hero (K, Vi) = {0}

From Poitou—Tate duality we obtain the exact sequence

resp

— HY (K, FTV, 4-1)
—> Hé,O(K7 V97¢)v H H(l}r,O(K7 V97¢)v7

00— H&@(K, Vyg-1) — Hénm(K, Vy6-1)

and since H'(Ky, # V), 4-1) is one-dimensional, combining (6.10) and (6.11) we conclude that
(6.12) Hy (K, Vg,5) = {0},

and so Sel(K, V,(A) ® V) vanishes by Lemma 6.1.
Now let F' be the splitting field of o, and set H = Gal(F/Q). Since Homg, (V,, Sel(F, V,,(A)) L)
is naturally identified with the space of H-invariant classes in Sel(F, V,,(A))®V,’ = Sel(F, V,(A)®
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V.Y) and the restriction map

Sel(Q. Vy(4) V') — Sel(E, V,(4) © V)"

is as isomorphism, the proof of Theorem C follows immediately from (6.12).
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