
University of California, Santa Barbara
College of Creative Studies

Senior Thesis

The Existence of Perfect s-bases of
size m for Finite Abelian Groups

Author:

Nicholas Geis

Supervised by:

Karel Casteels

July 13, 2018



Contents

1 Introduction 2

2 Background 3

3 Results 8

3.1 Proof Idea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.2 Proof that shows s < m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.3 Counting Argument . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4 Future Work 20

5 Acknowledgements 22

References 23



Abstract

Given a finite abelian group G and a subset A of G, we call A an s-basis if every

element of G can be generated by the sum of at most s elements of A, including

repetition. A natural question to ask is,“What is the smallest s-basis for a given s

and a group G?” This question and its variations are studied extensively in additive

combinatorics. In particular, we consider perfect s-bases. An s-basis, A with cardinality

m, is considered perfect if every element of G can be written as a “unique” sum of at

most s elements of A. It is conjectured that there are no perfect s-bases of size m for

any abelian group G unless either s = 1 or m = 1. The conjecture has been shown to

hold when s = 2 and s = 3. We generalize that proof technique in order to prove the

conjecture for s ≤ 20 while providing intuition behind the combinatorial limitations of

the structure of finite abelian groups implied by this result.
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1 Introduction

Let G be a finite abelian group. Given an s ∈ N, a classical problem in additive combinatorics

is determining the smallest s-basis for G. Formally, finding an m such that

m = min{|A| : A ⊆ G such that [0, s]A = G}.

At a New York Number Theory Seminar in 2003, Bela Bajnok gave a talk titled The Spanning

Number and the Independence Number of a Subset of an Abelian Group [2]. Although his

focus was on general spanning sets and s-bases for abelian groups, he introduced the concept

of a perfect s-basis of size m. Intuitively, these perfect s-bases are the smallest possible value

of m where

[0, s]A ≤
(
m+ s

s

)
= |G|.

He notes that he “could not find perfect spanning sets for s ≥ 2 and m ≥ 3.” Then in his

2017 book titled Additive Combinatorics: A Menu of Research Problems [1], he poses the

following conjecture:

Conjecture 1.1. There are no perfect s-bases of size m for G, unless s = 1 or m = 1.

Additionally in [1], Bajnok proves that Conjecture 1.1 holds when s = 2, 3.

Theorem 1.2. Conjecture 1.1 holds when s = 2, 3.

The main focus of this thesis will be attempting to prove Conjecture 1.1. In particular,

we show that Conjecture 1.1 can only hold if s < m. Then, we generalize the proof technique

for Theorem 1.2 in order to prove more supporting results for the validity of Conjecture 1.1.
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2 Background

Recall from linear algebra the definition of a spanning set.

Definition 2.1. Let V be an C-space and A ⊆ V. We say that A is a spanning set if every

element of V can be written as a linear combination of elements from A with weights from

C.

Let G denote a finite abelian group with order n and N be the natural numbers including

0. We are interested in finding spanning sets for G.

We first clarify the concept of a linear combination of elements in G without having a

field to pull the scalars from. To address this problem, we introduce a scalar multiplication

for G by looking at G as a Z-module. In other words, we have the map · : Z×G→ G with

n · g = ng :=


g + g + . . .+ g︸ ︷︷ ︸

n−times

, when n ≥ 0

−(−n)g, when n < 0.

Definition 2.2. Let G be an abelian group. Let A = {ai}mi=1 ⊆ G. For any s ∈ N, we define

[0, s]A :=

{
λ1a1 + λ2a2 + . . .+ λmam

∣∣∣ λi ∈ N,
m∑
i=1

λi ≤ s

}
.

Definition 2.2 simply restricts the number of elements in A we can add together. To

better see this, consider the following examples:

Example 2.3. Let G = (Z/10Z,+) and take A = {0, 2, 4}. Let s = 2. Then

[0, 2]A = {0, 2, 4, 6, 8}

as

0 = 0, 2 = 2, 4 = 4, 2 + 4 = 6, 4 + 4 = 8.

Example 2.4. Let G = (Z/8Z, +) and take A = {1}. Then

[0, 7]A = G

as every nonzero element g ∈ G can be expressed as g = λ · 1 with 1 ≤ λ ≤ 7 and 0 = 0 · 1.
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Notice that in Example 2.4, we have that [0, 7]A = G. Here, A is an example of a spanning

set for G.

Definition 2.5. We say that A spans G, or A is a spanning set for G, if there exists an

s ∈ N such that

[0, s]A = G.

Remark 2.6. Notice that even though G is finite, not every subset of G needs to span G.

For example, consider G = (Z/8Z,+) and A = {2}. For every s ∈ N, [0, s]A only contains

even elements of Z/8Z. Hence, A does not span G.

In particular, we are interested in finding spanning sets given an s ∈ N. This introduces

the main focus of this thesis.

Definition 2.7. Let (G, ∗) be a finite abelian group and A ⊆ G. We call A an s-basis for G

if [0, s]A = G.

Example 2.8. Let G = (Z/8Z,+) and A = {1, 3, 5, 7}. We have that A is a 2-basis for G

because

[0, 2]A = {0, 1, 2, 3, 4, 5, 6, 7} = G.

Thus, A is an s-basis for G as every element of G can be obtained by the addition of at most

two elements from A.

Notice that the subset defined in Example 2.4 is a 7-basis for Z/8Z. Thus for the same

group, there exist s-bases for different values of s. In fact, notice that the subset from

Example 2.8 is also a 7-basis for Z/8Z. So the existence of an s-basis is not too interesting.

In fact, finding an s-basis for a given s can lead to a few degenerate cases. One such example

is taking A = G\{0} then A is an s-basis for G for every s ≥ 1. Another example is taking

A = G.

We will focus on the question of finding an s-basis for G with least cardinality.

Many papers1 have presented results that provide lower bounds on m given a fixed s and

a group G in terms of the order of the group n. However, this thesis will take a different

1Refer to Chapter B in [1] to find a survey of the majority of the results in this area.
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approach. In particular, we will look for spanning sets of size m that are “maximal.” To

clarify this, we need to introduce a few more definitions.

For a given s,m ∈ N consider the set

Λm([0, s]) :=

{
(λ1, . . . , λm) ∈ Nm

∣∣∣∣ m∑
i=1

λi ≤ s

}
.

Notice that if |A|= m, then we can rewrite Definition 2.2 using Λm([0, s]) as

[0, s]A = {λ1a1 + . . .+ λmam | (λ1, . . . , λm) ∈ Λm([0, s]), ai ∈ A}.

Thus, if A is an s-basis of size m for G then |Λm([0, s])|≥ |G| as Λm([0, s]) contains all the

possible combinations of elements in A. Through a counting argument, we have that

Proposition 2.9. For m, s ∈ N we have that

|Λm([0, s])| =
(
m+ s

s

)
.

Proof. This proof technique is the same as the proof technique for determining the dimension

of the vector space of polynomials in n variables with degree at most D from [4].

We are going to reduce this to a simple counting problem by turning each element of

Λm([0, s]) into a string of ?’s and |’s. Take some (λ1, λ2, . . . , λm) ∈ Λm([0, s]). Begin the

string by adding λ1 many ?’s and then adding a |. Continue this process for each λi for

1 ≤ i ≤ m. Then after adding the final |, add s−
∑m

i=1 λi many ?’s to the end of the string.

We will have s many ?’s and m many |’s in our string. Notice that this process creates

a bijection between strings of length m + s of s many ?’s and m many |’s and Λm([0, s]).

Additionally, note that the number of such strings is
(
m+s
s

)
as we simply need to choose the

s spots to place our ?’s. Hence, Proposition 2.9 holds.

Hence,

Corollary 2.10. If A is an s-basis of size m for G and |G|= n, then

n ≤
(
m+ s

s

)
.
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Now, we can look at what it means for a spanning set to be “maximal”. In particular,

we will look at the extreme case for an s-basis A for a group G when n = |Λm([0, s])|.

Definition 2.11. Let A ⊆ G be an s-basis for G. Let |G|= n and |A|= m. We call A a

perfect s-basis of size m if

n =

(
m+ s

s

)
.

For convenience, we introduce the notation for the generator map.

Definition 2.12. Let G be a finite abelian group and A = {ai}mi=1 be a subset of G. We

call the map F : Λm([0, s])→ G defined as

F ((λ1, . . . , λm)) =
m∑
i=1

λiai

the generator map of A.

Notice that if A = {ai}mi=1 is a perfect s-basis of size m for G, the generator map of A

is a surjection. Since surjections between finite sets of equal cardinality are injective, F is

injective. Therefore, we have the following result.

Proposition 2.13. Let G be a finite abelian group and A ⊆ G with A = {ai}mi=1. Then

A is a perfect s-basis of size m for G if and only if for every g ∈ G we have a unique

(λ1, . . . , λm) ∈ Λm([0, s]) such that

λ1a1 + . . .+ λmam = g.

Now, we can pose the simple question: does every group contain a perfect s-basis of size

m for some s and m? The short answer is yes.

Example 2.14. For example, consider A = {1} and G = Z/8Z from Example 2.4. A is a

perfect 7-basis of size 1 for G as A spans G and

|Z/8Z|= 8 =

(
7 + 1

1

)
.

Remark 2.15. Notice that for any s we can find a G and A such that A is a perfect s-basis

of size 1 for G. Since A consists of a single element that generates G, G must be cyclic. And

by Definition 1.5, we have that |G|=
(
s+1

1

)
= s + 1. Recall that there exists only one cyclic

group of order n, namely Z/nZ, up to isomorphism [3]. Hence, G ∼= Z/(s+ 1)Z.
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Now consider the following example:

Example 2.16. Take any abelian group G of order n. Notice that A = G\{0} is a perfect

1-basis of size n−1. This is trivial as every nonzero element of G is in A and then we form 0

by taking λ1 = . . . = λm = 0. Since s = 1, every element of G is a unique linear combination

of elements in A. Hence, by Proposition 2, A is a perfect 1-basis of size n− 1.

The arguments for both Example 1.2.2 and Example 1.5.1 classify perfect s-bases of size

m for abelian groups when s = 1 or m = 1. In particular, the arguments above can be

formalized to prove the following theorem.

Theorem 2.17 ([1]). Let G be a finite abelian group, A ⊆ G and a ∈ A. We have the

following:

1. A ⊆ G is a perfect 1-basis for G if and only if A = G\{0}.

2. {a} ⊆ G is a perfect s-basis for G if and only if G ∼= Z/(s+ 1)Z and gcd(a, s+ 1) = 1.

Now, what happens when s and m are both not equal to 1? Can we classify all the

abelian groups that have perfect s-bases of size m for s,m > 1? Currently, there are partial

results.

Theorem 2.18 ([1]). For any abelian group G, there are no perfect s-bases of size m for G

when s = 2, 3 and m > 1.

Theorem 2.18 led to the following conjecture.

Conjecture 2.19 ([1]). For any abelian group G, there are no perfect s-bases of size m for

G, unless s = 1 or m = 1.

The main focus of this thesis will be proving Conjecture 2.19. In particular, we show

that Conjecture 2.19 can only hold if s < m. Then, we generalize the proof technique for

Theorem 2.18 in order to prove Conjecture 2.19 for larger values of s.
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3 Results

3.1 Proof Idea

The proof for Theorem 2.18 can be found in [1]. However, for the sake of self-containment,

we will summarize the proof technique here.

First, we fix s. For Theorem 2.18, s = 2 or s = 3. Then we assume the existence of an

abelian group G that contains a perfect s-basis of size m for some m > 1. Call this basis A.

Second, we construct a family of disjoint sets based on A. Call this family F . Since all

sets of F are disjoint, ∑
F∈F

|F |≤ |G|=
(
s+m

m

)
.

By the construction of the sets, the inequality will provide an upper bound to m. In the

proof of Theorem 2.18, for both s = 2 and s = 3, they found m ≤ 3.

And third, we test each value of m > 1. To do so, we rely on the Fundamental Theorem

of Finite Abelian Groups.

Theorem 3.1 (The Fundamental Theorem of Finite Abelian Groups [3]). Let G be an

abelian group of order n > 1 and let the unique factorization of n into distinct prime powers

be

n = pα1
1 p

α2
2 · · · p

αk
k .

Then there exists groups H1, H2, . . . , Hk such that |Hi|= pαii and

G ∼= A1 × A2 × · · · × Ak.

Additionally, for each H ∈ {H1, H2, . . . , Hk} with |H|= pα,

H ∼= Zpβ1 × Zpβ2 × · · · × Zpβt

with β1 ≥ β2 ≥ · · · ≥ βt ≥ 1 and β1 + β2 + · · ·+ βt = α, where t and β1, . . . , βt depend on i.

Example 3.2. When s = 2, then m ≤ 3. So either |G|= 6 or |G|= 10. By Theorem 3.1,

that implies that either G ∼= Z/6Z or G ∼= Z/10Z.

Example 3.3. When s = 3, then m ≤ 3. So either |G|= 10 or |G|= 20. By Theorem 3.1,

there are 3 possibilities: G ∼= Z/10Z, G ∼= Z/20Z or G ∼= Z/2Z× Z/10Z.
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Various arguments are used to reach a contradiction once the structure of the group was

determined. For example, the latter cases in Example 3.3 where computed and checked

explicitly using [5] and [6].

A major issue with this proof technique is that the last step is computationally difficult

if the groups are large with highly composite cardinalities. The next sections are devoted to

proving a numerical approach to the problem in order to bypass that final step.

3.2 Proof that shows s < m

Before beginning this section, I would like to thank Ben Spitz and Cole Hugelmeyer whose

algebraic curiosities of the subject led to the formalizations of the techniques below.

Let G be a finite abelian group and A ⊆ G be a perfect s-basis of size m for G. This

section concerns itself with proving the following Theorem.

Theorem 3.4. Let s,m > 1 and let G be a finite abelian group. Suppose that A ⊆ G is a

perfect s-basis of size m for G. Then s < m.

In order to proof Theorem 3.4, we will develop several algebraic tools.

Definition 3.5. Let G be a finite abelian group and A = {ai}mi=1 be a subset of G. We call

the map φ : Zm → G defined as

φ((λ1, . . . , λm)) =
m∑
i=1

λiai

the full generator map of A.

Remark 3.6. Notice that φ|Λm([0,s]) = F , where F is the generator map of A from Definition

2.12. Hence, the name full generator map of A. Additionally, note that φ is a group

homomorphism between Zm and G as the linearity follows from both Zm and G being

abelian.

By working with the full generator map, we can utilize the additional group structure of

its domain.
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Lemma 3.7. Let G be a finite abelian group and A ⊆ G be a perfect s-basis of size m. Let

φ be the full generator map of A. Let x, y ∈ kerφ. If x 6= y, then (x + Λm([0, s])) ∩ (y +

Λm([0, s])) = ∅.

Proof. Let x 6= y ∈ kerφ and suppose that v ∈ (x + Λm([0, s])) ∩ (y + Λm([0, s])). That

implies that there exist w1, w2 ∈ Λm([0, s]) such that

v = x+ w1 and v = y + w2.

However, notice that

φ(v) = φ(x+ w1) = φ(x) + φ(w1) = φ(w1).

Similarly, φ(v) = φ(w2). However, since φ is injective on Λm([0, s]), we have that w1 = w2.

But this implies that x = y and so Lemma 3.7 holds.

Lemma 3.8. Let G be a finite abelian group and A ⊆ G be a perfect s-basis of size m.

Let φ be the full generator map of A. For any x ∈ Zm, there exists a y ∈ kerφ such that

x ∈ y + Λm([0, s]).

Proof. Take any x ∈ Zm. Consider y = x−F−1(φ(x)), where F = φ|Λm([0,s]) is the generator

map of A. Notice that

φ(y) = φ(x)− φ(F−1(φ(x))) = φ(x)− φ(x) = 0.

So y ∈ kerφ. Additionally, by construction, F−1(φ(x)) ∈ Λm([0, s]). Hence, x is of the desired

form.

Notice that for any x ∈ Zm, there exists a y ∈ kerφ such that x ∈ y + Λm([0, s]) by

Lemma 3.8. Additionally, by Lemma 3.7, that y is unique.

Definition 3.9. For any x ∈ Zm, let s(x) denote the unique element of kerφ such that

x ∈ s(x) + Λm([0, s]).
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Corollary 3.10. Let G be a finite abelian group and A ⊆ G be a perfect s-basis of size m.

Let φ be the full generator map of A. Then Zm =
⊔
y∈kerφ y + Λm([0, s]), where t is the

disjoint union.

Now, we begin the proof of Theorem 3.4.

Proof. Let s,m > 1 and let G be a finite abelian group with A ⊆ G a perfect s-basis of size

m. Assume that m ≤ s. Consider the elements

d1 = (s−m+ 2, 1, 1, . . . , 1) and d2 = (1, s−m+ 2, 1, . . . , 1).

Notice that d1, d2 6∈ Λm([0, s]). However, for any ei, where ei is a standard basis vector for

Zm, we have that d1 − ei, d2 − ei ∈ Λm([0, s]).

Now, I claim that s(d1) = d1.

Suppose that s(d1) 6= d1. Since d1 6∈ Λm([0, s]), s(d1) 6= 0 by Lemma 3.7. Therefore,

there exists a nonzero y ∈ Λm([0, s]) with d1 = s(d1) + y. Since y is nonzero, there is a

j ∈ {1, 2, . . . ,m} such that y− ej ∈ Λm([0, s]). Hence, d1− ej ∈ s(d1) + Λm([0, s]). However,

d1 − ej ∈ Λm([0, s]) by construction. So by Lemma 3.7, s(d1) = 0 which is a contradiction.

Thus, s(d1) = d1.

Similarly, s(d2) = d2. However, notice that

(s−m+ 2, s−m+ 2, 1, . . . , 1)

is in both s(d1) + Λm([0, s]) and s(d2) + Λm([0, s]) which also contradicts Lemma 3.7.

Therefore, Lemma 3.8 does not hold and so we must have that s < m.

3.3 Counting Argument

For the remainder of this chapter, let s,m > 1.

To begin, we introduce notation to describe sum partitions.

Definition 3.11. For a natural number n > 0, we say that P = (p1, p2, . . . , pk), with

nonzero pi ∈ N, is a sum partition of n if

n = p1 + p2 + . . .+ pk.

11



Let P(n) denote the set of unordered partitions of n.

Example 3.12. Consider n = 5. We have that

1 + 1 + 1 + 1 + 1

is a partition of 5. Additionally, we can show that

P(5) = {(5), (1, 4), (2, 3), (1, 1, 3), (1, 2, 2), (1, 1, 1, 2), (1, 1, 1, 1, 4), (1, 1, 1, 1, 1)}.

Now, let G be a finite abelian group and A be a subset of G. We will define the following

sets based on A.

Definition 3.13. Let |A|≥ n+ 1. We define the set P ∗ A− A for a given P ∈ P(n) as

P ∗A−A = {p1a1 +p2a2 + . . .+pkak−a | P = (p1, . . . , pk), ai, a ∈ A and each unique} ⊆ G.

Example 3.14. Let G = (Z/8Z,+) and A = {1, 2, 5, 7}. Let P = (1, 1, 1) and Q = (1, 2).

Then

P ∗ A− A = {1, 3, 5} and Q ∗ A− A = G.

Remark 3.15. Notice that for n > 0 and partition P ∈ P(n) with P = (p1, p2, . . . , pk), we

have that k ≤ n as (1, 1, . . . , 1) is the partition with the largest k. Therefore, in Definition

3.13, |A|≥ n + 1 ensures that we have enough unique elements of A to properly define

P ∗ A− A.

Now, we can connect the tools above to perfect s-bases for finite abelian groups.

Theorem 3.16. Let G be a finite abelian group and let A be a perfect s-basis of size m for

G. Let P,Q ∈ P(s − 1) be distinct sum partitions of s − 1 with P = (p1, p2, . . . , pk) and

Q = (q1, q2, . . . , ql). Then

(P ∗ A− A) ∩ (Q ∗ A− A) = ∅.

Proof. Let G be a finite abelian group and let A be a perfect s-basis of size m for G with

s,m > 1. By Theorem 3.4, we have that s < m. Take P,Q ∈ P(s − 1) with P 6= Q and

P = (p1, p2, . . . , pk) and Q = (q1, q2, . . . , ql). Since k ≤ s < m and l ≤ s < m, both P ∗A−A

and Q ∗ A− A are well-defined.
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Assume for the sake of contradiction that there exists an x ∈ G such that

x ∈ (P ∗ A− A) ∩ (Q ∗ A− A).

Since x is in the intersection we have that

x = p1a1 + p2a2 + . . .+ pkak − a (1)

and

x = q1a
′
1 + q2a

′
2 + . . .+ qla

′
l − a′ (2)

where ai and a are all unique and a′j and a′ are all unique. Equations (1) and (2) imply that

p1a1 + p2a2 + . . .+ pkak + a′ = q1a
′
1 + q2a

′
2 + . . .+ qla

′
l + a. (3)

Since A is a perfect s-basis for G and
∑k

i=1 pi + 1 ≤ s, we have that a ∈ {a1, a2, . . . , ak, a
′}.

By construction, a 6= ai for all i so a = a′.

We reduce (3) to

p1a1 + p2a2 + . . .+ pkak = q1a
′
1 + q2a

′
2 + . . .+ qla

′
l = g. (4)

Order the elements of A as {αi}mi=1. Next, we convert P and Q into elements of Λm([0, s]).

For P = (p1, p2, . . . , pk), consider the tuple (p′1, p
′
2, . . . , p

′
m) defined as

p′i =

pj, if αi = aj for some j in (3)

0, else.

Similarly, we form (q′1, q
′
2, . . . , q

′
m). By construction,

∑m
i=1 p

′
i =

∑k
j=1 pj = s− 1. So

(p′1, p
′
2, . . . , p

′
m), (q′1, q

′
2, . . . , q

′
m) ∈ Λm([0, s]).

Then by Proposition 2.13, we have that (p′1, p
′
2, . . . , p

′
m) = (q′1, q

′
2, . . . , q

′
m) or equivalently

P = Q. Therefore, the result holds and our sets are disjoint.

Notice that for any natural numbers 1 ≤ N ≤M ≤ s− 1, the result from Theorem 3.16

holds for any P ∈ P(N) and for any Q ∈ P(M). So we have the following corollary.
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Corollary 3.17. Let G be a finite abelian group and let A be a perfect s-basis of size m for

G. Let N,M ∈ N and N ≤ M ≤ s − 1. Let P ∈ P(N) and Q ∈ P(M) be distinct sum

partitions of N and M respectively with P = (p1, p2, . . . , pk) and Q = (q1, q2, . . . , ql). Then

(P ∗ A− A) ∩ (Q ∗ A− A) = ∅.

Since the sets described in Corollary 3.17 are all disjoint subsets of G, we have that

s−1∑
l=2

∑
P∈P(l)

|P ∗ A− A|≤ |G|. (5)

In particular, we can count |P ∗ A− A| for a given P ∈ P(k).

Proposition 3.18. Let N ≤ s−1 be a natural number and P ∈ P(N) with P = (p1, . . . , pkP ).

Then

|P · A− A|= m(m− 1) · . . . · (m− (kP + 1))∏s−1
i=1 σP (i)!

where σP (i) is the number of times that i appears in P.

Proof. This will be done through a simple counting argument. All elements of P ·A−A are

of the form

p1a1 + p2a2 + . . .+ pkP akP − a

where each ai and a are different. Thus there are simply

m(m− 1) · . . . · (m− (kP + 1))

many possible combinations including repeated combinations. Since G is abelian, a repeated

combination occurs when there exist i, j ∈ {1, . . . , kP} such that i 6= j but pi = pj. For each

i ∈ {1, . . . , s − 1}, there are σP (i)! many repeated combinations. Thus to avoid repetition,

we simply divide and get the desired result.

Corollary 3.19. Let G be a finite abelian group with a perfect s-basis of size m. Let N ≤ s−1

be a natural number and P ∈ P(N) with P = (p1, p2, . . . , pkP ). Then

s−1∑
l=2

∑
P∈P(l)

m(m− 1) · . . . · (m− kP )∏s−1
i=1 σP (i)!

≤
(
m+ s

s

)
.

14



Proof. Notice that from (5), Proposition 3.18 and Definition 2.11, we get that

s−1∑
l=2

∑
P∈P(l)

m(m− 1) · . . . · (m− kP )∏s−1
i=1 σP (i)!

=

∣∣∣∣∣∣
⋃

l∈{2,3,...,s−1}

(P · A− A)

∣∣∣∣∣∣ ≤ |G|=
(
m+ s

s

)

For simplicity, we provide names for the functions in Corollary 3.19. Let

ps(m) :=

(
m+ s

s

)
(6)

and

qs(m) :=
s−1∑
l=2

∑
P∈P(l)

m(m− 1) · . . . · (m− kP )∏s−1
i=1 σP (i)

. (7)

Notice both ps(m) and qs(m) are polynomials. Next, we outline a few properties of

both polynomials. Let deg(f) be the degree of a polynomial f and coeff(f) be the leading

coefficient.

Proposition 3.20. For ps(m) defined at (6), deg(ps) = s and coeff(ps) = 1
s!
.

Proof. This is immediate by expanding the binomial coefficient in the definition of ps in

(6).

Proposition 3.21. For qs(m) defined at (7), deg(qs) = s and coeff(qs) = 1
(s−1)!

.

Proof. Let P =
⋃
l∈{2,3,...,s−1}P(l). Notice that

deg(qs) = max
P∈P
{kP | P = (p1, p2, . . . , pkP )}+ 1

by the construction of qs. Additionally, kP is maximized by the all 1’s partition of s − 1 so

kP = s− 1. Hence, deg(qs) = s. It is immediate that coeff(qs) = 1
(s−1)!

as the all 1’s partition

of s− 1 is the only partition that has a degree s monomial.

By Corollary 3.19, we are interested in finding integer values of m ≥ 0 such that

ps(m)− qs(m) ≥ 0.

15



First, notice that ps(0) − qs(0) = 1 for s ≥ 3. So there exists a region where both m and

ps(m)− qs(m) are strictly positive. And second, note that coeff(ps− qs) < 0 by Propositions

3.20 and 3.21. Since ps − qs is a polynomial with a negative leading coefficient,

lim
m→∞

ps(m)− qs(m) = −∞.

As a result,

sup
m∈N
{m | ps(m)− qs(m) > 0} <∞.

Hence, we have the following theorem.

Theorem 3.22. Conjecture 2.19 is true for m, s > 1 if

max{α | where α is a real root of ps(m)− qs(m)} ≤ s.

Proof. Suppose that the conjecture does not hold. Then there exists an abelian group G

with a perfect s-basis of size size m for some values of s,m > 1. From the argument above,

we have that

sup
m∈N
{m | ps(m)− qs(m) > 0} <∞.

Since ps(m)−qs(m) is a polynomial, it is continuous. Therefore, the largest natural number,

say M , such that ps(m)− qs(m) > 0 will have a real root between M and M + 1. Thus,

max{α | where α is a real root of ps(m)− qs(m)} <∞.

Additionally, since s < m from Theorem 3.4, we must have that⌊
max{α | where α is a real root of ps(m)− qs(m)}

⌋
≥ m > s.

Hence, we have shown the contrapositive of Theorem 3.22.

Theorem 3.22 is very useful as it simplifies the original proof technique from [1]. Instead

of finding an upper bound on m and checking every possible group using the Fundamental

Theorem of Finite Abelian Groups, we only need to compute the polynomial ps(m)− qs(m)

and compare the maximum real root to s. For small cases like s ≤ 20, we computed the

polynomials and their maximum real roots using code in Mathematica. The next pages

contain a table of the polynomials and their maximum real root for s ∈ {3, 4, . . . , 20}.
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Table 1: ps(m)− qs(m) Polynomials and Maximum Roots

s ps(m)− qs(m)
approximate

max real root

4 −x
4

8
− x3

12
+

17x2

8
+

25x

12
+ 1

4.29537

5 −x
5

30
− x4

8
+
x3

4
+

21x2

8
+

137x

60
+ 1

4.04907

6 − x6

144
− 13x5

240
− 7x4

144
+

29x3

48
+

55x2

18
+

49x

20
+ 1

4.02851

7 − x7

840
− 11x6

720
− 13x5

240
+

11x4

144
+

77x3

80
+

619x2

180
+

363x

140
+ 1

4.09048

8 − x8

5760
− 11x7

3360
− 61x6

2880
− x5

30
+

1351x4

5760
+

211x3

160
+

5453x2

1440
+

761x

280
+ 1

4.18896

9
− x9

45360
− 23x8

40320
− 169x7

30240
− 13x6

576
+

7x5

1080
+

2399x4

5760
+

151517x3

90720
+

8279x2

2016
+

7129x

2520
+ 1

4.30459

10
− x10

403200
− 61x9

725760
− 23x8

20160
− 907x7

120960
− 353x6

19200
+

2183x5

34560
+

24841x4

40320
+

365683x3

181440
+

221933x2

50400
+

7381x

2520
+ 1

4.428

11
− x11

3991680
− 13x10

1209600
− 139x9

725760
− x8

560
− 19x7

2240
− 469x6

57600
+

97801x5

725760
+

100291x4

120960
+

427117x3

181440
+

235913x2

50400
+

83711x

27720
+ 1

4.55428

12
− x12

43545600
− 97x11

79833600
− 1193x10

43545600
− 491x9

1451520
− 34661x8

14515200
− 19687x7

2419200
+

362461x6

43545600
+

63731x5

290304
+

11458271x4

10886400
+

4872997x3

1814400
+

186791x2

37800
+

86021x

27720
+1

4.68077
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13

− x13

518918400
− 59x12

479001600
− 13x11

3801600
− 2333x10

43545600
− 3697x9

7257600
−

5867x8

2073600
− 44729x7

7257600
+

1349641x6

43545600
+

109211x5

345600
+

13978619x4

10886400
+

60085523x3

19958400
+

154079x2

29700
+

1145993x

360360
+ 1

4.80601

14

− x14

6706022400
− 47x13

4151347200
− 11x12

29030400
− 467x11

63866880
− 221x10

2488320
−

19867x9

29030400
− 1828333x8

609638400
− 2711x7

1161216
+

24089x6

403200
+

1534597x5

3628800
+

13018031x4

8553600
+

13286587x3

3991680
+

2869009x2

529200
+

1171733x

360360
+ 1

4.92923

15

− x15

93405312000
− 83x14

87178291200
− 1411x13

37362124800
− 841x12

958003200
−

27029x11

2052864000
− 47x10

358400
− 219271x9

261273600
− 1704671x8

609638400
+

4584763x7

1306368000
+

2055239x6

21772800
+

13833709x5

25660800
+

8805947x4

4989600
+

4722176903x3

1297296000
+

15818087x2

2802800
+

1195757x

360360
+ 1

5.05003

16

− x16

1394852659200
− 193x15

2615348736000
− 1193x14

348713164800
− 3517x13

37362124800
−

23x12

13516800
− 75557x11

3592512000
− 432349x10

2438553600
− 1734799x9

1828915200
− 20790671x8

9754214400
+

30005921x7

2612736000
+

12292769x6

91238400
+

476845429x5

718502400
+

58460417317x4

29059430400
+

71651300797x3

18162144000
+

1181714719x2

201801600
+

2436559x

720720
+ 1

5.16825

17

− x17

22230464256000
− 37x16

6974263296000
− 743x15

2615348736000
− 3181x14

348713164800
−

1139x13

5837832000
− 37199x12

12773376000
− 1029827x11

33530112000
− 543857x10

2438553600
− 9019033x9

9144576000
−

45187067x8

48771072000
+

622771451x7

28740096000
+

4611983x6

25546752
+

260150480027x5

326918592000
+

328627862089x4

145297152000
+

77080688557x3

18162144000
+

407562373x2

67267200
+

42142223x

12252240
+ 1

5.28386

18



18

− x18

376610217984000
− 23x17

64670441472000
− 1367x16

62768369664000
−

59x15

73156608000
− 114767x14

5706215424000
− 151751x13

426995712000
− 46733x12

10287648000
−

11206141x11

268240896000
− 231123517x10

877879296000
− 271194739x9

292626432000
+

4280782903x8

4828336128000
+

178264117x7

5225472000
+

1362625803629x6

5884534656000
+

222226979809x5

237758976000
+

298886881199x4

118879488000
+

3169345127x3

698544000
+

1032537721x2

165110400
+

14274301x

4084080
+ 1

5.39689

19

− x19

6758061133824000
− x18

44771844096000
− 1103x17

711374856192000
−

823x16

12553673932800
− 821x15

435891456000
− 2435203x14

62768369664000
− 12301049x13

20922789888000
−

4772557x12

724250419200
− 86202353x11

1609445376000
− 256723123x10

877879296000
− 799511393x9

1072963584000
+

11821513x8

3511517184
+

10220840479x7

209227898880
+

260361136219x6

905313024000
+

2823932984849x5

2615348736000
+

724059040457x4

261534873600
+

186197716633x3

38594556000
+

198865123867x2

30875644800
+

275295799x

77597520
+1

5.50742

20

− x20

128047474114560000
− 107x19

81096733605888000
− 29x18

281423020032000
−

2339x17

474249904128000
− 67621x16

418455797760000
− 22909x15

5977939968000
−

51011447x14

753220435968000
− 113266403x13

125536739328000
− 106542329x12

11824496640000
−

419755723x11

6437781504000
− 435623887x10

1430618112000
− 384117823x9

919683072000
+

3089843515537x8

470762772480000
+

2067893334883x7

31384184832000
+

360474244787x6

1034643456000
+

6436090552531x5

5230697472000
+

336146145411577x4

111152321280000
+

90093517097x3

17643225600
+

40886468201x2

6175128960
+

55835135x

15519504
+1

5.61556

Notice that Table 1 implies the following theorem.

Theorem 3.23. For 3 ≤ s ≤ 20, Conjecture 2.19 holds.

Proof. This is an application of Theorem 3.22 for s ∈ {3, 4, . . . , 20} using the values computed

from Table 1.
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4 Future Work

As an extension to Theorem 3.23, Conjecture 2.19 was verified using the same Mathematica

code up to s = 50. Additionally, the slow growth rate of the maximum zeros strongly implies

the validity of Conjecture 2.19. The immediate next step would be to show the following

conjecture.

Conjecture 4.1. Let

ps(m) :=

(
m+ s

s

)
and

qs(m) :=
s−1∑
l=2

∑
P∈P(l)

m(m− 1) · . . . · (m− kP )∏s−1
i=1 σP (i)

.

For every s ∈ N,

max{α | where α is a real root of ps(m)− qs(m)} ≤ s.

A proof of Conjecture 4.1 immediately proves Conjecture 2.19 by Theorem 3.22.

This combinatorial approach shows that a perfect s-basis of size m for s,m > 1 cannot

happen for a finite abelian group because it encodes “too much” information about each

element. The group elements are forced to overlap in terms of their combinations of basis

elements. Using more algebraic methods like the techniques in Section 3.2 may yield intuition

behind those overlaps and other underlaying algebraic limitations to the perfect s-basis

structures.

Finally, we can make an adjustment to the definition of perfect s-bases for abelian groups

by substituting the set

Zm([0, s]) :=

{
(ζ1, . . . , ζm) ∈ Zm

∣∣∣∣ m∑
i=1

|ζi|≤ s

}

in the place of Λm([0, s]). We will call a subset of this type a Z-perfect s-basis. Consider the

following example.

Example 4.2. Let G = Z/25Z and A = {3, 4}. We can verify that A is a Z-perfect 3-basis

for G.
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The idea of a Z-perfect s-basis is mentioned briefly in [2], but is not present in the later

paper [1]. Since examples of Z-perfect s-bases exist for s,m > 1, investigating the following

statement is fruitful.

Statement 1. Classify all examples of Z-perfect s-bases for s,m > 1.

21



5 Acknowledgements

First and foremost, I would like to thank Karel Casteels for both being my advisor and

allowing me to participate in his research group during the 2017 UCSB REU. Additionally, I

would like to thank the Santa Barbara Math REU for providing a wonderful and motivating

research environment, the NSF and UCSB RTG for funding the initial stages of my research,

and Bill Jacob and Maribel Bueno Cachadina for overseeing the Senior Thesis course at

UCSB. Finally, I would like to thank my peers for their words of encouragement and their

aid in the research process. In particular, I want to specifically say my thanks to Diljit Singh,

Ben Spitz, and Cole Hugelmeyer.

22



References

[1] Bela Bajnok, Additive Combinatorics: A Menu of Research Problems.

https://arxiv.org/pdf/1705.07444.pdf, 2017, 129-132.

[2] D. and G. Chudnovsky and M. Nathanson, Number Theory: New York Seminar 2003.

Springer-Verlag New York, Inc., New York, 2004.

[3] D. David and R. Foote, Abstract Analysis (3rd Edition), 2004.

[4] Larry Guth, Polynomial Methods in Combinatorics. 2016.

[5] Samir Lalvani, samSets, http://www.cs.gettysburg.edu/ lalvsa01/.

[6] Samir Lalvani, irSets, http://www.cs.gettysburg.edu/ lalvsa01/.

23


