Final Exam Math 145, UCSB, Fall '07

Exercise 1. Let $\{x_n\}$ and $\{y_n\}$ be two Cauchy sequences in a complete metric space X, with distance d. Prove that they have the same limit if and only if

$$\lim_{n \to +\infty} d(x_n, y_n) = 0.$$

Exercise 2.

Determine which of the following functions are continuous (justify your answer):

- 1. Let X and Y be topological spaces, let $y_0 \in Y$ be a fixed point and let $f : X \to Y$ defined as $f(x) = y_0$ for any $x \in X$.
- 2. Let $X = \mathbb{R}$ with the cofinite topology and let $f : X \to X$ defined as $f(x) = \sin(x)$, for any $x \in X$.
- 3. Let $X = \mathbb{R}$ with the cofinite topology and let $Y = \mathbb{R}$ with the usual topology. Let $f: X \to Y$ defined as $f(x) = 2 \cdot x$, for any $x \in X$.

Exercise 3.

Determine which of the following topological spaces is connected (justify your answer):

- 1. The set of real numbers \mathbb{R} with the confinite topology;
- 2. The subspace S of \mathbb{R}^2 with the usual topology, defined as

$$S = \{(x, y) | x \neq 0\};$$

- 3. The set of rational numbers \mathbb{Q} with the usual topology;
- 4. (Extra) The cylinder defined by the equations $x^2 + y^2 = 1$ inside \mathbb{R}^3 with the usual topology.

Exercise 4.

Let X and Y be topological space.

- 1. Assume that $X \times Y$ is compact. Show that X is also compact.
- 2. Assume that $X \times Y$ is connected. Show that X is also connected.
- 3. Assume that $X \times Y$ is Hausdorff. Show that X is also Hausdorff.

Exercise 5.

Let $\{x_n\}$ be a sequence in a topological space X which converges to $x \in X$ and let $\{y_n\}$ be a sequence in a topological space Y which converges to $y \in Y$. Show that $z_n = (x_n, y_n)$ converges to (x, y) in $X \times Y$.

Exercise 6.

Determine if the following pairs of topological spaces are homeomorphic within each other (justify your answer):

- 1. [0,1] with the usual topology and \mathbb{R} with the usual topology;
- 2. \mathbb{Q} with the usual topology and \mathbb{R} with the usual topology;
- 3. \mathbb{R}^2 with the usual topology and the circle $\{(x, y)|x^2 + y^2 = 1\} \subseteq \mathbb{R}^2$ with the usual topology;
- 4. (Extra) [0,1] with the discrete topology and \mathbb{R} with the discrete topology.