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Abstract

In a recent paper, the first author introduced a general theory of corner
rings in noncommutative rings that generalized the classical theory of Peirce
decompositions. This theory is applied here to the study of the stable range of
rings upon descent to corner rings. A ring is called quasi-duo if every maximal
1-sided ideal is 2-sided. Various new characterizations are obtained for such
rings. Using some of these characterizations, we prove that, if a quasi-duo ring
R has stable range ≤ n, the same is true for any semisplit corner ring of R.
This contrasts with earlier results of Vaserstein and Warfield, which showed
that the stable range can increase unboundedly upon descent to (even) Peirce
corner rings.

§1. Introduction

In a recent work [La5], the first author introduced a general theory of corner rings
by defining a subring S of a ring R to be a corner ring (or simply a corner of R)
if R = S ⊕ C for an additive subgroup C ⊆ R such that SC ⊆ C and CS ⊆ C.
(Any such C is called a complement of S in R. Note that the identity of S may be
different from that of R.) The best known class of examples is given by the Peirce
corners Re := eRe [Pe], where e is any idempotent in R. (It is shown in [La5: (2.7)]
that Re has a unique complement Ce := eRf ⊕ fRe⊕ fRf .) In general, if a corner
ring S has identity e, then S is a unital corner of its “associated Peirce corner”
Re; for more details, see [La5: (5.1)]. We say S is a split corner if it has an ideal
complement in R, and S is a semisplit corner if it is a split corner in its associated
Peirce corner. (Obviously, all Peirce corners are semisplit.) Criteria for split and
semisplit corners were given in [La5: (5.4), (5.8)].

In [La5], the first author developed many of the basic facts on corner rings and
their complements, and proved various theorems on the preservation of ring-theoretic
properties by corner rings (or at least by semisplit corner rings). In this sequel to
[La5], we apply the corner ring theory to the study of the stable range of rings. In
the standard literature on the stable range (see, e.g. [Va1], [Wa]), it is shown that
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stable range ≤ n is a Morita invariant property of rings only for n = 1, and not for
other n ’s. Specifically, if a ring R has stable range n with n ≥ 2, its Peirce corner
rings Re (even for full idempotents e) may have arbitrarily large stable range. In
attempting to understand this phenomenon, we found that one “obstruction” to the
preservation of stable range upper bounds lies in the lack of symmetry between left
and right unimodularity in an arbitrary ring R. The main purpose of this paper is
essentially to report this finding.

After a short preparatory section on unimodularity sequences in general corner
rings, we introduce in §3 the class of right quasi-duo rings : rings in which maximal
right ideals are ideals. We characterize these as rings in which left unimodularity
implies right unimodularity. Using this new viewpoint on right quasi-duo rings, we
re-examine in §4 the problem of determining the subclass of right quasi-duo rings in
certain classes of rings, including right primitive rings, semilocal rings, von Neumann
regular rings, π-regular rings, and 1-sided self-injective rings. This work led to the
question whether a ring R is (right) quasi-duo if R/rad(R) is a subdirect product
of division rings: this question is answered negatively in §5.

In §6, we prove the main result (6.3), to the effect that, for any (right and left)
quasi-duo ring R, the stable range of any semisplit corner ring of R is bounded by
the stable range of R. This theorem provides an interesting contrast to the well
known results of Vaserstein and Warfield mentioned above. Thus, the more general
viewpoint of corners introduced in [La5] has enabled us to get new results even within
the classical framework of Peirce corner rings.

Much (if not all) of this paper can be read independently of [La5]. Throughout the
note, R denotes a ring with an identity element 1 = 1R, and by the word “subring”,
we shall always mean a subgroup S ⊆ R that is closed under multiplication (hence
a ring in its own right), but with an identity element possibly different from 1R. If
1R happens to be in S (so it is also the identity of S), we’ll say that S is a unital
subring of R. Other general notations and conventions in this paper follow closely
those used in [La1], [La3], [La5], and [Fa].

§2. Unimodularity in Corner Rings

A sequence r1, . . . , rn in a ring R is said to be left unimodular if the ri ’s generate
R as a left ideal, and right unimodular if the ri ’s generate R as a right ideal (that
is, respectively, Rr1 + · · ·+Rrn = R, and r1R+ · · ·+rnR = R). We begin by proving
a result that establishes a basic connection between the left unimodular sequences in
R and those in a general corner ring of R.

(2.1) Theorem. Let S be a corner of R with identity e, and let f = 1 − e. For
any s1, . . . , sn ∈ S, the following are equivalent:
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(1) {s1, . . . , sn} is left unimodular in S;

(2) {s1 + f, . . . , sn + f} is left unimodular in R;

(3) ∃ b1, . . . , bn ∈ Rf such that {s1 + b1, . . . , sn + bn} is left unimodular in R.

(4) ∀ b2, . . . , bn ∈ fR, {s1 + f, s2 + b2, . . . , sn + bn} is left unimodular in R.

Proof. (4) ⇒ (2) ⇒ (3) are tautologies. For (3) ⇒ (1), assume there exists an
equation

∑n
i=1 ri(si + bi) = 1, where bi ∈ Rf and ri ∈ R. Fix a complement C

for S, and recall from [La5: (5.1)(3)] that C must contain Ce := eRf ⊕ fRe⊕ fRf .
Writing ri = ti + ci with ti ∈ S and ci ∈ C, we have

(2.2)
n∑

i=1

(tisi + cisi + ribi) = 1 = e + f,

Here, tisi ∈ S, cisi ∈ C, and

ribi ∈ riRf ⊆ Rf = eRf ⊕ fRf ⊆ Ce ⊆ C.

Thus, (2.2) implies that
∑n

i=1 tisi = e, and thus
∑n

i=1 Ssi = S. Finally, for (1) ⇒ (4),
fix an equation

∑n
i=1 s′isi = e, where s′i ∈ S, and take any b2, . . . , bn ∈ fR. Setting

b1 = f , we have, for all i, s′ibi ∈ (s′ie)(fR) = 0, and b1s1 = f(es1) = 0. Thus,

(s′1 + b1)(s1 + b1) +
n∑

i=2

s′i(si + bi) = s′1s1 + · · ·+ s′nsn + b2
1 = e + f = 1.

Therefore,
∑n

i=1 R(si + bi) = R (with b1 = f), as desired.

This result will be crucial for proving our main theorem (6.3).

§3. Right Quasi-Duo Rings and Unimodularity

A ring R is said to be right duo (resp. right quasi-duo) if every right ideal
(resp. maximal right ideal) of R is an ideal. Obviously, right duo rings are right
quasi-duo. Other examples of right quasi-duo rings include, for instance, commuta-
tive rings, local rings, rings in which every nonunit has a (positive) power that is
central, endomorphism rings of uniserial modules, and power series rings and rings of
upper triangular matrices over any of the afore-mentioned rings (see [Yu]). Also, it
is easy to see that

(3.0). If a ring R is right duo (resp. right quasi-duo), so is any factor ring of R.

The condition that maximal right ideals be two-sided has appeared (without a
name) in the investigation of Burgess and Stephenson [BS] on rings all of whose
Pierce stalks are local (and quite possibly even earlier). The name “right quasi-duo”
for this condition was coined by H.-P. Yu, who initiated the first substantial study of
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right quasi-duo rings in [Yu]. This study was continued in the work of other authors,
in [Ki], [KKJ], [KL], etc. But surprisingly, some very natural characterizations of
such rings seemed to have so far escaped notice. In this section, we begin by offering
some of these new characterizations of right quasi-duo rings, which are in terms of
left and right unimodular sequences.

For any integer n ≥ 1, let “right Dn” denote the following condition on a ring R:

(3.1) ∀ ri ∈ R, Rr1 + · · ·+ Rrn = R =⇒ r1R + · · ·+ rnR = R.

(“Left Dn” is defined similarly.) For n = 1, this amounts to the classical notion
of Dedekind-finiteness (and is therefore left-right symmetric). For n ≥ 2, these
conditions turn out to be all equivalent to R being right quasi-duo, as the following
theorem shows. Note that the conditions (2) through (7) in this theorem amount to
characterizations of “right quasi-duo” in terms of first-order statements on the ring
(R, +, × ).

Theorem 3.2. For any ring R, the following statements are equivalent:

(1) R is right quasi-duo.
(2) R satisfies right Dn for all n.
(3) R satisfies right Dn for some n ≥ 2.
(4) For some n ≥ 2, any subset {x1, y1, . . . , xn−1, yn−1} ⊆ R satisfies

(3.3) x1R + · · ·+ xn−1R + (y1x1 + · · ·+ yn−1xn−1 − 1)R = R.

(5) (3.3) holds for all n ≥ 2 and all x1, y1, . . . , xn−1, yn−1 ∈ R.
(6) For any x, y ∈ R, xR + (yx− 1)R = R.
(7) For any finite set S ⊆ R, RSR = R =⇒ SR = R.

(In particular, right quasi-duo rings are always Dedekind-finite.)

Proof. (1) ⇒ (2). Let x1, . . . , xn ∈ R be such that x1R + · · · + xnR 6= R. Then
x1R+ · · ·+xnR is contained in a maximal right ideal m of R. By (1), m is an ideal.
Since xi ∈ m for all i, it follows that Rx1+· · ·+Rxn ⊆ m, and so Rx1+· · ·+Rxn 6= R.

(2) ⇒ (3) is a tautology.

(3) ⇒ (4). Suppose R satisfies right Dn for a fixed n ≥ 2. Given xi, yi ∈ R (1 ≤
i ≤ n− 1), the sequence

(3.4) {x1, . . . , xn−1, y1x1 + · · ·+ yn−1xn−1 − 1}

is always left unimodular, in view of

(3.5) y1 · x1 + · · ·+ yn−1 · xn−1 − (y1x1 + · · ·+ yn−1xn−1 − 1) = 1.

Since R satisfies right Dn, it follows that the sequence (3.4) is right unimodular, as
desired.

4



(4) ⇒ (6) is clear, upon setting xi = yi = 0 for all i ≥ 2 in (3.3).

(6) ⇒ (1). If (1) fails, there would exist a maximal right ideal m ⊂ R that is not an
ideal. Take an element y ∈ R such that y m * m. Since y m is also a right ideal, we
have m + y m = R, so there exists an equation 1 = m + yx where m, x ∈ m . This
leads to xR + (yx− 1)R = xR + mR ⊆ m ( R, so (6) does not hold.

The argument for (3) ⇒ (4) also shows (2) ⇒ (5), and (5) ⇒ (4) is a tautol-
ogy. This proves the equivalence of (1) through (6). Finally, (7) is just a slight
reformulation of (2).

As an immediate application of the first-order characterization (3.2)(6) for right
quasi-duo rings, we have the following result.

(3.6) Corollary. (1) If R is a direct product of the rings {Ri : i ∈ I}, then R is
right quasi-duo iff each Ri is.

(2) If R is a subdirect product of a finite family of rings {Ri : 1 ≤ i ≤ n}, then
R is right quasi-duo iff each Ri is.

(3) If {Ri : i ∈ I} is a directed system of right quasi-duo rings, then the direct
limit of these rings is also right quasi-duo.

(4) The ultraproduct of any family of right quasi-duo rings is right quasi-duo.

Proof. (3) is clear from the characterization (3.2)(6), since every pair of elements
x, y in the direct limit “comes from” some ring Ri in the system. A similar reasoning
gives the “if” part of (1), and this (together with (3.0)) implies (4). The “only if”
parts in (1) and (2) likewise follow from (3.0).

The last step is now to prove the “if” part in (2). For this, we may induct on n,
and reduce the consideration to the key case n = 2. In this case, for convenience,
we represent Ri in the form R/Ai, where A1, A2 are ideals in R with intersection
(0). Consider any x, y ∈ R. Since R/Ai is right quasi-duo, there exists an equation
xri + (yx− 1)si = 1 + ai, where ai ∈ Ai. and ri, si ∈ R (for i = 1, 2). Therefore,

(xr1 + (yx− 1)s1 − 1)(xr2 + (yx− 1)s2 − 1) = a1a2 ∈ A1A2 ⊆ A1 ∩ A2 = 0.

Writing t = xr2 + (yx− 1)s2 − 1, the LHS above has the form

xr1t + (yx− 1)s1t− (xr2 + (yx− 1)s2 − 1) ∈ 1 + xR + (yx− 1)R.

This gives xR + (yx− 1)R = R (for all x, y ∈ R), as desired.

(3.7) Remark. The proof given in the last paragraph (for the “if” part of (2))
depended heavily on working with finite subdirect products of right quasi-duo rings
(for which we can carry out an induction). In fact, the “if” part in (2) fails to hold
in general for infinite (or even countable) subdirect products. Examples to this effect
will be given in §5.
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The right Dn conditions do not seem to have been explicitly stated before. How-
ever, some related notions have previously appeared in the literature. In extending
a result of Herstein and Small [HS], Lenagan [Le] considered the property (3.1) for
pairwise commuting elements {ri} in R. In parallel to our definition of “right Dn”,
let us say that R satisfies right Sn if (3.1) holds for all pairwise commuting elements
{ri} ⊆ R. (The letter “S” comes from “Schur”: see [HS].) This is a weak version of
our right Dn property. In [HR], Handelman and Raphael studied right S2 rings, and
applied this notion to their work on pseudo rank functions on von Neumann regular
rings. In [Le], it is shown that Artinian (in fact semilocal) rings are “Schur rings”;
that is, they are left/right Sn for all n.1 Later, Burgess and Menal [BM] showed that
strongly π-regular rings are also Schur rings. (I thank K. Goodearl for bringing some
of this literature to my attention.) In this paper, our main focus will be on the right
Dn property (that is, the right quasi-duo property, in case n ≥ 2); results on the
right Sn properties will be given only if they can be obtained by the same methods
as in the Dn case.

The following theorem guarantees the descent of the right Dn and right Sn proper-
ties to arbitrary corner rings. The proofs of results such as (2.1) and (3.8) demonstrate
rather clearly the utility of the notions of general corner rings and their complements.

(3.8) Theorem. For a fixed n ≥ 1, if R satisfies right Dn (resp. right Sn), then
so does any corner ring S of R. (Thus, corners of Dedekind-finite rings remain
Dedekind-finite, and corners of right quasi-duo rings remain right quasi-duo.)

Proof. Let e be the identity of S, and f = 1 − e as in (2.1). For convenience, we
fix a complement C for S in R. Say

∑n
i=1 Ssi = S, where si ∈ S. Using (2.1), we

have
∑n

i=1 R(si + f) = R. Since R satisfies right Dn, we have
∑n

i=1(si + f)R = R.
Applying now the right analogue of (2.1), we see that

∑n
i=1 siS = S, so {s1, . . . , sn}

is right unimodular in S. This shows that S satisfies right Dn. The same proof
works in the right Sn case, for, if the si ’s are pairwise commuting elements in the
above, then so are the elements {si + f}, since si = esie implies that sif = fsi = 0.
The parenthetical statement now follows from Th. (3.2).

§4. Special Classes of Right Quasi-Duo Rings

Within certain classes of rings, it is often possible to characterize the right quasi-
duo rings by other more familiar conditions. In this section, we’ll recapitulate some
known results in this direction, with self-contained proofs wherever possible. For the
ring-theoretic terms used below, we refer the reader to Facchini’s book [Fa]. Let us
begin with the class of right primitive rings.

1Caution on terminology: the Schur rings discussed here are not to be confused with the Schur
rings over groups in algebraic combinatorics.
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(4.1) Proposition. [Yu] A right primitive ring R is right quasi-duo iff R is a
division ring.

Proof. (“Only if” part.) Let S be a faithful simple right R-module. Then S ∼= R/m
for a suitable maximal right ideal m ⊆ R. If R is right quasi-duo, m is an ideal.
But then S ·m = 0, so m = 0, which implies that R is a division ring.

(4.2) Remarks. (1) Since simple rings are primitive, (4.1) applies to show that
(left or right) quasi-duo simple rings are division rings. (2) If “right quasi-duo”
is replaced by “right duo”, the proposition (4.1) was known much earlier; see, for
instance, Lemma 3.1 in [Ch].

(4.3) Proposition. [Yu] (1) A ring R is right quasi-duo iff R/rad (R) is.

(2) If R is right quasi-duo, then R/rad(R) is a subdirect product of division rings;
in particular, R/rad(R) is a reduced ring.

Proof. (1) is clear from (3.0) and the fact that any maximal right ideal contains
rad(R). For (2), assume R is right quasi-duo. Then each maximal right ideal mi ⊂
R is an ideal, so R/mi is a division ring. Since

⋂
i mi = rad(R), it follows that

R/rad(R) is a subdirect product of the division rings {R/mi}.

(4.4) Remark. The reducedness of R/rad(R) in (2) can also be seen directly from
the characterizing property (3.2)(6) of a right quasi-duo ring R, as follows. We may
assume, without loss of generality, that rad(R) = 0. It suffices to show in this case
that x2 = 0 ⇒ x = 0. Assuming that x2 = 0, we have for any y ∈ R,

(yx− 1)x = yx2 − x = −x,

so x ∈ (yx− 1)R. Thus, (3.2)(6) implies that

R = xR + (yx− 1)R = (yx− 1)R.

Since R is Dedekind-finite, this gives 1 − yx ∈ U(R) (for all y ∈ R). Thus, x ∈
rad(R) = 0. For more discussions on (4.3)(2), see §5.

(4.5) Corollary. Let R = Mm(k), where k is a nonzero ring and m ≥ 2. Then
R is not right (or left) quasi-duo. (In particular, “right quasi-duo” is not a Morita
invariant property of rings.)

Proof. This follows from (4.3)(2) since R/rad(R) ∼= Mm(k/rad(k)) is not reduced.

Note that, while the reducedness of R/rad(R) is a necessary condition for R to be
right quasi-duo, it is not a sufficient condition in general. For instance, take any right
primitive domain R that is not a division ring (e.g. the free algebra R = Q〈x, y〉).
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Then R/rad(R) = R is reduced, but R is not right quasi-duo by (4.1). However,
for certain classes of rings, it can be shown that the reducedness of R/rad(R) is also
sufficient for R to be right (and left) quasi-duo. We quote the following result from
[Yu: (4.1)], a part of which is based on [BS]; see also [St: Lemma 4.10].

(4.6) Theorem. Let R be a ring such that R := R/rad(R) is an exchange ring.
Then the following statements are equivalent:

(1) R is right quasi-duo;

(2) R is quasi-duo (that is, left and right quasi-duo);

(3) R is a reduced ring;

(4) R is abelian (that is, idempotents are central in R ).

(4.7) Corollary Let R be a ring such that R := R/rad(R) is π-regular. Then the
statements (1)–(4) in (4.6) are equivalent; moreover, they are also equivalent to each
of the following:

(5) R is strongly regular;

(6) R is a duo ring.

Proof. Since a π-regular ring is an exchange ring, (4.6) applies to give the equivalence
of (1)–(4). (5) ⇒ (6) is well-known, and (6) ⇒ (2) is clear from (4.3)(1). Thus, we
are done if we can show that (3) ⇒ (5). This implication is a part of [LH: Lemma
4]; here is an ad hoc proof. Assume that R is reduced and π-regular, and consider
any x ∈ R. By results of Azumaya in [Az], R is strongly π-regular, and in fact
xn = xn+1r for some n ≥ 1 and some element r ∈ R commuting with x (see also
[Di], [Hi], or [La2: Ex. (23.6)]). Therefore,

(x− x2r)n = [x(1− xr)]n = xn(1− xr)n

= xn(1− xr)(1− xr)n−1

= (xn − xn+1r)(1− xr)n−1 = 0.

Since R is reduced, we have x− x2r = 0. Since this holds for every x ∈ R, the ring
R is strongly regular.

Since quite a few classes of rings satisfy the hypotheses of (4.6) and (4.7), these
two results apply well to the determination of quasi-duo rings within those classes of
rings. For sample applications, we have the following.

(4.8) Corollary. (1) A semilocal ring R is right (left) quasi-duo iff R/rad(R) is a
finite direct product of division rings.

(2) A von Neumann regular ring R is right (left) quasi-duo iff R is duo, iff R
is strongly regular.

(3) A one-sided self-injective ring R is right (left) duo iff R/rad(R) is reduced,
iff R/rad(R) is strongly regular.
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For further consequences of (4.6) and (4.7), recall that a ring R is 2-primal if
every nilpotent element of R lies in the lower nil radical (or prime radical) Nil∗(R).
From (4.6) and (4.7), we can deduce the following result.

(4.9) Corollary. (1) [BS] Any abelian exchange ring is quasi-duo.
(2) Any right quasi-duo π-regular ring is strongly π-regular.
(3) Any 2-primal π-regular ring is quasi-duo (and therefore strongly π-regular).

Proof. (1) Let R be an abelian exchange ring. It is well-known that the factor ring
R = R/rad(R) is also an exchange ring. Thus, to see that R is quasi-duo, it suffices
(by (4.6)) to check that R is abelian. Let e be any idempotent in R. By [Ni], e
can be lifted to an idempotent e ∈ R. By assumption, e is central in R; this implies
that e is central in R, as desired.

(2) Let R be any right quasi-duo ring R. We claim that any (von Neumann)
regular element x ∈ R lies in x2R. To see this, write x = xyx, where y ∈ R. By
the property (3.2)(6), we have an equation 1 = xr +(yx− 1)r′, for suitable r, r′ ∈ R.
Left multiplying this equation by x and noting that x(yx− 1) = 0, we get x = x2r.
Our claim gives a quick alternative way to prove that a right quasi-duo regular ring is
strongly regular, but it shows more. If R is right quasi-duo and π-regular, then for
any x ∈ R, xn is regular for some n ≥ 1. By the claim above, we have xn ∈ x2nR.
This shows that the ring R is strongly π-regular, as desired.

(3) Let R be a 2-primal π-regular ring. We claim that R/rad(R) is reduced. To
see this, let x ∈ R be such that xn ∈ rad(R) for some n ≥ 1. Then (xn)m = 0
for some m ≥ 1 (since the Jacobson radical of a π-regular ring is nil). But then
x ∈ Nil∗(R) ⊆ rad(R) since R is 2-primal. Having shown that R/rad(R) is reduced,
we see from (4.7) that R is quasi-duo.

(4.10) Remark. The fact that any 2-primal π-regular ring R is strongly π-regular
was first noted in Hirano’s paper [Hi] (see (2) ⇒ (6) in his Theorem 1). Here, in
(4.9)(3), we have added the conclusion that R is also quasi-duo.

To close this section, we point out a connection between right quasi-duo rings and
another class of rings called right Kasch rings: recall that a ring R is right Kasch if
every simple right R-module is isomorphic to a minimal right ideal of R (see [La3:
§8C]).

Proposition 4.11. If a right Kasch ring R is semicommutative (that is, ∀ a, b ∈
R, ab = 0 ∈ R ⇒ aRb = 0), then R is right quasi-duo.

Proof. Let m be any maximal right ideal in R. Since R is right Kasch, m has
the form annr(a) for some a ∈ R (where annr(a) denotes the right annihilator
of a ). For any m ∈ m, we have am = 0, and so aRm = 0. This implies that
Rm ⊆ annr(a) = m, which proves that m is an ideal of R.
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Corollary 4.12. Let R be a ring such that R := R/rad(R) is a right Kasch ring.
Then R is right quasi-duo iff R is reduced.

Proof. The “only if” part is true (without the Kasch assumption on R ) by (4.3)(2).
Conversely, if R is reduced, then it is easily seen to be semicommutative. If R is
also right Kasch, then (4.11) implies that R is right quasi-duo, and therefore so is
R by (4.3)(1).

§5. Subdirect Products of Division Rings

In connection with the two results (3.6)(2) and (4.3)(2), the following question
concerning subdirect products arises naturally:

Question 5.1. Does the converse of Yu’s result (4.3)(2) hold? More precisely, if a
ring R is such that R/rad(R) is a subdirect product of division rings, does it follow
that R is right quasi-duo?

There is a very good reason for asking this question. If the answer to this question
is “yes”, it would follow immediately from this and Yu’s result (4.3) that a ring R
is left quasi-duo iff it is right quasi-duo! Such a statement has never been proved or
disproved in the literature.

If R = R/rad(R) is an exchange ring or a right Kasch ring, we see from (4.6) and
(4.12) that even the weaker assumption that R is reduced would imply that R is
(left and right) quasi-duo. Another positive case for (5.1) is when R has only a finite
number of simple right modules (up to isomorphisms). In this case, if {πj : R → Dj}
is a representation of R as a subdirect product of the division rings {Dj}, then each
Ij = ker(πi) is the annihilator of a simple right R-module, so (by our assumption)
there is only a finite number of distinct Ij ’s. Thus, we can re-express R as a subdirect
product of finitely many Dj ’s, and then invoke (3.6)(2) and (4.3)(1) to conclude that
R, and R, are (left and right) quasi-duo rings. (A similar argument would also have
worked if R/rad(R) is finitely cogenerated as a right R-module: see [La3: (19.1)].)

Since any subdirect product of division rings is Jacobson-semisimple (see, e.g.
[La2: Ex. 4.12A]), Question (5.1) amounts to asking if any such subdirect product is
right quasi-duo. Unfortunately, this has a negative answer in general, as the following
example shows.

(5.2) Example. Let R = Q 〈x, y〉 with the relation xy + yx = 0, and for any
a, b < 0 in Q, let Da,b be the rational quaternion division algebra generated by i, j
with the relations i2 = a, j2 = b, and ij = −ji. (Of course, these generators depend
on a, b.) Let πa,b : R → Da,b be the Q-algebra surjection defined by x 7→ i and
y 7→ j. Then ker(πa,b) is the ideal (x2 − a, y2 − b) ⊆ R. We will show below that⋂

a,b<0 ker(πa,b) = 0. Thus, R is a subdirect product of countably many division
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rings Da,b ’s. But R also maps onto the split quaternion algebra M2(Q) (e.g. by

x 7→
(

0 1
−1 0

)
and y 7→

(
0 1
1 0

)
), so by (4.5) and (3.0), R is not left/right quasi-duo

(and, in particular, not left/right duo).

Let Ia,b = ker(πa,b) ⊆ R. To see that
⋂

a,b<0 Ia,b = 0, first note that x2 is central
in R, and that R has a natural Z2-grading, in which the monomials are graded by
their x-degrees (mod 2):

(5.3) R = R0 ⊕R1, where R0 = Q [x2, y], and R1 = xR0.

With respect to this grading, the ideals Ia,b are homogeneous, so for each polynomial
f = g +xh ∈ R (g, h ∈ R0) and any a, b < 0, we have f ∈ Ia,b iff g, h ∈ Ia,b (noting
that πa,b(x) = i 6= 0 and Da,b is a division ring). Therefore, we have

Ia,b = (Ia,b)0 ⊕ x(Ia,b)0, where (Ia,b)0 = Ia,b ∩R0,

so it suffices for us to check that
⋂

a,b<0 (Ia,b)0 = 0. By an easy gradation argument,
we have

(Ia,b)0 = R0(x
2 − a) + R0(y

2 − b).

Thus, our problem is now reduced to one in commutative algebra: if we write u = x2,
v = y, and identify R0 with the usual polynomial ring Q [u, v], our job is to show
that, if a polynomial g(u, v) lies in (u− a, v2− b) for all a, b < 0 in Q , then g = 0.
If g 6= 0, write g(u, v) = gn(v)un + · · · + g0(v) with gn(v) 6= 0. Then (working over
C), gn

(√
b
)
6= 0 for some rational b < 0 , and so g

(
u,
√

b
)
6= 0 ∈ C [u]. But then

g
(
a,
√

b
)
6= 0 for some rational a < 0, which contradicts g ∈ (u− a, v2 − b).

(5.4) Remark. Clearly, the argument above would have worked if the subdirect
product is formed over any set J of pairs of negative rationals {(a, b)} such that
there are infinitely many second coordinates b, and for each second coordinate b,
there are infinitely many a ’s such that (a, b) ∈ J . Thus, we could have taken, for
instance, J = {(−m2, −n2) : m, n ∈ N}. In this case, all the subdirect factors
involved are isomorphic to Hamilton’s quaternion division algebra D−1,−1 over the
rationals. From this, it follows that a subdirect product of copies of a given division
ring need not be (right or left) quasi-duo.

In conclusion, we should perhaps also point out that, if we were only interested in
finding an example of a subdirect product of right quasi-duo rings that is not right
quasi-duo, an easier construction with a much more routine proof would have sufficed,
as follows.

(5.5) Example. Let σ be a non-identity automorphism of a field k, and let R =
k[x, σ] be the skew polynomial ring over k defined by the twist law ax = xσ(a) (for
all a ∈ k). If a ∈ k is such that σ(a) 6= a, then

(5.6) a(x− 1) = x σ(a)− a = (x− 1) σ(a) + (σ(a)− a) /∈ (x− 1)R,

11



so the maximal right ideal (x− 1)R is not an ideal of R. This shows that R is not
a right quasi-duo ring. However, for each n ≥ 1, xnR is an ideal of R such that
R/xnR is a local (and hence right quasi-duo) ring. Since

⋂
n≥1 xnR = 0, R is a

subdirect product of the right quasi-duo rings {R/xnR : n ≥ 1}, though R itself is
not right quasi-duo.

§6. Stable Range Descent in Quasi-Duo Rings

For the convenience of the reader, let us first recall the definition of the stable
range of rings introduced by H. Bass [Ba]. This notion was used by Bass for the study
of the stability properties of linear groups in algebraic K-theory, but later it became
an important notion in ring theory in its own right. (For a brief survey on this, see
[La4: §§8-9].)

(6.1) Definition. We say that an integer n ≥ 1 is in the stable range of a ring R
(or that R has stable range ≤ n ) if, for any right unimodular sequence r1, . . . , rn+1

in R, there exist elements x1, . . . , xn ∈ R such that
∑n

i=1(ri + rn+1xi)R = R.

It is straightforward to see that, if n is in the stable range for R, then so is any
larger integer. We can thus define the stable range of R to be the smallest integer
n in the stable range of R. (If no such n exists, the stable range of R is taken to
be ∞.) This should have been called the “right” stable range of R, but it will be
harmless to suppress the adjective “right” since the right and left stable ranges of a
ring turn out to be equal according to a result of Vaserstein [Va1: Th. 2] and Warfield
[Wa: Th. (1.6)].

An interesting phenomenon in the study of stable range is that, upon the passage
to matrix rings, the stable range generally decreases. The precise statement of this,
due to Vaserstein [Va1: Th. 2] (see also [Wa: (1.12)]) is as follows.

(6.2) Theorem. If a ring k has stable range n, then the matrix ring R = Mm(k)
has stable range 1+dn−1

m
e, where dxe (the ceiling function2 on x) denotes the smallest

integer ≥ x.

According to this result, if k has stable range 1 or 2, then this stable range is
preserved by Mm(k) (for any m), but if k has (finite) stable range ≥ 3, then Mm(k)
has stable range 2 for sufficiently large m. In particular, this shows that the stable
range of a ring R (if bigger than 1) is not a Morita invariant, and not inherited by
Peirce corner rings Re ⊆ R even when e is a full idempotent. In view of this, it
would seem that there is nothing more to be said about the behavior of the stable
range upon a descent to Peirce corner rings. In developing the general theory of

2The stable range formulas in [Va1] and [Wa] were both given in the form 1 − [−(n − 1)/m],
in terms of the “greatest integer” function. We feel, however, that the expression using the ceiling
function is easier and more natural.
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corners, however, we were led to the following question: if R has stable range ≤ n,
what really is the obstruction to showing that a Peirce corner Re has stable range
≤ n? In grappling with this question in the special case where R is a matrix ring
Mm(k) and e is the matrix unit e11, we realized eventually that the main trouble
stems from the fact that matrix rings do not satisfy the Dn properties (for n ≥ 2),
which we have shown in (4.5).

Fortuitously, it turns out that the assumption of the Dn property is sufficient for
us to get positive results on the preservation of stable range upper bounds by Peirce
corner rings. In the following, we shall state and prove this more generally for all
semisplit corner rings.

(6.3) Theorem. Assume that a ring R is left and right quasi-duo. If R has (right)
stable range ≤ n, then any semisplit corner S ⊆ R also has (right) stable range ≤ n.

Proof. (1) We first treat the case where S is a Peirce corner of R, say S = Re

where e = e2 ∈ R. As usual, we write f = 1 − e. To show that S has (right)
stable range ≤ n, we start with an equation

∑n+1
i=1 siS = S, where si ∈ S. By the

right analogue of (2.1) ((1) ⇒ (4)), the sequence {s1 + f, . . . , sn + f, sn+1} is right
unimodular in R. Since R has (right) stable range ≤ n, it follows that

n∑
i=1

(si + f + sn+1ri)R = R for suitable ri ∈ R.

Now the left Dn property on R implies that

n∑
i=1

R(si + f + sn+1ri) = R.

Using the Peirce decomposition for the ri ’s, we have

si + f + sn+1ri = si + f + sn+1(erie + erif + frie + frif)

= si + sn+1(erie) + sn+1e (erif + frie + frif) + f

= si + sn+1(erie) + (sn+1eri + 1)f.

Thus, upon setting bi = (sn+1eri + 1)f , we have
∑n

i=1 R(si + sn+1ti + bi) = R, where
ti := erie ∈ Re = S (1 ≤ i ≤ n). Since each bi ∈ Rf , it follows from (2.1) ((3) ⇒ (1))
that

∑n
i=1 S(si + sn+1ti) = S. But by (3.8), the right Dn property of R implies that

of S. Thus, it follows that
∑n

i=1(si + sn+1ti)S = S, which is what we want!

(2) If S is any semisplit corner in R, then it is a split corner of its associated Peirce
corner Re, where e is the identity of S. By (1) above, we know Re has (right)
stable range ≤ n. Since S is a split corner of Re, it has (by definition) an ideal
complement in Re, and hence S is isomorphic to factor ring of Re. Thus, it follows
from [Ba: (4.1)] that S also has (right) stable range ≤ n.
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(6.4) Corollary. If a ring R has (right) stable range 1, then so does any semisplit
corner S ⊆ R.

Proof. According to an observation of I. Kaplansky [Ka] (see also [La4: (8.3)]), the
fact that R has (right) stable range 1 implies that R is Dedekind-finite; that is, R
satisfies (left and right) D1. In the proof of Theorem 6.3, what we needed in treating
the case of stable range n was the assumption of the (left and right) Dn property.
Therefore, the work we did in Theorem 6.3 applies here for n = 1 to give the desired
conclusion.

In the case of Peirce corners, the above corollary was first discovered by Vaserstein
[Va2: Th. (2.8)]. Vaserstein’s proof of (6.4) in this case was based on an ad hoc
argument with stable range 1 since (6.4) was perceived to be a special result not
generalizable to higher stable range. Here, we are able to view (6.4) essentially as a
consequence of (6.3) for rings of arbitrary stable range n.

As for the “semisplit” assumption on S in (6.3) and (6.4), it is of interest to
point out that the theorem does not hold in general without this assumption. The
following shows a typical example of the failure of stable range preservation under
nonsplit unital corners.

(6.5) Example. Let R be the ring of all algebraic integers. Then, R is a free
Z-module of countable rank, having Z as a direct summand. (I thank Bjorn Poonen
for suggesting the following proof of this fact. Express R as an ascending union of a
chain Z = R0 ⊆ R1 ⊆ R2 ⊆ · · · , where each Ri is the full ring of algebraic integers
in a number field. Each Ri is a free abelian group of finite rank, and is a Z-direct
summand of Ri+1, so a Z-basis of Ri can be extended to one for Ri+1. Starting
with the basis {1} on Z, we can thus extend it to a countable Z-basis for R.) Since
S := Z is a Z-direct summand of R, it is a unital corner of R. Now, according
to a classical theorem of Skolem [Sk], R is a ring with many units ; that is, every
primitive polynomial in R[x] represents a unit in R.3 In particular, R has stable
range 1. (For, if aR + bR = R, then a + bx is a primitive polynomial in R[x], and
Skolem’s result implies that a + br ∈ U(R) for some r ∈ R.) An ad hoc proof for
the fact that R has stable range 1 has also appeared in [Va2: Ex. (1.2)]. However,
the unital corner Z of R has stable range 2, not 1, so the conclusion of (6.3) (for
descent from R to S) fails, even for n = 1. (Of course, in this example, S is not a
(semi)split corner of R.)

To conclude this section, we would like to mention another recent result on the
stable range of Peirce corner rings obtained by Ara and Goodearl. In [AG], these
authors proved that, if e is a full idempotent in any ring R (that is, e = e2 and
ReR = R), then the stable range of eRe is ≥ that of R. However, this result does

3For more information on commutative rings with many units, see, e.g. [McD: pp. 336-339].
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not further enhance ours (or vice versa), since our Th. 6.3 is proved for quasi-duo
rings, and in such rings the only full idempotent is 1 (see (7.4)(A) below).

§7. Properties of Right Quasi-Duo Rings, and Open Questions

In this section, we’ll record several special properties of right quasi-duo rings
that have not been noted before in the literature. We start with a property of an
“elementwise” nature.

(7.1) Proposition. Let R be a right quasi-duo ring. If x, z ∈ R are such that
x + z ∈ Rxz, then Rx = Rz.

Proof. Say x+ z = yxz, where y ∈ R. Then x = (yx−1)z, so the property (3.2)(6)
of a right quasi-duo ring yields

(7.2) R = xR + (yx− 1)R = (yx− 1)R.

Since R is Dedekind-finite (by the last conclusion in (3.2)), this implies that yx−1 ∈
U(R). From x = (yx− 1)z, it follows that Rx = Rz.

(7.3) Proposition. For any ring R, consider the following two statements:

(1) R is right quasi-duo;
(2) For any elements yi, zi (1 ≤ i ≤ n) and u ∈ R, we have

∑n
i=1 yiuzi ∈

U(R) ⇒ u ∈ U(R).

We have always (1) ⇒ (2), while (2) ⇒ (1) holds if every maximal right ideal of R
is principal (e.g. if R is a principal right ideal ring).

Proof. (1) ⇒ (2). If
∑n

i=1 yiuzi ∈ U(R), then RuR = R. Applying the condition
(3.2)(7), we have then uR = R. Since R is Dedekind-finite, it follows that u ∈ U(R).

(2) ⇒ (1) (assuming that every maximal right ideal of R is principal). We prove
(1) by checking the condition (3.2)(6). Let x, y ∈ R. If xR + (yx − 1)R 6= R, it
is contained in some maximal right ideal m, which, by assumption, can be written
as uR for some u ∈ R. Thus, x = ur and yx − 1 = us, for some r, s ∈ R. Now
1 = yx− us = yur − us, so (2) implies that u ∈ U(R), which is a contradiction.

(7.4) Remarks. (A) It follows from (1) ⇒ (2) above that, in any right quasi-duo
ring R, the only full idempotent is 1.

(B) From (7.3), we also see that: if R is a principal ideal ring, then R is left
quasi-duo iff it is right quasi-duo. (This follows since the condition (2) in (7.3) is
obviously left-right symmetric.)

The next result shows that, in a manner of speaking, a right quasi-duo ring is
rather “rich with units”.
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(7.5) Theorem. Let R be a right quasi-duo ring with elements e1, . . . , en such that
e1 + · · ·+ en = 1, and let u1, . . . , un ∈ U(R). Then:

(1) u1e1R + · · ·+ unenR = R, and

(2) if the ei ’s are mutually orthogonal idempotents, then u1e1R + · · ·+ unenR is
a direct sum (equal to R), and we have u1e1 + · · ·+ unen ∈ U(R).

Proof. Since R satisfies right Dn, (1) follows from the fact that

Ru1e1 + · · ·+ Runen = Re1 + · · ·+ Ren = R.

Now assume that the ei ’s are mutually orthogonal idempotents. Let ϕi : eiR →
uieiR be the isomorphism given by left multiplication by the unit ui. Then ϕ1, . . . , ϕn

define a right R-module epimorphism

(7.6) ϕ : R = e1R⊕ · · · ⊕ enR −→ u1e1R + · · ·+ unenR = R.

Since RR is projective, this epimorphism ϕ splits, and hence R ∼= ker(ϕ)⊕ R. But
R is Dedekind-finite, so we have ker(ϕ) = 0. This means that ϕ in (7.6) is an
isomorphism. Thus,

∑n
i=1 uieiR is a direct sum (equal to R). Since End(RR) ∼= R,

ϕ must be the left multiplication by some unit u on RR. Thus, we have uei = uiei

for all i ≤ n. Adding these equations, we get

u1e1 + · · ·+ unen = u(e1 + · · ·+ en) = u ∈ U(R),

as desired.

In the special case where R is a right duo ring, it is known that R is abelian
([La2: Ex. (22.4A)]). Thus, in the case (2) above (where the ei ’s are mutually orthog-
onal idempotents), we have uieiR = uiRei = Rei = eiR for all i. Then R is the
direct product e1R×· · ·×enR, and the conclusions in (7.5) in this case are immediate.
In the above, however, the result (7.5) was proved more generally for right quasi-duo
rings, where idempotents need no longer be central.

We close with a couple of open questions. The first question is the expected
one concerning the left-right symmetry (or the lack thereof) of the quasi-duo notion.
We have already briefly encountered this question in §5, although the existence of
examples of the type (5.2) leaves us practically clueless as to its answer.

(7.7) Question. Does there exist a right quasi-duo ring that is not left quasi-duo?

Note that such a ring R must have the following properties: (1) it has an infinite
number of distinct simple right modules; (2) R/rad(R) is not an exchange ring or
a right Kasch ring. For instance, for all of the rings we dealt with in (4.6) and its
corollaries, right and left quasi-duo did turn out to be equivalent conditions.
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In (4.1), we showed that a right primitive right quasi-duo ring must be a division
ring. What happens if, in this statement, we replace the “right primitive” condition
by “left primitive”? This led us to the second

(7.8) Question. Does there exist a left primitive, right quasi-duo ring that is not a
division ring?

It turns out (7.7) and (7.8) are essentially “equivalent” questions, as follows.

(7.9) Remark. If the answer to (7.7) is “yes”, then the answer to (7.8) is also “yes”,
and conversely. To see this, assume there exists a ring R that is right quasi-duo but
not left quasi-duo. Then, it has a maximal left ideal m that is not an ideal. Let C be
the largest ideal of R that is contained in m. Then R/C is a left primitive and right
quasi-duo ring. But it is not a division ring since it has a nonzero maximal left ideal
m/C. Thus, R/C provides an example for (7.8). Conversely, assume there exists
a left primitive, right quasi-duo ring S that is not a division ring. Then S cannot
be left quasi-duo, according to (the left analogue of) (4.1), so S would provide an
example for (7.7). Note that, if S does exist, then it would also provide an example
of a ring that is left primitive but not right primitive (again by (4.1)). Thus, it may
be said that the “degree of complexity” of the questions (7.7) and (7.8) is “higher”
than that of finding a left primitive but not right primitive ring. Of course, an even
more challenging problem would be that of finding (if it is possible) a right duo ring
that is not left quasi-duo.

The last question is prompted by the work in §5. In light of Example 5.2, it is of
interest to raise the following

(7.10) Question. Which rings can be represented as subdirect products of division
rings, and when is such a subdirect product right quasi-duo?
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