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Truncated path algebras are homologically transparent

A. Dugas, B. Huisgen-Zimmermann and J. Learned

Abstract. It is shown that path algebras modulo relations of the form= KQ/I, whereQ is a
quiver, K a coefficient field, and C K@ the ideal generated by all paths of a given length, can be
readily analyzed homologically, while displaying a wealth of phenomena. In particular, the syzygies
of their modules, and hence their finitistic dimensions, allow for smooth descriptions in teghs of
and the Loewy length of\. The same is true for the distributions of projective dimensions attained
on the irreducible components of the standard parametrizing varieties for the modules df fixed
dimension.
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1 Introduction and notation

The problem of opening up general access roads to the finitistic dimensions of a finite
dimensional algebra, given through quiver and relations, is quite challenging. This
is witnessed, for instance, by the fact that the longstanding question “Is the (left) little
finitistic dimension ofA,

findimA = sup{pdimM | M € P<>°(A-mod)},

always finite?” (Bass 1960) has still not been settled. Here pidiia the projective
dimension of a modul&/, andP<>°(A-mod) denotes the category of finitely generated
(left) A-modules of finite projective dimension.

In [1], Babson, the second author, and Thomas showed that truncated path alge-
bras of quivers are particularly amenable to geometric exploration, while nonetheless
displaying a wide range of interesting phenomena. This led the authors of the present
paper to the serendipitous discovery that the same is true for the homology of such
algebras. By druncated path algebrave mean an algebra of the form@Q /I, where
KQ is the path algebra of a quivé} with coefficients in a fieldX andI C KQ is
the ideal generated by all paths of a fixed length- 1. In particular, truncated path
algebras are monomial algebras. In this case, the finitistic dimensions are known to
be finite (see [6]). Our goal here is to show how much more is true in the truncated
scenario.

Roughly, our three main results (Theorems 2.6, 3.2, 3.6) show the following for a
truncated path algebva:

¢ The little and big finitistic dimensions @f coincide and can be determined through
a straightforward computation fro) and . Moreover, from a minimal amount of
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structural data for &-moduleM, namely the radical layering

S(M) = (JlM/JHlM)o<l<L

(or, alternatively, any “skeleton” af7), one can determine the syzygies and projective
dimension ofM in a purely combinatorial fashion. (See Theorems 2.2, 2.6, and the
first part of Theorem 3.2 for finer information.)

e The “generic projective dimension” of any irreducible componémf one of the
classical module varieties (see beginning of Section 3) is readily obtainable from graph-
theoretic data as well. So is the full spectrum of values of the function p dim attained
on the class of modules parametrizedbyn particular, it turns out that the supremum

of the finite values among the generic finitistic dimensions of the various irreducible
components equals findim (See Theorems 3.2 and 3.6 for detail.)

The picture emerging from the main theorems will be supplemented in a sequel,
where it will be shown that the categoB/~>°(A-mod) is contravariantly finite in the
full category of finitely generatefl-modules, whenevek is a truncated path algebra.

Conventions. We fix a positive intege.. Throughout, A denotes a truncated path
algebra of Loewy lengtiL + 1, that is,A = KQ/I, whereK is a field,Q a quiver,
andI the ideal generated by all paths of lendtht 1. The Jacobson radicdl of A
satisfies/“*1 = 0 by construction. Arfonzerd path inA is theI-residue of a path in
KQ\ I, thatis, thel-residue of a path in K@ of length at most; so, in particular,
any path inA is anonzeroelement ofA under this convention. Clearly, the paths in
A form a K-basis forA. Due to the fact thaf is homogeneous with respect to the
path-length grading of{Q, defining thelengthof such a pathp + I to be that ofp,
yields an unambiguous concept of length for the elements of this basis. A distinguished
role is played by the paths, ..., e, of length zero in\: They constitute a full set
of orthogonal primitive idempotents, which is in obvious one-to-one correspondence
with the vertices ofQ. We will identify eache; with the corresponding vertex, and
whenever we refer to a primitive idempotent/f) we will mean one of the;. Then
the left ideals\e; and their radical factorS; = Ae;/Je;, for 1 < i < n, constitute full
sets of isomorphism representatives for the indecomposable projective and simple left
A-modules, respectively.

Finally, we say that a pathin A or in KQ is aninitial subpathof a pathgq if there
is a pathp’ with ¢ = p’p; here the produgt'p stands for §’ afterp.”

2 The standard homological dimensions of\-Mod

The (left) big finitistic dimensiorof A is the supremum, Findiify, of the projective
dimensions of all lef\-modules of finite projective dimension; for tlitle finitistic di-
mensiorconsult the introduction. We start by recording some prerequisites established
in [1]. As was shown in [1], the well-known fact that aécondsyzygies of modules

over a monomial algebra are direct sums of cyclic modules generated by paths of posi-
tive length (see [7] and [2]), can be improved for truncated path algebras so as to cover
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first syzygies as well. In particular, this makes the big and little finitistic dimensions of
A computable from a finite set of cyclic test modules.

More sharply: Given any lef\-module M, we can explicitly pin down a decom-
position of the syzygyQ'(M) into cyclics. This description o©!(M) relies on a
skeleton ofd/. Roughly speaking, this is a path basis fdr with the property that
the path lengths respect the radical layeriagM/J'+1M)o<;<1. The concept of a
skeleton, defined in [1] in full generality, can be significantly simplified for a truncated
path algebral.

Definition 2.1 (Skeleton of aA-module M). Fix a projective coverP of M, say
P = @, Nz, Where each,. is one of the primitive idempotents ifey, ..., e, },
tagged with a place number(the index sef? may be infinite). Apath of length in
P is any elemenpz, € P, wherep is a path of lengthi in A which starts inz,. (in
particular, the paths i® are again nonzero). Identify/ with an isomorphic factor
module ofP, sayM = P/C.

(a) A skeleton ofM = P/C is a setr of paths inP such that for each < L, the
residue classeg+ J' M of the paths; of lengthl in o form a K -basis forJ M/ JH1 M.
Moreover, we require that be closed under initial subpaths, that isy ¥ p'pz, € o,
thenpz, € o.

(b) A pathq in P\ o is calledo-critical if it is of the form ¢ = apz,., wherex is an
arrow andpz,. a path inc.

In particular, the definition entails that, for any skeletoonf M = P/C, the full
set of residue classdg + C | ¢ € o} forms a basis fol/. Furthermore, it is easily
checked that everx-moduleM has at least one skeleton, and only finitely many when
M is finitely generated (as long as we keep the projective cBvered).

Theorem 2.2. Known Facts.[1, Lemma 5.10]f M is any nonzero lefh-module with

skeletorn, then
QM) = @ Ng.

q o-critical

In particular, Q'(M) is isomorphic to a direct sum of cyclic left ideals generated by
nonzero paths of positive lengthAn

ConsequenthFindimA = findimA = s + 1, where
s =max{pdimAq | ¢ a path of positive length imM\ with pdimAq < oo},

provided that the displayed set is nonempty, are —1 otherwise. a

We briefly point out another nice consequence concerning Auslander’s notion of
the representation dimension of an algebra. In [9] Ringel shows that any algebra with
only finitely many indecomposable torsionless modules up to isomorphism has repre-
sentation dimension at most 3. Since the above theorem classifies the indecomposable
torsionless\-modules as those modules isomorphié\tofor some nonzero path of
which there are only finitely many, we obtain the following.

Corollary 2.3. The representation dimension of any truncated path algebra is at most
3.
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We illustrate the results on finitistic dimension with an example which will accom-
pany us throughout.
Example 2.4.Let A = KQ/I be the truncated path algebra of Loewy lenfthl = 4
based on the following quivep.

B7 ag ag
7 8 9 10
ar o1 52/4 )
10
o ) B1 V2
6 1 2 11 B10

I s V‘az a11 x

4 3 12 13 14 15
o3 B3 Q12 Q13 Q14

Then the indecomposable projective I8fmodulesAe; andAeg have the following
layered and labeled graphs (in the sense of [7] and [8]):

/1\ /3\

1 2

VAN RN /T' 1‘2
1 2 3 10 11 13 13
1 2 3 10 11 4 12 11 13 12 1 2 4 12 14

If P = Az, with z; = ¢; in the notation of Definition 2.1, each of the modufes has
a unique skeleton, which can be read off the graph: It is the set of all initial subpaths of
the edge paths in the graph, read from top to bottom. The skeletde pfor instance,
consists of the pathg = e; of length zero inP, the pathsy; z1, 8121 of length 1, the
pathSale, Braiz1, anfrz1, V25121, PoB121 Of length 2, together with all edge paths of
length 3.

For a sample application of Theorem 2.2, we consider the madutietermined
by the following graph:
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A projective cover of\] is P = Ae3z @ Aes @ Aeg @ (Aep)?, wherez; = e, 2, = es and

so on. A skeletorr of M (in this case there are several), together withdberitical

paths is communicated by the following graph, in which the solid and dashed edges
play different roles, as explained below:

3 5 6 2 2
4 I\ I\ /1 \ / 1\
/ \ \ / \ / \
/ [N I\ / \ / I \
12 4 2 4 1 4 3 10 11 3 10 11
// \\
/ \
1 3 11 13
/ I
/
/ I
4 12 12

As above, the paths is correspond to the intial subpaths of the solidly drawn edge
paths, including all paths of length zero — e@q321, 23 anda193224. Theo-critical

paths are all the paths in the graph (again read from top to bottom) which terminate
in a dashed edge; for instanagsB4a3z; and asz, are o-critical. SinceQ!(M) =

D, o-critica \¢» We find this syzygy to be the direct sum

NGBz B Nagasz & Nazfaaz ® Nas & NGs D Nag D NBs D Nao @ -+ - .

The graphs of\asas, ABs3, andAa; are respectively

1 12 3
a \ /N
1 2 13 4 12
\ I\ \
14 1 3 13

The main result of this section provides the projective dimensions of the building
blocks for the syzygies of arbitrary-modules; compare with Theorem 2.2.

Definition 2.5. Let/ be a nonnegative integer L, andc any nonnegative integer. We

define
c c+1
-dedc) = [L—i—l} + [L—i—l

Here [z] stands for the largest integer smaller than or equal. tdvioreover, we set
I-deqoo) = oo.

Thel-degree defines a nondecreasing function {0, cc} — N U {0, co} for any
I < L. Moreover, for 0< | < I’ < L and arbitraryc € N U {0}, the difference
I'-dedc) — I-degc) belongs to the sef0,1}. This observation will entail the final
claim of the upcoming theorem, once the first — displayed — equality is established.
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Theorem 2.6. Supposey € A is a path of lengthi > 0in A (i.e., thel-residue of a
path of length at most in KQ) with terminal vertex. Letc = ¢(e) be the supremum
of the lengths of the paths iKQ starting ine. Then

pdimAq = [-dedc).

In particular, pdimAg < o if and only ifc(e) < oo (meaning that there is no path
starting ine and terminating on an oriented cygle

Moreover, ifq’ is another path inA that ends ine such thatL > length(¢’) >
length(q) > 1, then

pdimAg < pdimAg <1+ pdimAg.

In Example 2.4¢(e7) is infinite, for instance, while(eip) = 5; the latter shows
that p dimAagagl7) = 3-ded5) = 3. The argument backing Theorem 2.6 is purely
combinatorial, the intuitive underpinnings being of a graphical nature. We start with
two definitions setting the stage. The first is clearly motivated by the statement of
Theorem 2.6.

Definition 2.7. We call a vertex of the quiverQ (alias a primitive idempotent af)
cycleboundn case there is a path froato a vertex lying on an oriented cycle. In case
e is cyclebound, we also call the simple modile/ Je cyclebound.

Next, we consider the following partial order on the set of path&'@. Namely,
given pathg andp’ in KQ, we define

p <p <<= p isaninitial subpath op;

recall that the latter amounts to the existence of a pétivith the property thap =
p"p’. Hence, any two paths which are comparable have the same starting point, and
e < p for any pathp starting in the vertex. Clearly, this partial order induces a partial
order on the set of paths k.

Finally, we introduce a class of modules, which will turn out to tell the full homo-
logical story of A. The left ideals of the forrf\q — the basic building blocks of all
syzygies ofA-modules — are among them.

Definition 2.8 (Tree modules and branches. Comments)Any module7 of the form
T = Ne/V, wheree is a vertex of@ andV =} ., Av is generated by some st
of paths of positive length if\e (possibly empty), will be called &#ee module with
root e. In particular,Ae is a tree module with roat, the unique candidate of maximal
dimension among the tree modules with regn fact; the simple modulAe/ Je is the
tree module with root that has minimal positive dimension.

The terminology is motivated by the fact that thephsof tree modules are trees
“growing downwards” from their roots. Note that tree modules are determined up to
isomorphism by their graphs.

Given a tree modul&@ as above, let, . .., b, € A\ be the maximal paths ifke —in
the above partial order — which are not containe®tinTheb; are uniquely determined
by the isomorphism class &f and are called theranchesof 7. Conversely, if we
know 7 to be a tree module, then the brancheg qfin 7 down up to isomorphism.
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If 7 = Ae/Je is the simple tree module with roet thene is the only branch of
7. By contrast, if7 = Ae/V is a nonsimple tree module, then all branchesof
have positive length. Moreover, it is straightforward to see thdias a basis of the
following form:

{e+V}U{q+ V| ¢is aninitial subpath of positive length of onetaf . . . b, },

whereby, ..., b, are the branches @f. If we pull back this basis to a set of paths in the
projective covei\e of 7, theno is a skeleton off” in the sense of Definition 2.1 (the
only one).

Apart from M, all the modules displayed in Example 2.4 are tree modules. Their
branches are precisely the maximal edge paths in their graphs, read from top to bottom.
The proof of the next lemma is straightforward and we leave it to the reader.

Lemma 2.9. Whenevey, is a path in/A ending ine, not necessarily of positive length,
the cyclic left ideal\q is a tree module with roat. More precisely: Ifi = length(q),
letdy, ..., b. be the maximal candidates among the paths of lergih— [ starting in

e. ThenA\q = Ae/V, where

V=0Q'N)= € Asbi,

B anarrow :<r

and theb; are the branches dfiyg.

In particular, if I > 0, thenpdimAg < o if and only ife is non-cyclebound. O

Combined with Theorem 2.2, Lemma 2.9 shows that all syzygiésmbdules are
direct sums of tree modules. Contrasting the final statementfod, we see that, for
the pathg = e of length zero/Aq = Aec is projective, irrespective of the positioning
of e in Q. As for the other extreme: By Lemma 2.9, the simple module Ae/Je
has infinite projective dimension precisely when it is cyclebound. In Example 2.4,
the vertices:, . .., e7 are cyclebound, whileg, . .., e;5 are not. Hence, ..., S7 are
precisely the simple modules of infinite projective dimension.

Note that the only potential branchigof length< L — [ of a tree modulé\q as in
Lemma 2.9 end in a sink of the quivéx.

Proof of Theorem 2.6As in the statement of the theorem, lebe a path of positive
lengthl < Lin A, which ends in the vertex In light of the remark preceding Theorem
2.6, we only need to show the equality p dij = I-dedc), wherec = ¢(e) is the
supremum of the lengths of the pathsAnQ starting ine. If e is cyclebound, this
equality follows from Lemma 2.9. So let us assume thatnon-cyclebound — meaning
¢ < oo —and induct ore. If ¢ < L — 1, all of the branches of the tree module end
in sinks of the quiver. We infer that\q = Ae in that case, whence pdifty = 0 =
I-deqc).

Now suppose > L — [, and assume that p difp’ = I’-dedc(¢’)) for all pathsp’
of length!’ < L in A that end in a non-cyclebound vertedof @ with ¢(e’) < ¢. Using
the notation of Lemma 2.9, we obta@!(Aq) = @Ds, i<, \Bb;, where the; are the
branches of the tree module; and the3 are arrows. Since the lengths of theare
bounded from above b§ — I < L — 1, the paths inKQ of the form3b; whereg is
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an arrow, have length at most therefore each of them gives rise to a patt\inBy
the definition ofc, there exists a path of lengthc in KQ which starts in the vertex,
and by the definition of the branches A, there exists an indexsuch that; is an
initial subpath ofu. Necessarily, lengtlh;) = L — [, because length) > L —[. In
fact,c > L — [ guarantees that = «/3;b; in K@ for some arrows; and a suitable
pathu’ of lengthe = lengthu) — (L —1) —1=¢— (L —1) —1 < ¢— 1. Sinceu
starts in the non-cyclebound vertexthe terminal vertex of;b, — call ite’ — is again
non-cyclebound. Moreover, the maximality propertyuodntails that’ = c(e’) is the
maximal length of a path i@ starting ine’. Therefore, our induction hypothesis
guarantees that pdifg;b; = (L — I + 1)-ded¢’). This degree in turn equals

{ y ]_i_[c'—O—Ll—i—l]:[c—l—l(L"'l)}_i_[ ¢ }:l-decﬁ)l;

L+1 L+1 L+1 L+1
the final equality follows fromc”z% = % — 1. Analogous applications of the
induction hypothesis, combined with the basic properties of the degree function, yield
pdimABb; < pdimAg;b; for any pathsb; appearing in the decomposition@f(Aqg).

We conclude that pdithg = 1+ pdimAg;b; = [-dedc) as required. 0

The following dichotomy for the finitistic dimension &f results from a combina-
tion of Theorems 2.2 and 2.6 with Lemma 2.9.
Corollary 2.10. Suppose tha$s, ..., S; are precisely the non-cyclebound simple left
A-modules. Then either
findimA = maxpdims; or findimA =1+ maxpdims;,
1<i<t 1<i<t
and
lg}fgﬂpdlm&- =1+ 1-dedm — 1),

wherem is the maximum of the lengths of the pathg)istarting in one of the vertices

€1, .., €. a

Both options for findim\ occur in concrete instances (see below); of course, the
smaller value equals the global dimension whenever the qavieracyclic. For the
decision process in specific instances, combine Theorems 2.2 and 2.6. To contrast
Corollary 2.10 with the homology of more general algebras: Recall that arbitrary nat-
ural numbers occur as finitistic dimensions of monomial algebras all of whose simple
modules have infinite projective dimension. So the corollary again attests to the degree
of simplification that occurs when the paths factored out’¢f have uniform length.
Example 2.4 revisited. With the aid of Corollary 2.10, the finitistic dimension Af

can, in a first step, be computed up to an error of 1, through a simple count. Here
m = 7, andL = 3, whence the maximum of the projective dimensions of the non-
cyclebound simple modules (hesg, . . ., S15) is 1+ 1-ded6) = 3.

To obtain the precise value of the finitistic dimension, we further observe: The
arrow 37 ends in the vertexg with maximal finite lengthc(eg) = 7 of departing
paths, and hence pdiie;/AG;) = 1+ 1-deq7) = 4. Consequently, Findif =
findimA = 4.
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3 Generic behavior of the homological dimensions

Recall that, for any finite dimensional algelffeandd € N, the following affine va-

riety Mod,(A) parametrizes thé-dimensionalA-modules: Let;,, ..., q, be a set of
algebra generators fdr over K. For instance, i\ is a path algebra modulo relations,
then the primitive idempotents (alias vertices of the quiver), together with the (residue
classes il of the) arrows constitute such a set of generators dFoN,

MOdd(A) ==
{(z) € H Endx (K%) | thez; satisfy all relations satisfied by the }.

1<i<r

As is well-known, the isomorphism classesdtlimensional (left)A-modules are in
one-to-one correspondence with the orbitsMiéd,(A) under the Gl-conjugation
action. Indeed, the orbits coincide with the fibres of the map i ,;(A) to the set
of isomorphism classes afdimensinal leftA-modules, which maps a pointto the
class of K¢, endowed with the\-multiplicationa;v = x;(v). If C is a subvariety of
Mod,(A), we refer to the modules represented by the pointsasthe modules irt.

It is, moreover, a standard fact that the homological dimensions of-tlienen-
sional modules, such as p dim, are generically constant on any irreducible component
of Mod,(A) (for a proof, see [4, Lemma 4.3] or [10, Theorem 5.3], where the result
is attributed to Bongartz). In fact, it is known that, given any irreducible subvariety
C of Mod,(4), there exists a dense open suligeC C such that the function p dim
is constant or/. Moreover, thisgeneric projective dimension ahis the minimum
of the projective dimensions attained on the module.itin most interesting cases,
the projective dimension fails to be constant on allCofhowever. (Think, e.g., of
the path algebr& of the quiver 1— 2, and letC be the irreducible component of
Mod;(A), whose points correspond to the modules with composition fa&tors,;
here the generic projective dimension is 0, while p@m® S2) = 1.) This raises the
guestion of how the following generic variant of the finitistic dimension relates to the
classical little finitistic dimension .

Definition 3.1. The generic left finitistic dimensionf a finite dimensional algeb&
is the supremum of the finite numbers gen-p@im whereC traces the irreducible
components of the varieti@dlod,(A); here gen-pdirfC) is the generic value of the
function p dim, restricted to the modulesdn

Clearly, the (left) generic finitistic dimension of an algelfvas always bounded
above by findimA. When are the two dimensions equal? Given an irreducible compo-
nentC C Mod,(A), what is the spectrum of values attained by the projective dimen-
sion onC?

The completeness with which these questions can be answered in the case of a
truncated path algebra came as a surprise to us. The resulting picture underscores
the pivotal role played by tree modules and supplements the fact that, in the truncated
scenario, the irreducible components are fairly well understood. They are in one-to-one
correspondence with certain sequences of semisimple modules, as follows:
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Recall that, given a finitely generated l&ftmodule M, its radical layeringis
S(M) = (JIM/J*M)o<i<r.. We will identify isomorphic semisimple modules so
that the radical layerings of isomorphfemodules become identical. That thedi-
mension of\/ bed evidently translates into the equally, .. , dimy J'M/J" 1M =
d. For each sequenée= (Sy, . ..,S;) of semisimple moduleS; with total dimension
d, let Mod(S) be the subset df1od (/) consisting of those points which correspond
to the modules with radical layeriryy Then the locally closed subvarieod(S) of
Mod,(A) is irreducible by [1, Theorem 5.3], whence so is its closurdiad,(A).

The maximal candidates among the closux#sd(S), whereS traces the sequences

S of total dimensiond, are therefore the irreducible componentsMbd (A); in-
deed, there are only finitely many such sequences. It is, moreover, easy to recognize
whether a given sequenfeof semisimple modules as above arises as the radical lay-
ering of aA-module, that is, whethe¥lod(S) # @ (see [1]). Namely, suppose that
S = Boesey 57V and letP be the projective cover . ThenMod(S) # @ if and

only if there exists a set of paths inP, which is closed under initial subpaths, such
thato is compatible withS in the following sense: For eache {1,...,n} and each
1€{0,1,...,L}, the setr contains precisely(i, /) paths of length which end in the
vertexe;. Observe that, whenever is a module with radical layerin§(M) = S, any
skeleton ofM is compatible witlS. Consequently, the requirement tdbd(S) # @
implies that the-th layerS; of S be a direct summand of theth layer.J' P/ J+1P in

the radical layering oP.

Theorem 3.2. LetS = (So, Sy, ...,S.) be a sequence of semisimplenodules such
thatMod(S) # @, and letP a projective cover 0fy. Moreover, suppose

JZP/JlJrlP — ( @ Sf(i7l)) o ( @ Sz‘(i,l))

1<i<n 1<i<n

for suitable nonnegative integerg:,[); here s(i,1) is the multiplicity ofS; in S; as
above.

(1) The projective dimension of a modulédepends only on its radical layerirgf M ).

In other words, the projective dimension is constant on each of the varlelia$(S).
This constant value, denotgddims, is the generic projective dimension of the irre-

ducible subvarietiMod(S) of Mod4(A).
(2) If pdimS > 0, then

pdimS = 1 + sup{i-degc(e;)) | i < n, I < Lwith r(4,1) # 0}.

(We adopt the standard conventiofh 4 co = oo”.) In particular, pdims is finite if
and only ifr(4,1) = 0O for all cyclebound vertices;, that is, if and only if every simple
module of infinite projective dimension has the same composition multiplicityais
in @OSlSL Si.

(3) The generic finitistic dimension & coincides withfindimA. It is the projec-
tive dimension of a tree modulE — of dimensioni say — whose orbit closure is an
irreducible component d¥1od ;(A).
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Computing p din§ in concrete examples amounts to performing at mosbunts:
Indeed, ifr(i,1) # O for somel, thenl-ded c(e;)) < I;-ded c(e;)), wherel; is maximal
with r(¢,1;) # 0. Observe moreover that the event p 8irx O is readily recognized:
It occurs if and only ifS = S(P); in this caseMod(S) consists of the Gl-orbit of P
only.

We smooth the road towards a proof of Theorem 3.2 with two preliminary observa-
tions.

Observation 3.3. Given any finitely generatefl-module with skeletos, there exists
a direct sum of tree modules with the same skeleton.

In particular, the syzygy of any finitely generatddmodule is isomorphic to the
syzygy of a direct sum of tree modules, and all projective dimensions in the set
{0,1,...,findimA} are attained on tree modules.

Proof. Let M be any finitely generated left-module,P = @, ., -, /\z a projective
cover of M with z,. = e(r) € {es,...,e,}, ando C P a skeleton ofA/. For fixed
r < t, let ¢ be the subset of consisting of all paths i of the formpz,. Then
T = N2 /(32 oo-critica /N0) IS @ tree module whose branches are precisely the

maximal paths ins(") relative to the “initial subpath order”. Henc&,.,., 7" is

a direct sum of tree modules, again having skeletorSince, by Theorem 2.2, any
skeleton of a module determines its syzygy up to isomorphism, the remaining claims
follow. 0

The next observation singles out candidates for the tree module postulated in Theo-
rem 3.2(3). Let be the sum of all non-cyclebound primitive idempotents in the full set
e1,.-.,en. (INn Example 2.4, we have= eg+ - - - + e35.) Clearly, the leftideal\e C A
of finite projective dimension equaig\c. In particular, given any leff\-module M,
the subspace)! is a sulmoduleof M.

Observation 3.4. Lete; be any vertex of). ThenpdimeJe; < oo, and
pdimeJe; > pdimAg,

for every nonzero patly of positive length inA with starting vertexe; such that
pdimAg < oco.

Moreover: The factor modul& = Ae;/eJe; is a tree module. Iflimy 7; = d;, and
S(7;) = SW is the radical layering off;, then the subvarietilod (S¥)) of Mod,;, (A)
coincides with th&L 4, -orbit of 7; and is open iMModg, (A\).

Proof. We first address the second set of claims. jketl < j < t;, be the different
paths of positive length i\ which start ine;, end in a non-cyclebound vertex, and
are minimal with these properties in the “initial subpath order”; that is, every proper
intial subpath of positive length of one of thg ends in a cyclebound vertex. Clearly,
eJe;, = @19'91 Np;;, which shows in particular thaf; is a tree module. Moreover,
any moduleM sharing the radical layering & also has projective covexe;, and a
comparison of composition factors shows that every epimorphism- M has kernel
eJe;. ThusM = 7;, which showsMod (S(¥) to equal the G|, -orbit of 7;. Moreover,
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it is readily checked that Ex{7;, 7;) = 0, whence the orbiMod (S*)) of 7; is open

in Mod,, (see [5, Corollary 3]), and the proof of the final assertions is complete.
For the first claim, lely = g¢e; be a nonzero path of positive length Anwith

p dimAg < co. Theng ends in a non-cyclebound vertex by Lemma 2.9 — calktand

henceq has an initial subpath’ among the pathg,;; let ¢’ be the (non-cyclebound)

terminal vertex ofy/. If [ and!’ are the lengths of andq’, respectivelyg(e’) — c(e) >

I —-1">0,and hence(e’) + 1" > ¢(e) + I. This shows

pdimAq¢ = I’-dedgc(e')) > I-dedc(e)) = pdimAg,
which yields the desired inequality. 0

Proof of Theorem 3.2(1) Let M be a module with radical layerir§jando any skele-
ton of M. By [1, Theorem 5.3], the points iMod,(A) parametrizing the modules
that share this skeleton constitute a dense open subB&bdfS). All modules repre-
sented by this open subvariety have the same projective dimensiah lascause any
skeleton of a module pins down its syzygy up to isomorphism. Therefore, pdim
is the generic value of the function pdim on the irreducible subvabdtyd(S) of
MOdd(/\)

(2) Suppose that pdif > 0, which means(i,/) > 0 for some pair(i,[). Let
M be any module witt§(M) = S. By part (1), pdin§ = pdimM{. To scrutinize
the projective dimension af/, let s be a skeleton of ando C & a skeleton of\/.
We haveQ'(M) = @, , iica\¢ by Theorem 2.2. Since(i,1) > 0 whenever is
a o-critical path of length ending ine;, we glean that p dim/ is bounded above by
the supremum displayed in part (2) of Theorem 3.2. For the reverse inequality, choose
any pair(i, ) with »(i,1) > 0. This inequality amounts to the existence of a gath
of lengthl in 5 \ o which ends ire;. Denote byyp'z,. the maximal initial subpath of
pz. which belongs tar. Sincepz, ¢ o, there is a unique arrow such thatup'z,. is
in turn an initial subpath ofz,.. In particular, if¢ = «p’, thengz,. is ac-critical path
ending in some vertex;. Invoking once again the above decompositio®bf11), we
deduce that the cyclic left idedlq is isomorphic to a direct summand @f (M). By
Theorem 2.6, it therefore suffices to show that the lefigtdegree of:(e,) is larger
than or equal té-degc(e;)). For that purpose, we writez, = ¢'qz, for a suitable path
¢ in A\. Sincec(e;) > c(e;) + length¢’), we obtainc(e;) > c(e;), and consequently
c(e;) + length(q) > c¢(e;) + 1. We conclude

] ) 1] 524 e

Thus pdimM — 1 > [-dedc(e;)) as required. The final equivalence under (2) is an
immediate consequence.

(3) By construction, the tree modul@sof Observation 3.4 all have finite projective
dimension. Combining the first part of this observation with the final statement of
Theorem 2.2, we moreover see that fin diraquals the maximum of these dimensions.
The final statement of Observation 3.4 now completes the proof of (3). 0
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LetS = (So,...,S.) again be a sequence of semisimple modules of total dimen-
siond such thatMod(S) # @. As we saw, the projective dimension p dinholds
some information about path lengthsAf@; namely on the lengths of paths starting in
vertices that belong to the support®@#(17), whereM is any module ifMlod(S). To
obtain a tighter correlation betweéhand the homology of\, we will next explore the
full spectrum of values of the function p dim attained on the clodisd(S). While
those ranges of values are better gauges of how the vertices corresponding to the sim-
ples in the various layer$; of S are placed in the quiva®, the refined homological
data still do not account for the intricacy of the embeddingybid(S) into Mod,(A\)
in general. (See the comments following the next theorem.) On the other hand, for
p dimS < oo and smallL, far more of this picture is preserved in the homology than in
the hereditary case.

We first recall from [1, Section 2.B] that, for any/ in Mod(S), the sequence
S(M) is larger than or equal t8 in the following partial order: Suppose th&tand
S’ are semisimple modules With,_,., Si = @g<;<, S;- Then 'S’ > S” means that
P,-, Siis adirect summand @b, ., S}, for all » > 0. In intuitive terms this says that,
in the passage froifito S’, the simple summands of ti$e are only upwardly mobile
relative to the layering.

Lemma 3.5. If S’ > S andMod(S') # &, thenpdimS’ > pdimsS.

Proof. Let P be a projective cover afo as before and® a projective cover of,.
Decompose the radical layers 8f in analogy with the decomposition given fér

above: / /
JZP//JZ+1PI — @ S: (4,0) e @ S:L’ (ial>’
1<i<n 1<i<n

whereS; = D1, Sf/(“). It follows immediately from the definition of the partial
order on sequences of semisimples that, whengiet) > 0, there exist¢’ > [ with
r'(i,1") > 0. In light of Theorem 3.2, this proves the lemma. 0

We give two descriptions of the range of values of pdim on the cla (S).
For a combinatorial version, we keep the notation of Theorem 3.2 and the proof of

Lemma 3.5: Namelys; = @1« Sf(i’”, andP is a projective cover ofp. From
Mod(S) # @, one then obtaing'P/J"" 1P = S, & @, sr®Y " In our graph-

based description of the values pdih > pdimS, where M tracesMod(S), the
exponents(i, /) take over the role played by th¢:, [) relative to the generic projective
dimension, pdin$: Recall from Theorem 3.2 that, whenever p diris nonzero, it is
the maximum of the values-t /-dedgc(e;)) € NU {0, oo} which accompany the pairs
(i,1) with 7(i,1) > 0. (Note: In view ofSg = P/J P, the inequality-(i,1) > 0 entails
1>1)

Now, we consider the different candidates. . . , n, among those elementsu
{0, 0o} which have the form

1+ l—dGQC(ej)), > l, Sj CcS
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and arestrictly larger than p dinSS. In other words,
{n1,...,ny} = [pdimS+1, co] N {1+ I-dedc(e;)) | 1 > 1, s(j,1) > O}.

Theorem 3.6. LetS be a semisimple sequence of total dimengiaith Mod(S) # 2.
The range of values,

{pdimM | M in Mod(S)},

of the functionp dim on the closure oMod(S) in Mody, is equal to the following
coinciding sets:

{pdims’ | S’ > 'S, Mod(S) # @} = {pdimS} U {na,...,n,}.

In general, describing the closurelfod(S) in Mod,(A) is an intricate represen-
tation-theoretic task, a fact not reflected by the homology. For instangénens’ is a
sequence of semisimple modules such #iat S andMod(S') # &, the intersection
Mod(S) N Mod(S’) may still be empty.e The conditionMod(S) N Mod(S') # @
does not implyMod(S’) € Mod(S). See the final discussion of our example for
illustration.

Proof. SetP = {pdimM | M in Mod(S)}. We already know that
P C{pdimsS'|S >S};

indeed, this is immediate from Lemma 3.5 and the remarks preceding it.

Suppose that’ is a sequence of semisimple modules viith- S andMod(S') #
. Assume pdin$’ > p dimsS, which, in particular, implies p dirff > 0. To show that
p dimS’ equals one of the,, we adopt the notation used in the proof of Lemma 3.5. By
Theorem 3.2, pdirf’ = 1+ a-dedc(e;)) for some pait(i, a) with 7/(i,a) > 0. Again
invoking Theorem 3.2, we moreover infer thdt,a) = 0 from pdimS < pdim§'.
If s(¢,a) > 0O, we are done, since necessaily> 1. So let us suppose that also
s(i,a) = 0, meaning thas; fails to be a summand of theth layerJ*P/J**1P of P.
In light of S; C J*P’/J*+*1P’, this entails the existence of a simgde C S;/Sp with
the property thass; C J%,/J%*1e;. Consequentlyg(e;) > c(e;) + a. On the other
hand,S; € @,-,S;, because the total multiplicities of the simple summands afd
S’ coincide. This means(j, k) > 0 for somek > 1. In light of So ® S; C Sy and
DBo<i<r St = Po<;<1 S;, we deduce that'(j,b) > 0 for some pair(j, b) with b > 1
ands(j,b) > 0. Another application of Theorem 3.2 thus yields

pdimS’ —1 > b-degc(e;)) = [C(ej) } n [c(ej) + b}

L+1 L+1
cle;) +a cle;) +a+b ] -
Z[ L+1 ]j{ L+1 }ZadGQC(ez))—pdlmS 1.

We conclude that all inequalities along this string are actually equalities, that is,

b-degc(e;)) = a-ded(c(e;)).
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This shows that p diff’ = 1+b-dedc(e;)) for a pair(j, b) with s(j, b) > 0 as required.

Finally, we verify that each of the numbetg belongs tagP. By definition,n,, is of
the form 1+ i-dedc(e;)) for some pair(é, 1) with [ > 1 ands(i,{) > 0. Let D be any
direct sum of tree modules wit( D) = S; in light of Mod(S) # @, such a modulé&
exists by Observation 3.3. Then there is a tree direct sumriaofdD with a branch
that contains an initial subpathof length! ending in the vertex;. The direct sum
of tree moduled)’ = (7 /Aq) ® N\¢ & D/T belongs toMod(S). In fact, D’ is well
known to belong to the closure of the orbit bfin Mod,(A\); see, e.g., [3, Section
3, Lemma 2]. Therefore pdit’ € P. As for the value of this projective dimension:
Up to isomorphism{\q is a direct summand of the syzygy of the tree modijé\q:
indeedy is o-critical relative to the obvious skeleterof 7 /Ag consisting of all initial
subpaths of the branches (see Theorem 2.2 and the comments accompanying Definition
2.7). Theorems 2.6 and 3.2 moreover yield

pdimD’ — 1> pdimAg = I-degc(e;)) = nx —1 > pdimS — 1 =pdimD — 1,

whence pdiniZ7 /Aq) = n;, = pdimD’. This showsy, to belong toP and completes
the argument. O

A final visit to Example 2.4. (a) First, letS = S(Ae;) be the radical layering of the
projective tree moduld = Ae;. By Theorems 3.2 and 3.6, the values of pdim on
Mod(S) are pdinS = 0, 2,3,4, co. For instance, pdif{7 /ABsaz51) ® (ABsazf1))
equals 2. Note that the value 1, on the other hand, is not attained.

(b) Next we justify the comments following the statement of Theorem 3.6S bedS’

be the radical layerings of the modul&s and M’ with the following graphs, respec-
tively:

9 9 12
| | |
10 10 & 13
VAN |
11 13 11

12

ThenS' > S, while Mod(S) N Mod(S') = .
On the other hand, B := S(N), S’ := S(N'), andS” := S(N") whereN, N’, and
N"" are given by the graphs

10 10 12 10 12
(N AN @ I @ |
11 13 11 13 11 13
|
12

thenS’ =S” > S, and the intersectioMod(S) N Mod(S') containsN’, but notN".
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