
Contributions to Module Theory , 1–16 c© de Gruyter 2007

Truncated path algebras are homologically transparent

A. Dugas, B. Huisgen-Zimmermann and J. Learned

Abstract. It is shown that path algebras modulo relations of the formΛ = KQ/I, whereQ is a
quiver,K a coefficient field, andI ⊆ KQ the ideal generated by all paths of a given length, can be
readily analyzed homologically, while displaying a wealth of phenomena. In particular, the syzygies
of their modules, and hence their finitistic dimensions, allow for smooth descriptions in terms ofQ
and the Loewy length ofΛ. The same is true for the distributions of projective dimensions attained
on the irreducible components of the standard parametrizing varieties for the modules of fixedK-
dimension.
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1 Introduction and notation

The problem of opening up general access roads to the finitistic dimensions of a finite
dimensional algebraΛ, given through quiver and relations, is quite challenging. This
is witnessed, for instance, by the fact that the longstanding question “Is the (left) little
finitistic dimension ofΛ,

fin dimΛ = sup{p dimM | M ∈ P<∞(Λ-mod)},

always finite?” (Bass 1960) has still not been settled. Here p dimM is the projective
dimension of a moduleM , andP<∞(Λ-mod) denotes the category of finitely generated
(left) Λ-modules of finite projective dimension.

In [1], Babson, the second author, and Thomas showed that truncated path alge-
bras of quivers are particularly amenable to geometric exploration, while nonetheless
displaying a wide range of interesting phenomena. This led the authors of the present
paper to the serendipitous discovery that the same is true for the homology of such
algebras. By atruncated path algebrawe mean an algebra of the formKQ/I, where
KQ is the path algebra of a quiverQ with coefficients in a fieldK andI ⊆ KQ is
the ideal generated by all paths of a fixed lengthL + 1. In particular, truncated path
algebras are monomial algebras. In this case, the finitistic dimensions are known to
be finite (see [6]). Our goal here is to show how much more is true in the truncated
scenario.

Roughly, our three main results (Theorems 2.6, 3.2, 3.6) show the following for a
truncated path algebraΛ:

• The little and big finitistic dimensions ofΛ coincide and can be determined through
a straightforward computation fromQ andL. Moreover, from a minimal amount of
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structural data for aΛ-moduleM , namely the radical layering

S(M) =
(
J lM/J l+1M

)
0≤l≤L

(or, alternatively, any “skeleton” ofM ), one can determine the syzygies and projective
dimension ofM in a purely combinatorial fashion. (See Theorems 2.2, 2.6, and the
first part of Theorem 3.2 for finer information.)

• The “generic projective dimension” of any irreducible componentC of one of the
classical module varieties (see beginning of Section 3) is readily obtainable from graph-
theoretic data as well. So is the full spectrum of values of the function p dim attained
on the class of modules parametrized byC. In particular, it turns out that the supremum
of the finite values among the generic finitistic dimensions of the various irreducible
components equals fin dimΛ. (See Theorems 3.2 and 3.6 for detail.)

The picture emerging from the main theorems will be supplemented in a sequel,
where it will be shown that the categoryP<∞(Λ-mod) is contravariantly finite in the
full category of finitely generatedΛ-modules, wheneverΛ is a truncated path algebra.

Conventions. We fix a positive integerL. Throughout,Λ denotes a truncated path
algebra of Loewy lengthL + 1, that is,Λ = KQ/I, whereK is a field,Q a quiver,
andI the ideal generated by all paths of lengthL + 1. The Jacobson radicalJ of Λ
satisfiesJL+1 = 0 by construction. A (nonzero) path inΛ is theI-residue of a path in
KQ \ I, that is, theI-residue of a pathp in KQ of length at mostL; so, in particular,
any path inΛ is a nonzeroelement ofΛ under this convention. Clearly, the paths in
Λ form a K-basis forΛ. Due to the fact thatI is homogeneous with respect to the
path-length grading ofKQ, defining thelengthof such a pathp + I to be that ofp,
yields an unambiguous concept of length for the elements of this basis. A distinguished
role is played by the pathse1, . . . , en of length zero inΛ: They constitute a full set
of orthogonal primitive idempotents, which is in obvious one-to-one correspondence
with the vertices ofQ. We will identify eachei with the corresponding vertex, and
whenever we refer to a primitive idempotent inΛ, we will mean one of theei. Then
the left idealsΛei and their radical factorsSi = Λei/Jei, for 1≤ i ≤ n, constitute full
sets of isomorphism representatives for the indecomposable projective and simple left
Λ-modules, respectively.

Finally, we say that a pathp in Λ or in KQ is aninitial subpathof a pathq if there
is a pathp′ with q = p′p; here the productp′p stands for “p′ afterp.”

2 The standard homological dimensions ofΛ-Mod

The (left) big finitistic dimensionof Λ is the supremum, Fin dimΛ, of the projective
dimensions of all leftΛ-modules of finite projective dimension; for thelittle finitistic di-
mensionconsult the introduction. We start by recording some prerequisites established
in [1]. As was shown in [1], the well-known fact that allsecondsyzygies of modules
over a monomial algebra are direct sums of cyclic modules generated by paths of posi-
tive length (see [7] and [2]), can be improved for truncated path algebras so as to cover
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first syzygies as well. In particular, this makes the big and little finitistic dimensions of
Λ computable from a finite set of cyclic test modules.

More sharply: Given any leftΛ-moduleM , we can explicitly pin down a decom-
position of the syzygyΩ1(M) into cyclics. This description ofΩ1(M) relies on a
skeleton ofM . Roughly speaking, this is a path basis forM with the property that
the path lengths respect the radical layering,(J lM/J l+1M)0≤l≤L. The concept of a
skeleton, defined in [1] in full generality, can be significantly simplified for a truncated
path algebraΛ.

Definition 2.1 (Skeleton of aΛ-module M ). Fix a projective coverP of M , say
P =

⊕
r∈R Λzr, where eachzr is one of the primitive idempotents in{e1, . . . , en},

tagged with a place numberr (the index setR may be infinite). Apath of lengthl in
P is any elementpzr ∈ P , wherep is a path of lengthl in Λ which starts inzr (in
particular, the paths inP are again nonzero). IdentifyM with an isomorphic factor
module ofP , sayM = P/C.

(a) A skeleton ofM = P/C is a setσ of paths inP such that for eachl ≤ L, the
residue classesq+J lM of the pathsq of lengthl in σ form aK-basis forJ lM/J l+1M .
Moreover, we require thatσ be closed under initial subpaths, that is, ifq = p′pzr ∈ σ,
thenpzr ∈ σ.

(b) A pathq in P \ σ is calledσ-critical if it is of the form q = αpzr, whereα is an
arrow andpzr a path inσ.

In particular, the definition entails that, for any skeletonσ of M = P/C, the full
set of residue classes{q + C | q ∈ σ} forms a basis forM . Furthermore, it is easily
checked that everyΛ-moduleM has at least one skeleton, and only finitely many when
M is finitely generated (as long as we keep the projective coverP fixed).

Theorem 2.2. Known Facts. [1, Lemma 5.10]If M is any nonzero leftΛ-module with
skeletonσ, then

Ω1(M) ∼=
⊕

q σ-critical

Λq.

In particular, Ω1(M) is isomorphic to a direct sum of cyclic left ideals generated by
nonzero paths of positive length inΛ.

Consequently,Fin dimΛ = fin dimΛ = s + 1, where

s = max{p dimΛq | q a path of positive length inΛ with p dimΛq < ∞},

provided that the displayed set is nonempty, ands = −1 otherwise.

We briefly point out another nice consequence concerning Auslander’s notion of
the representation dimension of an algebra. In [9] Ringel shows that any algebra with
only finitely many indecomposable torsionless modules up to isomorphism has repre-
sentation dimension at most 3. Since the above theorem classifies the indecomposable
torsionlessΛ-modules as those modules isomorphic toΛq for some nonzero pathq, of
which there are only finitely many, we obtain the following.

Corollary 2.3. The representation dimension of any truncated path algebra is at most
3.
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We illustrate the results on finitistic dimension with an example which will accom-
pany us throughout.
Example 2.4.Let Λ = KQ/I be the truncated path algebra of Loewy lengthL+1 = 4
based on the following quiverQ.
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Then the indecomposable projective leftΛ-modulesΛe1 andΛe3 have the following
layered and labeled graphs (in the sense of [7] and [8]):
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If P = Λz1 with z1 = ei in the notation of Definition 2.1, each of the modulesΛei has
a unique skeleton, which can be read off the graph: It is the set of all initial subpaths of
the edge paths in the graph, read from top to bottom. The skeleton ofΛe1, for instance,
consists of the pathsz1 = e1 of length zero inP , the pathsα1z1, β1z1 of length 1, the
pathsα2

1z1, β1α1z1, α2β1z1, γ2β1z1, β2β1z1 of length 2, together with all edge paths of
length 3.

For a sample application of Theorem 2.2, we consider the moduleM determined
by the following graph:
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A projective cover ofM is P = Λe3⊕Λe5⊕Λe6⊕ (Λe2)2, wherez1 = e3, z2 = e5 and
so on. A skeletonσ of M (in this case there are several), together with theσ-critical
paths is communicated by the following graph, in which the solid and dashed edges
play different roles, as explained below:
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As above, the paths inσ correspond to the intial subpaths of the solidly drawn edge
paths, including all paths of length zero – e.g.,β4α3z1, z3 andα10β2z4. Theσ-critical
paths are all the paths in the graph (again read from top to bottom) which terminate
in a dashed edge; for instance,α3β4α3z1 andα5z2 areσ-critical. SinceΩ1(M) ∼=⊕

q σ-critical Λq, we find this syzygy to be the direct sum

Λβ3 ⊕ Λα4α3 ⊕ Λα3β4α3 ⊕ Λα5 ⊕ Λβ5 ⊕ Λα6 ⊕ Λβ6 ⊕ Λα2 ⊕ · · · .

The graphs ofΛα4α3, Λβ3, andΛα2 are respectively
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The main result of this section provides the projective dimensions of the building
blocks for the syzygies of arbitraryΛ-modules; compare with Theorem 2.2.

Definition 2.5. Let l be a nonnegative integer≤ L, andc any nonnegative integer. We
define

l-deg(c) =
[

c

L + 1

]
+

[
c + l

L + 1

]
.

Here [x] stands for the largest integer smaller than or equal tox. Moreover, we set
l-deg(∞) = ∞.

The l-degree defines a nondecreasing functionN ∪ {0,∞} → N ∪ {0,∞} for any
l ≤ L. Moreover, for 0≤ l ≤ l′ ≤ L and arbitraryc ∈ N ∪ {0}, the difference
l′-deg(c) − l-deg(c) belongs to the set{0, 1}. This observation will entail the final
claim of the upcoming theorem, once the first – displayed – equality is established.
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Theorem 2.6. Supposeq ∈ Λ is a path of lengthl > 0 in Λ (i.e., theI-residue of a
path of length at mostL in KQ) with terminal vertexe. Letc = c(e) be the supremum
of the lengths of the paths inKQ starting ine. Then

p dimΛq = l-deg(c).

In particular, p dimΛq < ∞ if and only if c(e) < ∞ (meaning that there is no path
starting ine and terminating on an oriented cycle).

Moreover, ifq′ is another path inΛ that ends ine such thatL ≥ length(q′) ≥
length(q) ≥ 1, then

p dimΛq ≤ p dimΛq′ ≤ 1 + p dimΛq.

In Example 2.4,c(e7) is infinite, for instance, whilec(e10) = 5; the latter shows
that p dim(Λα9α8β7) = 3-deg(5) = 3. The argument backing Theorem 2.6 is purely
combinatorial, the intuitive underpinnings being of a graphical nature. We start with
two definitions setting the stage. The first is clearly motivated by the statement of
Theorem 2.6.
Definition 2.7. We call a vertexe of the quiverQ (alias a primitive idempotent ofΛ)
cycleboundin case there is a path frome to a vertex lying on an oriented cycle. In case
e is cyclebound, we also call the simple moduleΛe/Je cyclebound.

Next, we consider the following partial order on the set of paths inKQ. Namely,
given pathsp andp′ in KQ, we define

p′ ≤ p ⇐⇒ p′ is an initial subpath ofp;

recall that the latter amounts to the existence of a pathp′′ with the property thatp =
p′′p′. Hence, any two paths which are comparable have the same starting point, and
e ≤ p for any pathp starting in the vertexe. Clearly, this partial order induces a partial
order on the set of paths inΛ.

Finally, we introduce a class of modules, which will turn out to tell the full homo-
logical story ofΛ. The left ideals of the formΛq – the basic building blocks of all
syzygies ofΛ-modules – are among them.
Definition 2.8 (Tree modules and branches. Comments).Any moduleT of the form
T ∼= Λe/V , wheree is a vertex ofQ andV =

∑
v∈V Λv is generated by some setV

of paths of positive length inΛe (possibly empty), will be called atree module with
root e. In particular,Λe is a tree module with roote, the unique candidate of maximal
dimension among the tree modules with roote, in fact; the simple moduleΛe/Je is the
tree module with roote that has minimal positive dimension.

The terminology is motivated by the fact that thegraphsof tree modules are trees
“growing downwards” from their roots. Note that tree modules are determined up to
isomorphism by their graphs.

Given a tree moduleT as above, letb1, . . . , br ∈ Λ be the maximal paths inΛe – in
the above partial order – which are not contained inV . Thebi are uniquely determined
by the isomorphism class ofT and are called thebranchesof T . Conversely, if we
knowT to be a tree module, then the branches ofT pin T down up to isomorphism.
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If T ∼= Λe/Je is the simple tree module with roote, thene is the only branch of
T . By contrast, ifT = Λe/V is a nonsimple tree module, then all branches ofT
have positive length. Moreover, it is straightforward to see thatT has a basis of the
following form:

{e + V } ∪ {q + V | q is an initial subpath of positive length of one ofb1, . . . br},

whereb1, . . . , br are the branches ofT . If we pull back this basis to a set of paths in the
projective coverΛe of T , thenσ is a skeleton ofT in the sense of Definition 2.1 (the
only one).

Apart fromM , all the modules displayed in Example 2.4 are tree modules. Their
branches are precisely the maximal edge paths in their graphs, read from top to bottom.
The proof of the next lemma is straightforward and we leave it to the reader.
Lemma 2.9. Wheneverq is a path inΛ ending ine, not necessarily of positive length,
the cyclic left idealΛq is a tree module with roote. More precisely: Ifl = length(q),
let b1, . . . , br be the maximal candidates among the paths of length≤ L− l starting in
e. ThenΛq = Λe/V , where

V = Ω1(Λq) =
⊕

β an arrow, i≤r

Λβbi ,

and thebi are the branches ofΛq.
In particular, if l > 0, thenp dimΛq < ∞ if and only ife is non-cyclebound.
Combined with Theorem 2.2, Lemma 2.9 shows that all syzygies ofΛ-modules are

direct sums of tree modules. Contrasting the final statement forl > 0, we see that, for
the pathq = e of length zero,Λq = Λe is projective, irrespective of the positioning
of e in Q. As for the other extreme: By Lemma 2.9, the simple moduleS = Λe/Je
has infinite projective dimension precisely when it is cyclebound. In Example 2.4,
the verticese1, . . . , e7 are cyclebound, whilee8, . . . , e15 are not. HenceS1, . . . , S7 are
precisely the simple modules of infinite projective dimension.

Note that the only potential branchesbi of length< L− l of a tree moduleΛq as in
Lemma 2.9 end in a sink of the quiverQ.

Proof of Theorem 2.6.As in the statement of the theorem, letq be a path of positive
lengthl ≤ L in Λ, which ends in the vertexe. In light of the remark preceding Theorem
2.6, we only need to show the equality p dimΛq = l-deg(c), wherec = c(e) is the
supremum of the lengths of the paths inKQ starting ine. If e is cyclebound, this
equality follows from Lemma 2.9. So let us assume thate is non-cyclebound – meaning
c < ∞ – and induct onc. If c ≤ L − l, all of the branches of the tree moduleΛq end
in sinks of the quiverQ. We infer thatΛq ∼= Λe in that case, whence p dimΛq = 0 =
l-deg(c).

Now supposec > L − l, and assume that p dimΛp′ = l′-deg(c(e′)) for all pathsp′

of lengthl′ ≤ L in Λ that end in a non-cyclebound vertexe′ of Q with c(e′) < c. Using
the notation of Lemma 2.9, we obtainΩ1(Λq) =

⊕
β, i≤r Λβbi, where thebi are the

branches of the tree moduleΛq and theβ are arrows. Since the lengths of thebi are
bounded from above byL − l ≤ L − 1, the paths inKQ of the formβbi whereβ is
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an arrow, have length at mostL; therefore each of them gives rise to a path inΛ. By
the definition ofc, there exists a pathu of lengthc in KQ which starts in the vertexe,
and by the definition of the branches ofΛq, there exists an indexj such thatbj is an
initial subpath ofu. Necessarily, length(bj) = L − l, because length(u) > L − l. In
fact, c > L − l guarantees thatu = u′βjbj in KQ for some arrowβj and a suitable
pathu′ of lengthc′ = length(u) − (L − l) − 1 = c − (L − l) − 1 ≤ c − 1. Sinceu
starts in the non-cyclebound vertexe, the terminal vertex ofβjbj – call it e′ – is again
non-cyclebound. Moreover, the maximality property ofu entails thatc′ = c(e′) is the
maximal length of a path inKQ starting ine′. Therefore, our induction hypothesis
guarantees that p dimΛβjbj = (L− l + 1)-deg(c′). This degree in turn equals[

c′

L + 1

]
+

[
c′ + L− l + 1

L + 1

]
=

[
c + l − (L + 1)

L + 1

]
+

[
c

L + 1

]
= l-deg(c)− 1;

the final equality follows fromc+l−(L+1)
L+1 = c+l

L+1 − 1. Analogous applications of the
induction hypothesis, combined with the basic properties of the degree function, yield
p dimΛβbi ≤ p dimΛβjbj for any pathβbi appearing in the decomposition ofΩ1(Λq).
We conclude that p dimΛq = 1 + p dimΛβjbj = l-deg(c) as required.

The following dichotomy for the finitistic dimension ofΛ results from a combina-
tion of Theorems 2.2 and 2.6 with Lemma 2.9.
Corollary 2.10. Suppose thatS1, . . . , St are precisely the non-cyclebound simple left
Λ-modules. Then either

fin dimΛ = max
1≤i≤t

p dimSi or fin dimΛ = 1 + max
1≤i≤t

p dimSi ,

and
max

1≤i≤m
p dimSi = 1 + 1-deg(m− 1),

wherem is the maximum of the lengths of the paths inQ starting in one of the vertices
e1, . . . , et.
Both options for fin dimΛ occur in concrete instances (see below); of course, the
smaller value equals the global dimension whenever the quiverQ is acyclic. For the
decision process in specific instances, combine Theorems 2.2 and 2.6. To contrast
Corollary 2.10 with the homology of more general algebras: Recall that arbitrary nat-
ural numbers occur as finitistic dimensions of monomial algebras all of whose simple
modules have infinite projective dimension. So the corollary again attests to the degree
of simplification that occurs when the paths factored out ofKQ have uniform length.
Example 2.4 revisited. With the aid of Corollary 2.10, the finitistic dimension ofΛ
can, in a first step, be computed up to an error of 1, through a simple count. Here
m = 7, andL = 3, whence the maximum of the projective dimensions of the non-
cyclebound simple modules (hereS8, . . . , S15) is 1+ 1-deg(6) = 3.

To obtain the precise value of the finitistic dimension, we further observe: The
arrow β7 ends in the vertexe8 with maximal finite lengthc(e8) = 7 of departing
paths, and hence p dim(Λe7/Λβ7) = 1 + 1-deg(7) = 4. Consequently, Fin dimΛ =
fin dimΛ = 4.
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3 Generic behavior of the homological dimensions

Recall that, for any finite dimensional algebra∆ andd ∈ N, the following affine va-
riety Modd(∆) parametrizes thed-dimensional∆-modules: Leta1, . . . , ar be a set of
algebra generators for∆ overK. For instance, if∆ is a path algebra modulo relations,
then the primitive idempotents (alias vertices of the quiver), together with the (residue
classes in∆ of the) arrows constitute such a set of generators. Ford ∈ N,

Modd(∆) =

{(xi) ∈
∏

1≤i≤r

EndK(Kd) | thexi satisfy all relations satisfied by theai}.

As is well-known, the isomorphism classes ofd-dimensional (left)Λ-modules are in
one-to-one correspondence with the orbits ofModd(Λ) under the GLd-conjugation
action. Indeed, the orbits coincide with the fibres of the map fromModd(∆) to the set
of isomorphism classes ofd-dimensinal left∆-modules, which maps a pointx to the
class ofKd, endowed with the∆-multiplication aiv = xi(v). If C is a subvariety of
Modd(∆), we refer to the modules represented by the points inC asthe modules inC.

It is, moreover, a standard fact that the homological dimensions of thed-dimen-
sional modules, such as p dim, are generically constant on any irreducible component
of Modd(∆) (for a proof, see [4, Lemma 4.3] or [10, Theorem 5.3], where the result
is attributed to Bongartz). In fact, it is known that, given any irreducible subvariety
C of Modd(∆), there exists a dense open subsetU ⊆ C such that the function p dim
is constant onU . Moreover, thisgeneric projective dimension onC is the minimum
of the projective dimensions attained on the modules inC. In most interesting cases,
the projective dimension fails to be constant on all ofC, however. (Think, e.g., of
the path algebra∆ of the quiver 1→ 2, and letC be the irreducible component of
Mod2(∆), whose points correspond to the modules with composition factorsS1, S2;
here the generic projective dimension is 0, while p dim(S1 ⊕ S2) = 1.) This raises the
question of how the following generic variant of the finitistic dimension relates to the
classical little finitistic dimension of∆.

Definition 3.1. Thegeneric left finitistic dimensionof a finite dimensional algebra∆
is the supremum of the finite numbers gen-p dim(C), whereC traces the irreducible
components of the varietiesModd(∆); here gen-p dim(C) is the generic value of the
function p dim, restricted to the modules inC.

Clearly, the (left) generic finitistic dimension of an algebra∆ is always bounded
above by fin dim∆. When are the two dimensions equal? Given an irreducible compo-
nentC ⊆ Modd(∆), what is the spectrum of values attained by the projective dimen-
sion onC?

The completeness with which these questions can be answered in the case of a
truncated path algebraΛ came as a surprise to us. The resulting picture underscores
the pivotal role played by tree modules and supplements the fact that, in the truncated
scenario, the irreducible components are fairly well understood. They are in one-to-one
correspondence with certain sequences of semisimple modules, as follows:
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Recall that, given a finitely generated leftΛ-moduleM , its radical layering is
S(M) = (J lM/J l+1M)0≤l≤L. We will identify isomorphic semisimple modules so
that the radical layerings of isomorphicΛ-modules become identical. That theK-di-
mension ofM bed evidently translates into the equality

∑
0≤l≤L dimK J lM/J l+1M =

d. For each sequenceS = (S0, . . . , SL) of semisimple modulesSl with total dimension
d, letMod(S) be the subset ofModd(Λ) consisting of those points which correspond
to the modules with radical layeringS. Then the locally closed subvarietyMod(S) of
Modd(Λ) is irreducible by [1, Theorem 5.3], whence so is its closure inModd(Λ).
The maximal candidates among the closuresMod(S), whereS traces the sequences
S of total dimensiond, are therefore the irreducible components ofModd(Λ); in-
deed, there are only finitely many such sequences. It is, moreover, easy to recognize
whether a given sequenceS of semisimple modules as above arises as the radical lay-
ering of aΛ-module, that is, whetherMod(S) 6= ∅ (see [1]). Namely, suppose that
Sl =

⊕
0≤l≤L S

s(i,l)
i and letP be the projective cover ofS0. ThenMod(S) 6= ∅ if and

only if there exists a setσ of paths inP , which is closed under initial subpaths, such
thatσ is compatible withS in the following sense: For eachi ∈ {1, . . . , n} and each
l ∈ {0, 1, . . . , L}, the setσ contains preciselys(i, l) paths of lengthl which end in the
vertexei. Observe that, wheneverM is a module with radical layeringS(M) = S, any
skeleton ofM is compatible withS. Consequently, the requirement thatMod(S) 6= ∅
implies that thel-th layerSl of S be a direct summand of thel-th layerJ lP/J l+1P in
the radical layering ofP .
Theorem 3.2. Let S = (S0, S1, . . . , SL) be a sequence of semisimpleΛ-modules such
thatMod(S) 6= ∅, and letP a projective cover ofS0. Moreover, suppose

J lP/J l+1P =
( ⊕

1≤i≤n

S
s(i,l)
i

)
⊕

( ⊕
1≤i≤n

S
r(i,l)
i

)

for suitable nonnegative integersr(i, l); here s(i, l) is the multiplicity ofSi in Sl as
above.

(1) The projective dimension of a moduleM depends only on its radical layeringS(M).
In other words, the projective dimension is constant on each of the varietiesMod(S).
This constant value, denotedp dimS, is the generic projective dimension of the irre-
ducible subvarietyMod(S) of Modd(Λ).
(2) If p dimS > 0, then

p dimS = 1 + sup{l-deg(c(ei)) | i ≤ n, l ≤ L with r(i, l) 6= 0}.

(We adopt the standard convention “1 + ∞ = ∞”. ) In particular, p dimS is finite if
and only ifr(i, l) = 0 for all cyclebound verticesei, that is, if and only if every simple
module of infinite projective dimension has the same composition multiplicity inP as
in

⊕
0≤l≤L Sl.

(3) The generic finitistic dimension ofΛ coincides withfin dimΛ. It is the projec-
tive dimension of a tree moduleT – of dimensiond say – whose orbit closure is an
irreducible component ofModd(Λ).
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Computing p dimS in concrete examples amounts to performing at mostn counts:
Indeed, ifr(i, l) 6= 0 for somel, thenl-deg(c(ei)) ≤ li-deg(c(ei)), whereli is maximal
with r(i, li) 6= 0. Observe moreover that the event p dimS = 0 is readily recognized:
It occurs if and only ifS = S(P ); in this case,Mod(S) consists of the GLd-orbit of P
only.

We smooth the road towards a proof of Theorem 3.2 with two preliminary observa-
tions.

Observation 3.3. Given any finitely generatedΛ-module with skeletonσ, there exists
a direct sum of tree modules with the same skeleton.

In particular, the syzygy of any finitely generatedΛ-module is isomorphic to the
syzygy of a direct sum of tree modules, and all projective dimensions in the set
{0, 1, . . . , fin dimΛ} are attained on tree modules.

Proof. Let M be any finitely generated leftΛ-module,P =
⊕

1≤r≤t Λzr a projective
cover ofM with zr = e(r) ∈ {e1, . . . , en}, andσ ⊆ P a skeleton ofM . For fixed
r ≤ t, let σ(r) be the subset ofσ consisting of all paths inσ of the formpzr. Then
T (r) := Λzr/(

∑
q σ(r)-critical Λq) is a tree module whose branches are precisely the

maximal paths inσ(r) relative to the “initial subpath order”. Hence,
⊕

1≤r≤t T (r) is
a direct sum of tree modules, again having skeletonσ. Since, by Theorem 2.2, any
skeleton of a module determines its syzygy up to isomorphism, the remaining claims
follow.

The next observation singles out candidates for the tree module postulated in Theo-
rem 3.2(3). Letε be the sum of all non-cyclebound primitive idempotents in the full set
e1, . . . , en. (In Example 2.4, we haveε = e8 + · · ·+ e15.) Clearly, the left idealΛε ⊆ Λ
of finite projective dimension equalsεΛε. In particular, given any leftΛ-moduleM ,
the subspaceεM is a submoduleof M .

Observation 3.4. Let ei be any vertex ofQ. Thenp dimεJei < ∞, and

p dimεJei ≥ p dimΛq,

for every nonzero pathq of positive length inΛ with starting vertexei such that
p dimΛq < ∞.

Moreover: The factor moduleTi = Λei/εJei is a tree module. IfdimK Ti = di, and
S(Ti) = S(i) is the radical layering ofTi, then the subvarietyMod

(
S(i)

)
of Moddi(Λ)

coincides with theGLdi-orbit of Ti and is open inModdi(Λ).

Proof. We first address the second set of claims. Letpij , 1 ≤ j ≤ ti, be the different
paths of positive length inΛ which start inei, end in a non-cyclebound vertex, and
are minimal with these properties in the “initial subpath order”; that is, every proper
intial subpath of positive length of one of thepij ends in a cyclebound vertex. Clearly,
εJei =

⊕
1≤j≤ti

Λpij , which shows in particular thatTi is a tree module. Moreover,
any moduleM sharing the radical layering ofTi also has projective coverΛei, and a
comparison of composition factors shows that every epimorphismΛei → M has kernel
εJei. ThusM ∼= Ti, which showsMod

(
S(i)

)
to equal the GLdi-orbit of Ti. Moreover,
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it is readily checked that Ext1
Λ(Ti, Ti) = 0, whence the orbitMod

(
S(i)

)
of Ti is open

in Moddi (see [5, Corollary 3]), and the proof of the final assertions is complete.
For the first claim, letq = qei be a nonzero path of positive length inΛ with

p dimΛq < ∞. Thenq ends in a non-cyclebound vertex by Lemma 2.9 – call ite – and
henceq has an initial subpathq′ among the pathspij ; let e′ be the (non-cyclebound)
terminal vertex ofq′. If l andl′ are the lengths ofq andq′, respectively,c(e′)− c(e) ≥
l − l′ ≥ 0, and hencec(e′) + l′ ≥ c(e) + l. This shows

p dimΛq′ = l′-deg(c(e′)) ≥ l-deg(c(e)) = p dimΛq,

which yields the desired inequality.

Proof of Theorem 3.2.(1) LetM be a module with radical layeringS andσ any skele-
ton of M . By [1, Theorem 5.3], the points inModd(Λ) parametrizing the modules
that share this skeleton constitute a dense open subset ofMod(S). All modules repre-
sented by this open subvariety have the same projective dimension asM , because any
skeleton of a module pins down its syzygy up to isomorphism. Therefore, p dimM

is the generic value of the function p dim on the irreducible subvarietyMod(S) of
Modd(Λ).

(2) Suppose that p dimS > 0, which meansr(i, l) > 0 for some pair(i, l). Let
M be any module withS(M) = S. By part (1), p dimS = p dimM . To scrutinize
the projective dimension ofM , let σ̂ be a skeleton ofP andσ ⊂ σ̂ a skeleton ofM .
We haveΩ1(M) ∼=

⊕
q σ-critical Λq by Theorem 2.2. Sincer(i, l) > 0 wheneverq is

a σ-critical path of lengthl ending inei, we glean that p dimM is bounded above by
the supremum displayed in part (2) of Theorem 3.2. For the reverse inequality, choose
any pair(i, l) with r(i, l) > 0. This inequality amounts to the existence of a pathpzr

of length l in σ̂ \ σ which ends inei. Denote byp′zr the maximal initial subpath of
pzr which belongs toσ. Sincepzr /∈ σ, there is a unique arrowα such thatαp′zr is
in turn an initial subpath ofpzr. In particular, ifq = αp′, thenqzr is aσ-critical path
ending in some vertexej . Invoking once again the above decomposition ofΩ1(M), we
deduce that the cyclic left idealΛq is isomorphic to a direct summand ofΩ1(M). By
Theorem 2.6, it therefore suffices to show that the length(q)-degree ofc(ej) is larger
than or equal tol-deg(c(ei)). For that purpose, we writepzr = q′qzr for a suitable path
q′ in Λ. Sincec(ej) ≥ c(ei) + length(q′), we obtainc(ej) ≥ c(ei), and consequently
c(ej) + length(q) ≥ c(ei) + l. We conclude[

c(ej)
L + 1

]
+

[
c(ej) + length(q)

L + 1

]
≥

[
c(ei)
L + 1

]
+

[
c(ei) + l

L + 1

]
= l-deg(c(ei)).

Thus p dimM − 1 ≥ l-deg(c(ei)) as required. The final equivalence under (2) is an
immediate consequence.

(3) By construction, the tree modulesTi of Observation 3.4 all have finite projective
dimension. Combining the first part of this observation with the final statement of
Theorem 2.2, we moreover see that fin dimΛ equals the maximum of these dimensions.
The final statement of Observation 3.4 now completes the proof of (3).
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Let S = (S0, . . . , SL) again be a sequence of semisimple modules of total dimen-
sion d such thatMod(S) 6= ∅. As we saw, the projective dimension p dimS holds
some information about path lengths inKQ; namely on the lengths of paths starting in
vertices that belong to the support ofΩ1(M), whereM is any module inMod(S). To
obtain a tighter correlation betweenQ and the homology ofΛ, we will next explore the
full spectrum of values of the function p dim attained on the closureMod(S). While
those ranges of values are better gauges of how the vertices corresponding to the sim-
ples in the various layersSl of S are placed in the quiverQ, the refined homological
data still do not account for the intricacy of the embedding ofMod(S) into Modd(Λ)
in general. (See the comments following the next theorem.) On the other hand, for
p dimS < ∞ and smallL, far more of this picture is preserved in the homology than in
the hereditary case.

We first recall from [1, Section 2.B] that, for anyM in Mod(S), the sequence
S(M) is larger than or equal toS in the following partial order: Suppose thatS and
S′ are semisimple modules with

⊕
0≤l≤L Sl =

⊕
0≤l≤L S′l. Then “S′ ≥ S” means that⊕

l≤r Sl is a direct summand of
⊕

l≤r S′l, for all r ≥ 0. In intuitive terms this says that,
in the passage fromS to S′, the simple summands of theSl are only upwardly mobile
relative to the layering.

Lemma 3.5. If S′ ≥ S andMod(S′) 6= ∅, thenp dimS′ ≥ p dimS.

Proof. Let P be a projective cover ofS0 as before andP ′ a projective cover ofS′0.
Decompose the radical layers ofP ′ in analogy with the decomposition given forP
above:

J lP ′/J l+1P ′ =
⊕

1≤i≤n

S
s′(i,l)
i ⊕

⊕
1≤i≤n

S
r′(i,l)
i ,

whereS′l =
⊕

1≤i≤n S
s′(i,l)
i . It follows immediately from the definition of the partial

order on sequences of semisimples that, wheneverr(i, l) > 0, there existsl′ ≥ l with
r′(i, l′) > 0. In light of Theorem 3.2, this proves the lemma.

We give two descriptions of the range of values of p dim on the closureMod(S).
For a combinatorial version, we keep the notation of Theorem 3.2 and the proof of
Lemma 3.5: Namely,Sl =

⊕
1≤i≤n S

s(i,l)
i , andP is a projective cover ofS0. From

Mod(S) 6= ∅, one then obtainsJ lP/J l+1P = Sl ⊕
⊕

1≤i≤n S
r(i,l)
i . In our graph-

based description of the values p dimM > p dimS, whereM tracesMod(S), the
exponentss(i, l) take over the role played by ther(i, l) relative to the generic projective
dimension, p dimS: Recall from Theorem 3.2 that, whenever p dimS is nonzero, it is
the maximum of the values 1+ l-deg(c(ei)) ∈ N ∪ {0,∞} which accompany the pairs
(i, l) with r(i, l) > 0. (Note: In view ofS0 = P/JP , the inequalityr(i, l) > 0 entails
l ≥ 1.)

Now, we consider the different candidatesn1, . . . , nv among those elements inN ∪
{0,∞} which have the form

1 + l-deg(c(ej)), l ≥ 1, Sj ⊆ Sl
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and arestrictly larger than p dimS. In other words,

{n1, . . . , nv} = [p dimS + 1 , ∞] ∩ {1 + l-deg(c(ej)) | l ≥ 1, s(j, l) > 0}.

Theorem 3.6.LetS be a semisimple sequence of total dimensiond withMod(S) 6= ∅.
The range of values,

{p dimM | M in Mod(S)},

of the functionp dim on the closure ofMod(S) in Modd, is equal to the following
coinciding sets:

{p dimS′ | S′ ≥ S, Mod(S′) 6= ∅} = {p dimS} ∪ {n1, . . . , nv}.

In general, describing the closure ofMod(S) in Modd(Λ) is an intricate represen-
tation-theoretic task, a fact not reflected by the homology. For instance:• WhenS′ is a
sequence of semisimple modules such thatS′ ≥ S andMod(S′) 6= ∅, the intersection
Mod(S) ∩Mod(S′) may still be empty.• The conditionMod(S) ∩Mod(S′) 6= ∅
does not implyMod(S′) ⊆ Mod(S). See the final discussion of our example for
illustration.

Proof. SetP = {p dimM | M in Mod(S)}. We already know that

P ⊆ {p dimS′ | S′ ≥ S};

indeed, this is immediate from Lemma 3.5 and the remarks preceding it.
Suppose thatS′ is a sequence of semisimple modules withS′ ≥ S andMod(S′) 6=

∅. Assume p dimS′ > p dimS, which, in particular, implies p dimS′ > 0. To show that
p dimS′ equals one of thenk, we adopt the notation used in the proof of Lemma 3.5. By
Theorem 3.2, p dimS′ = 1+ a-deg(c(ei)) for some pair(i, a) with r′(i, a) > 0. Again
invoking Theorem 3.2, we moreover infer thatr(i, a) = 0 from p dimS < p dimS′.
If s(i, a) > 0, we are done, since necessarilya ≥ 1. So let us suppose that also
s(i, a) = 0, meaning thatSi fails to be a summand of thea-th layerJaP/Ja+1P of P .
In light of Si ⊆ JaP ′/Ja+1P ′, this entails the existence of a simpleSj ⊆ S′0/S0 with
the property thatSi ⊆ Jaej/Ja+1ej . Consequently,c(ej) ≥ c(ei) + a. On the other
hand,Sj ⊆

⊕
l≥1 Sl, because the total multiplicities of the simple summands ofS and

S′ coincide. This meanss(j, k) > 0 for somek ≥ 1. In light of S0 ⊕ Sj ⊆ S′0 and⊕
0≤l≤L Sl =

⊕
0≤l≤L S′l, we deduce thatr′(j, b) > 0 for some pair(j, b) with b ≥ 1

ands(j, b) > 0. Another application of Theorem 3.2 thus yields

p dimS′ − 1≥ b-deg(c(ej)) =
[

c(ej)
L + 1

]
+

[
c(ej) + b

L + 1

]
≥

[
c(ei) + a

L + 1

]
+

[
c(ei) + a + b

L + 1

]
≥ a-deg(c(ei)) = p dimS′ − 1.

We conclude that all inequalities along this string are actually equalities, that is,

b-deg(c(ej)) = a-deg(c(ei)).
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This shows that p dimS′ = 1+b-deg(c(ej)) for a pair(j, b) with s(j, b) > 0 as required.
Finally, we verify that each of the numbersnk belongs toP. By definition,nk is of

the form 1+ l-deg(c(ei)) for some pair(i, l) with l ≥ 1 ands(i, l) > 0. LetD be any
direct sum of tree modules withS(D) = S; in light of Mod(S) 6= ∅, such a moduleD
exists by Observation 3.3. Then there is a tree direct summandT of D with a branch
that contains an initial subpathq of length l ending in the vertexei. The direct sum
of tree modulesD′ = (T /Λq) ⊕ Λq ⊕ D/T belongs toMod(S). In fact,D′ is well
known to belong to the closure of the orbit ofD in Modd(Λ); see, e.g., [3, Section
3, Lemma 2]. Therefore p dimD′ ∈ P. As for the value of this projective dimension:
Up to isomorphism,Λq is a direct summand of the syzygy of the tree moduleT /Λq:
indeed,q is σ-critical relative to the obvious skeletonσ of T /Λq consisting of all initial
subpaths of the branches (see Theorem 2.2 and the comments accompanying Definition
2.7). Theorems 2.6 and 3.2 moreover yield

p dimD′ − 1≥ p dimΛq = l-deg(c(ei)) = nk − 1 > p dimS− 1 = p dimD − 1,

whence p dim(T /Λq) = nk = p dimD′. This showsnk to belong toP and completes
the argument.

A final visit to Example 2.4. (a) First, letS = S(Λe1) be the radical layering of the
projective tree moduleT = Λe1. By Theorems 3.2 and 3.6, the values of p dim on
Mod(S) are p dimS = 0, 2, 3, 4,∞. For instance, p dim

(
(T /Λβ3α2β1)⊕ (Λβ3α2β1)

)
equals 2. Note that the value 1, on the other hand, is not attained.
(b) Next we justify the comments following the statement of Theorem 3.6. LetS andS′
be the radical layerings of the modulesM andM ′ with the following graphs, respec-
tively:

9

10
}}} AAA

11 13

12

9 12

10 ⊕ 13

11

ThenS′ ≥ S, while Mod(S) ∩Mod(S′) = ∅.
On the other hand, ifS := S(N), S′ := S(N ′), andS′′ := S(N ′′) whereN , N ′, and

N ′′ are given by the graphs

10
@@@

11 13

12

10
@@@ ⊕

12

11 13

10
⊕

12

11 13

thenS′ = S′′ ≥ S, and the intersectionMod(S) ∩Mod(S′) containsN ′, but notN ′′.
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