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Abstract

Let Λ be a finite dimensional left serial algebra over an algebraically closed field
K. In this case, Burgess and Zimmermann Huisgen have shown that P<∞, the
full subcategory of Λ-mod consisting of the finitely generated Λ-modules of finite
projective dimension, is contravariantly finite in Λ-mod. Moreover, they show that
the minimal right P<∞-approximations of the simple Λ-modules can be obtained
by glueing together uniserials to form modules known as saguaros, and they state
without proof an algorithm for constructing these approximations. We will review
this algorithm and then demonstrate how a new notion of graphical morphisms
between saguaros can be used to prove it.
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1 Introduction

In this article we focus on finite dimensional left serial algebras over a field K,
that is, algebras for which each indecomposable projective left module is unis-
erial. While representations of such algebras can be quite complex structurally,
they provide interesting and relatively accessible examples of nontrivial homo-
logical phenomena. In [7], Zimmermann Huisgen shows that the left finitistic
dimension of any left serial algebra Λ is finite (see also [6]). In fact, as any
syzygy is shown to be isomorphic to a direct sum of uniserial modules (of
which there are only finitely many up to isomorphism), the finitistic dimen-
sion is simply one greater than the largest finite projective dimension of a
uniserial left Λ-module (except, of course, when fin.dim Λ = 0). While this
proof yields a fairly straightforward way of calculating the finitistic dimension
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in this case, it provides little information about the structure of Λ-modules of
finite projective dimension. Further steps in this direction are explored in [4],
where Burgess and Zimmermann Huisgen show that, over a left serial algebra
Λ, the subcategory P<∞ of all finitely generated Λ-modules of finite projective
dimension is contravariantly finite in Λ-mod. In this case, a well-known result
of Auslander and Reiten states that the minimal right P<∞-approximations
of the simple Λ-modules form a finite set of “building blocks” for all modules
in P<∞, and it follows easily that fin.dim Λ can be computed as the supre-
mum of the projective dimensions of these approximations [2]. It thus becomes
quite desirable to be able to construct the minimal P<∞-approximations of
the simple modules. In [4], it is shown that they can be obtained by “glueing”
together uniserial modules along isomorphic submodules, and this structural
description is achieved through a more general study of modules obtained
in this fashion, which are named saguaros after the cactus-shaped diagrams
associated to them.

The goal of this article is to present and prove an algorithm (stated originally in
[4]) for the construction of those saguaros that arise as the minimal right P<∞-
approximations of the simple Λ-modules when Λ is left serial. Not only does
this algorithm yield another method of computing the finitistic dimensions of
left serial algebras, but it also presents a key step towards a completely explicit
structural description of the modules of finite projective dimension over such
algebras. At the same time, in our proof we encounter a new tool for studying
morphisms between modules which have diagrams in the sense of [1] or [5].

2 Review of Saguaros

Throughout this article Λ shall denote a basic, finite dimensional left serial
algebra over an algebraically closed field K. Furthermore, we fix a presentation
of Λ as the path algebra of a finite quiver Γ modulo an admissible ideal I of
relations. The condition that Λ is left serial is equivalent to the condition that
no vertex of Γ is the source of more than one arrow. It follows easily from
this property of Γ that the ideal I is generated by paths, and hence Λ is a
monomial relation algebra.

Our notation shall closely follow that of [4], and we refer the reader to [3]
for general facts and terminology from representation theory. As in [4], we
fix a normed K-basis for Λ as follows. Let Bi consist of the paths of length
i in Γ that are not contained in I. We shall always identify such paths with
their images in Λ = KΓ/I. Note that, in particular, B0 is a set of orthogonal
primitive idempotents in Λ with sum 1, corresponding to the vertices of Γ.
The set B = ∪i≥0Bi is a K-basis for Λ, while B∗ = ∪i≥1Bi is a K-basis for
J = rad Λ. Moreover, these bases are normed in the sense that any element
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α ∈ B is equal to eα for a unique primitive idempotent e ∈ B0. In this case,
we also say that α is normed by e. We may now give the precise definition of
saguaros as in [4].

Definition 2.1 Let T1, . . . , Tm be nonzero uniserial Λ-modules. A Λ-module
T is a saguaro on (T1, . . . , Tm), relative to the K-basis B, if

(i) T ∼= (⊕m
i=1Ti)/

∑m−1
i=1 Λ(biti− citi+1), where for each i, ti ∈ Ti is a genera-

tor normed by some primitive idempotent in B0, and bi, ci ∈ B∗ are such
that biti 6= 0 and citi+1 6= 0; and

(ii) each Tj embeds canonically in T via the composite of natural maps

Tj → ⊕m
i=1Ti → T.

Suppose that T is a saguaro on (T1, . . . , Tm). The uniserial modules Ti will be
called the trunks of T , and the canonical image of Ti in T will be denoted T̂i.
If Ti = Λti for ti as in the definition, we shall write t̂i for the image of ti in T ,
and we refer to the sequence t̂1, . . . , t̂m as a canonical sequence of top elements
for T . (Notice that there is nothing present in these definitions which requires
Λ to be left serial. The reader may find a completely general development of
saguaros in [4]).

Saguaros can be conveniently visualized with the help of labeled and layered
graphs akin to those studied by Alperin [1] and Fuller [5]. We give one example
here and refer the reader to [4] for precise definitions and more examples. We
point out that such a graph for the saguaro T does in general depend on the
choice of a canonical sequence of top elements. For our example, let Λ be the
left serial algebra with quiver
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The following graphs represent two distinct saguaros with the projective mod-
ules Λe1, Λe3 and Λe2 as trunks.
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The existence of these graphical presentations of saguaros makes it quite easy
to visualize their structures. In particular, the numbers (nodes) in these graphs
represent the isomorphism types of the simple composition factors of the as-
sociated modules, while the rows illustrate the Loewy layers of these modules.
However, given graphs of two saguaros X and Y , the morphisms from X to
Y cannot be visualized so easily. This observation motivates us to introduce
the following notions for morphisms between saguaros.

Definition 2.2 Let X and Y be saguaros with fixed sequences of top elements
{x̂i}n

i=1 and {ŷj}m
j=1 respectively. We call a morphism f : X → Y graphical

(with respect to the given sequences of top elements) if for each i there exists
an index ji and a path ai ∈ B such that f(x̂i) = aiŷji

. If, in addition, f is a
monomorphism, we shall refer to it as a graphical embedding.

Of course, this definition makes sense for any morphism between modules ad-
mitting graphs in the above sense. In fact, graphical morphisms may be viewed
as those morphisms induced, in the natural way, by the homomorphisms of di-
agrams considered by Fuller [5]. Notice, however, that the definition—since it
deals with modules rather than diagrams—depends heavily upon the selected
sequences of top elements for the two saguaros. A morphism f may very well
be graphical with respect to one choice of a canonical sequence of top elements,
but not with respect to another. Furthermore, as the following example illus-
trates, there exist maps between saguaros that are not graphical with respect
to any sequences of top elements. If Λ is the algebra introduced in the above
example, let X = Λe3 and let Y be the saguaro illustrated above on the left.
We can define f : X → Y by sending the top element x̂1 ∈ X to αŷ1 + ŷ2 ∈ Y
where ŷ1, ŷ2, ŷ3 are the top elements of Y yielding the above graph. In order
to make f into a graphical morphism, we would need to choose ŷ1, αŷ1 + ŷ2, ŷ3

as our sequence of top elements for Y . However, one easily checks that Y is
not a saguaro with respect to this sequence of top elements.

Nevertheless, graphical maps are convenient for they respect the structure
depicted in the graphs of saguaros. In particular, if f : X → Y is a graphical
embedding, it identifies the graph of X with a subgraph of the graph of Y
(where everything is with respect to the same fixed canonical sequences of
top elements {x̂i}n

i=1 for X and {ŷj}m
j=1 for Y ). Furthermore, if we identify X

with its image in Y , then the quotient Y/X is a finite direct sum of saguaros
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with canonical sequences of top elements given by the nonzero residue classes
of the ŷj, and the graphs for these saguaros are obtained by removing the
(sub)graph of X from the graph of Y . Another important fact we shall use is
that a composite of graphical maps is again graphical.

We call a saguaro T reduced if it has simple socle. By Observation 3.8 in [4],
over left serial algebras this condition admits the following simple graphical
characterization: T is reduced if and only if, in its graph, no two edges entering
a given node from above have the same label. For example, a quick glance at
the graphs of saguaros pictured above now reveals that the one on the left is
reduced, whereas the one on the right is not. Also of key importance is the fact
that over a left serial algebra there are only finitely many isomorphism classes
of reduced saguaros ([4], Theorem 5.1). Finally, for the reader’s convenience,
we conclude this section with a summary of the main result of [4], establishing
the contravariant finiteness of P<∞ in Λ-mod.

Theorem 2.3 (cf. [4], Theorems 5.2 and 5.3) If Λ is a finite dimensional
left serial algebra over an algebraically closed field K, then minimal right
P<∞-approximations of the simple left Λ-modules exist, and they are reduced
saguaros. Moreover, if S = Λe/Je is a simple Λ-module with e ∈ B0, and
C ⊆ Je is chosen to have maximal length such that T∗ := Λe/C ∈ P<∞, then
let T be any saguaro of maximal K-dimension among all reduced saguaros
in P<∞having T∗ as a trunk. If T∗ = Tj is the jth trunk of T , a minimal
P<∞-approximation of S is given by the morphism f : T → S that sends
t̂j to e + Je ∈ S and t̂i to 0 for all i 6= j. In particular, T is unique up to
isomorphism.

3 The Algorithm

We begin by giving an informal visual summary of Algorithm 7.1 of [4], and
then we proceed to reformulate the algorithm more rigorously. We fix a simple
Λ-module S = Λe/Je, where e ∈ B0 is a primitive idempotent and J = rad Λ.
Let g : U → S be the minimal P<∞-approximation of S as described in
Theorem 2.3 above. We shall use T to denote the final output of the algorithm
described below. Our goal will then be to show that T ∼= U .

The first step of the algorithm is to find C ⊆ Je of maximal length such that
T∗ = Λe/C ∈ P<∞, for we know by Theorem 2.3 that the uniserial module
T∗ must be a trunk of U . Then T (1) = T∗ represents our first approximation
of U . The next step is to attach another trunk T2 to the highest possible
node of JT∗ such that the resulting saguaro is reduced and of finite projective
dimension. If there are multiple trunks that can be attached in this way, we
choose one yielding a “branch” of maximal length in the new saguaro T (2). If,
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on the other hand, no trunk T2 can be attached to give a reduced saguaro of
finite projective dimension, the algorithm terminates and sets T = T (1).

The next step is to attach a trunk T3 to the highest possible node of JT̂2 ⊆ T (2)

such that the resulting saguaro is reduced and of finite projective dimension.
As before, if there are multiple options for T3 we choose one yielding a branch
of maximal length. The algorithm continues in this manner—at each stage
we attach a new trunk to the highest possible node of the last trunk in the
same way as described above—until we get a saguaro T (n) to which no trunk
can be attached in this way to obtain a reduced saguaro of finite projective
dimension. At this stage, the algorithm terminates and sets T = T (n).

Before stating the algorithm more precisely, we review the process of attaching
trunks to a saguaro. For a saguaro T on trunks (T1, . . . , Tn), we introduce a
set A(T ) whose elements will correspond to the different ways of attaching
a trunk to T along the last trunk Tn. Without loss of generality, we may
assume T = (⊕n

i=1Ti)/
∑n−1

i=1 Λ(biti − citi+1) with notation as in the definition
of saguaros. Now define

A(T ) = {(b, c) ∈ (B∗)2 | btn 6= 0, ann`(c) ⊆ ann`(btn)}.

Lemma 3.1 Let T be a saguaro on (T1, . . . , Tn) and suppose (b, c) ∈ A(T ).
Then

(a) The elements b and c of B∗ are normed on the left by the same primitive
idempotent e′ ∈ B0.

(b) If T ′ = Λe′′/ann`(btn)c = Λt′, where ce′′ = c for e′′ ∈ B0, then ann`(ct
′) =

ann`(btn).

Thus T (b, c) := (T ⊕T ′)/Λ(bt̂n− ct′) is a saguaro with trunks (T1, . . . , Tn, T
′).

Proof. For (a), suppose e′c = c and e′′b = b for primitive idempotents e′, e′′ ∈
B0. Then 1 − e′ ∈ ann`(c) ⊆ ann`(btn), and e′btn = btn 6= 0. Since e′b would
be zero if e′ was different from e′′, we must have e′ = e′′. For (b), notice that
ann`(ct

′) = {λ ∈ Λ | λc ∈ ann`(btn)c}, which certainly contains ann`(btn).
Meanwhile, if λc = rc for some r ∈ ann`(btn), then λ−r ∈ ann`(c) ⊆ ann`(btn),
and hence λ ∈ ann`(btn).

To check that T (b, c) is a saguaro on the given trunks it suffices to observe that
the canonical maps from Tn and T ′ to T (b, c) are injective. But this follows
from part (b). 2

Remark. The saguaro T (b, c) may also be defined by the short exact sequence

0 → Λc
φ−→ T ⊕ Λe′′ −→ T (b, c) → 0,
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where φ(c) = (bt̂n, c). In particular, this shows that if pdim T < ∞, then
pdim T (b, c) is finite if and only if pdim Λc is finite.

Algorithm 3.2

Step 1. Find T∗ = Λe/C where C ⊆ Je has maximal length such that T∗ ∈
P<∞. That is, T∗ is chosen to be the smallest nonzero quotient of Λe which
has finite projective dimension. Set T1 = T∗ = Λt1 where t1 is the residue class
of e in T1.

Inductive Step. Let T (n) denote the intermediate saguaro obtained after n
steps. Then T (n) will have n trunks T1, . . . , Tn, and it will be of the form

T (n) =
n⊕

i=1

Ti /
n−1∑
i=1

Λ(biti − citi+1).

We want to attach a trunk to the highest possible node of JT̂n ⊂ T (n) such
that the resulting saguaro is still reduced and of finite projective dimension.
In order to describe how this will be done, we define the set

A∗
n = {(b, c) ∈ A(T (n)) | pdim Λc < ∞, and T (b, c) is reduced}.

If A∗
n is empty, then the algorithm terminates and sets T = T (n). Otherwise,

we pick a pair (bn, cn) ∈ A∗
n such that the length of bn is minimal, and such

that the length of cn is then maximal for this choice of bn. We now define
T (n+1) = T (bn, cn), renaming the new trunk T ′ as Tn+1 and its generator t′ as
tn+1.

It is clear by construction that all the intermediate saguaros encountered in
this algorithm are reduced. As a result, the fact that there are only finitely
many nonisomorphic reduced saguaros implies that the algorithm always ter-
minates. Moreover, the condition pdim(Λc) < ∞, together with the choice of
T1, ensures that all the intermediate saguaros have finite projective dimen-
sion by the remark that precedes the algorithm. We also point out that the
algorithm must terminate with T (n) in case T (n) ∼= U , since it follows from
Theorem 2.3 that the length of U is at least as large as the length of any inter-
mediate saguaro. Thus the above algorithm always yields a reduced saguaro
T of finite projective dimension, and it remains only to verify that this T is
isomorphic to the minimal right P<∞-approximation U of S. Our strategy will
be to show that if the intermediate saguaro T (n) is not isomorphic to U , then
the algorithm does not terminate at this stage.
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4 Constructing Graphical Maps

Continuing the notation of the last section, the saguaro T = T (n), with which
the algorithm terminates, maps to S via the trunk T∗. If we label this map
f , we have f(t̂1) = e + Je ∈ S and f(t̂i) = 0 for i = 2, . . . , n. Since T has
finite projective dimension, f must factor through the minimal right P<∞-
approximation g : U → S. The principal step in our proof of the algorithm
is to show that the induced map from T to U can be replaced with a graph-
ical embedding. We will then show that A∗

n = ∅ implies that this graphical
embedding must be an isomorphism.

We begin by stating a slight generalization of a result proven in the verifi-
cation of Claim 2 of the proof of Theorem 5.3 of [4]. First, notice that, by
construction, the trunk T∗ has the property that all of its proper, nonzero
quotients (and hence also all of its proper, nonzero submodules) have infinite
projective dimensions, whereas T∗ itself has finite projective dimension. We
shall henceforth call any module with this property P<∞-minimal. Using this
terminology we have the following.

Proposition 4.1 (cf. [4]) Suppose X is a saguaro of finite projective dimen-
sion which contains a P<∞-minimal trunk Xi. If X is not reduced then X has
a simple submodule with finite projective dimension. Moreover, this submodule
must have the form Λ(ajx̂j − akx̂k) ∼= Λe′/Je′ where X̂j ∩ X̂k = Λαajx̂j =
Λαakx̂k for some aj, ak ∈ B and some arrow α, and where e′ ∈ B0 is the
primitive idempotent corresponding to the tail of α.

We now begin our construction of a graphical embedding in a slightly more
general context than necessary, but the reader is invited to replace X and Y
with T and U respectively. We recall that the amalgam X ∨ Y [X∗] of two
saguaros X and Y along a common trunk X∗ is defined as the pushout of the
canonical inclusions X∗ → X and X∗ → Y . Equivalently, it can be defined by
the short exact sequence

0 → X∗ −→ X ⊕ Y −→ X ∨ Y [X∗] → 0,

where the first map is induced by the canonical inclusions mentioned above.

Proposition 4.2 Let X and Y be two (nonsimple) reduced saguaros of finite
projective dimension which have a common P<∞-minimal trunk X∗. Let V =
X∨Y [X∗] be their amalgam along this trunk. Then V has a quotient W which
is a reduced saguaro of finite projective dimension with trunk X∗, and in which
both X and Y embed graphically via the composites of the inclusions into V
with the projection of V onto W .

Proof. Let W be any quotient of V of minimal length among all quotients V ′
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of V satisfying the following properties:

(1) V ′ is a saguaro of finite projective dimension;
(2) the natural map V → V ′ is graphical;
(3) V ′ has a trunk isomorphic to X∗;
(4) the composites X → V → V ′ and Y → V → V ′ are injective.

Notice that we can always find such a W , since V itself satisfies these four
properties and V has finite length. Furthermore, it follows immediately from
(2) and (4), along with the fact that composites of graphical maps are graphi-
cal, that the composites in (4) are graphical embeddings. Thus, all it remains
to show is that W is reduced.

We suppose, to the contrary, that W is not reduced. Then, by Proposition
4.1, W has a simple submodule N of finite projective dimension. Moreover
N = Λ(ajŵj − akŵk) ∼= Λe′/Je′ where Ŵj ∩ Ŵk = Λαajŵj = Λαakŵk with
notation as in Proposition 4.1. After a reordering of the trunks of W (by
Observation 3.6 of [4]) so that k = j + 1, factoring out this simple submodule
gives a new saguaro W ′ whose graph can be obtained from the graph of W by
simply identifying the two edges labeled α (see the figure on page 87 of [4]).
We now verify that W ′ also satisfies the four properties listed above, thereby
contradicting the minimality of W .

(1) We have already seen that W ′ is a saguaro. Since both W and N have
finite projective dimensions, so does W ′ ∼= W/N .

(2) The images in W ′ of the top elements ŵi of W are still top elements,
with the possible exception of ŵj or ŵj+1. Moreover, one of the images
of ŵj and ŵj+1 can only fail to be a top element for W ′ if exactly one of
aj, aj+1 is in B0. However, in this case the images of ŵj and ŵj+1 will be
a top element ŵ′ of V ′ and an element of the form aŵ′ for a path a ∈ B∗.
In particular, the natural map W → W ′ is graphical, and thus so is the
composite V → W → W ′.

(3) Since X∗ is P<∞-minimal, soc X∗ cannot have finite projective dimension.
Thus soc X∗, and hence X∗, intersects N trivially in W , and it follows
that the image of X∗ in W ′ is a submodule isomorphic to X∗. The only
way this image could fail to be a trunk of W ′ is if the top element ŵi ∈ W
generating the trunk Ŵi

∼= X∗ happens to be ŵj or ŵj+1 and ai = e′ ∈ B0,
by the above remarks. However, if this were the case, we would have
N ∼= Λe′/Je′ ∼= X∗/JX∗, which contradicts the P<∞-minimality of X∗.

(4) The composite X → V → W → W ′ is injective since (by the argument
in (3)) its restriction to X̂∗ ⊆ X is injective, and the trunk X̂∗ contains
soc X. The same statement for Y is proved similarly.

Thus, as the existence of W ′ contradicts the minimality of W , W is in fact
reduced as required. 2

9



Now consider the minimal right P<∞-approximation U
g→ S. We know that

U is a reduced saguaro with a trunk Ui isomorphic to the uniserial module T∗
appearing in the algorithm. Furthermore, the map g is determined by g(ûi) =
e + Je ∈ Λe/Je and g(ûj) = 0 for all j 6= i. Thus, if we apply the above
proposition with U in place of Y and T∗ in place of X∗, we obtain a reduced
saguaro W ∈ P<∞ and a graphical embedding h : U ↪→ W with the property
that h(ûi) is a top element of W generating a trunk isomorphic to T∗. However,
this implies that g factors through a map W → S which sends h(ûi) to e+Je
and all other members of the canonical sequence of top elements of W to zero.
By the uniqueness of minimal right P<∞-approximations, h : U → W must
be an isomorphism. Thus we obtain the following corollary.

Corollary 4.3 Let X be a reduced saguaro of finite projective dimension with
a trunk Xi

∼= T∗, and let U be as above. Then X admits a graphical embedding
into U (with respect to any fixed choice of canonical sequences of top elements
for X and U).

We can now prove the validity of Algorithm 3.2.

Theorem 4.4 If the saguaro T (n) obtained in the nth stage of Algorithm 3.2
is not isomorphic to the minimal right P<∞-approximation U of the simple
module S, then the set A∗

n is nonempty and the algorithm does not terminate.
In particular, the final output T of the algorithm is isomorphic to U .

Proof. Clearly, it suffices to prove the first statement. Thus, suppose that
T = T (n) is not isomorphic to U . Since T is a reduced saguaro in P<∞ with a
trunk T1

∼= T∗, the preceding corollary gives a graphical embedding h : T ↪→ U .
Since U, T ∈ P<∞, and h is a graphical embedding but not an isomorphism,
coker h is a nonzero direct sum of saguaros of finite projective dimensions.
Moreover, coker h has a canonical sequence of top elements consisting of the
nonzero residue classes ûi + T (we henceforth identify T with its image in U).
By Observation 3.10 of [4], there exists some ûi /∈ T such that Λ(ûi+T ) ⊆ U/T
has finite projective dimension. Now

Λûi + T

T
∼=

Λûi

T ∩ Λûi

∼= Λ(ûi + T ) ∈ P<∞.

Since T also belongs to P<∞, it follows that Λûi + T ∈ P<∞. But clearly the
latter is a saguaro, as it is just the submodule of U generated by T and Λûi,
and it is reduced since U is.

It simply remains to show that this saguaro U ′ := Λûi+T can be obtained from
T by attaching a trunk as in the algorithm, i.e., that it is isomorphic to some
T (b, c) with (b, c) ∈ A∗

n. Clearly it can be obtained from T by attaching the
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trunk Λûi, but we must verify that Λûi can be attached to T along the trunk
T̂n. Graphically, we have three possibilities to consider, which we depict below.
The following graphs do not show every trunk and node of the corresponding
saguaros; rather, their purpose is to illustrate the different ways in which the
trunk Ûi := Λûi might intersect T .

•
Ûi
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Ûi








•

T̂j+1


























•

•
· · ·

•

•
T̂1

· · ·

11
11

11
11

11
11

11
•
T̂n •

Ûi
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However, according to the algorithm, the first two diagrams cannot occur. The
first would contradict the choice of a longest branch in the jth stage of the
algorithm, while the second would contradict the choice of the highest node
at which to attach the (j + 1)th trunk. In either case, the saguaro T (j) + Λûi

has finite projective dimension since it is an extension of Λ(ûi + T ) by T (j),
and it is clearly reduced since it is a submodule of U . To be more precise, the
index j encountered above is determined, without any reference to graphs, as
the largest index for which T ∩ Λûi = T̂j ∩ Λûi. Moreover, we can now check
algebraically that T (j) + Λûi has finite projective dimension, for

T (j) + Λûi

T (j)
∼=

Λûi

T (j) ∩ Λûi

∼=
Λûi

T̂j ∩ Λûi

∼=
Λûi

T ∩ Λûi

∈ P<∞.

Therefore, U ′ must resemble the third diagram above, that is, Λûi∩T = Λûi∩
T̂n. Hence, we may choose b, c ∈ B such that T∩Λûi = T̂n∩Λûi = Λcûi = Λbt̂n.
Clearly, our choice of b and c satisfies ann`(c) ⊆ ann`(cûi) = ann`(bt̂n). The
maximal choice of cn−1 in the algorithmic construction of T assures us that b
has positive length as an element of B, while the fact that ûi /∈ T guarantees
c has positive length as well. Hence, T + Λûi

∼= T (b, c) and since this module
is a reduced saguaro in P<∞, A∗

n is nonempty, as required, and the algorithm
does not halt at this stage. 2

11



Acknowledgements

I would like to thank Professor Huisgen Zimmermann for introducing me to
this problem, and also for her many helpful comments on a preliminary version
of this paper.

References

[1] J. L. Alperin. Diagrams for modules. J. Pure Appl. Algebra 16 (1980), 111-119.

[2] M. Auslander and I. Reiten. Applications of contravariantly finite subcategories.
Adv. in Math. 86 (1991), 111-152.

[3] M. Auslander, I. Reiten, S. Smalo. Representation theory of Artin algebras.
Cambridge Studies in Advanced Mathematics 36, Cambridge Univ. Press, 1995.

[4] W. D. Burgess and B. Zimmermann Huisgen. Approximating modules by
modules of finite projective dimension. J. Algebra 178 (1995), 48-91.

[5] K. R. Fuller. Algebras from diagrams. J. Pure Appl. Algebra 48 (1987), 23-37.

[6] K. R. Fuller and M. Saoŕın. On the finitistic dimension conjecture for Artinian
rings. Manuscripta Math. 74 (1992), 117-132.

[7] B. Zimmermann Huisgen. Syzygies and homological dimensions over left serial
rings. Methods in module theory (Colorado Springs, CO, 1991), 161-174,
Lecture Notes in Pure and Appl. Math., Vol. 140, Dekker, New York, 1992.

12


