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Abstract. Over an Artin algebra Λ many standard concepts from homological algebra

can be relativized with respect to a contravariantly finite subcategory C of mod-Λ, which

contains the projective modules. The main aim of this article is to prove that the
resulting relative homological dimensions of modules are preserved by stable equivalences

between Artin algebras. As a corollary, we see that Auslander’s notion of representation

dimension is invariant under stable equivalence (a result recently obtained independently
by Guo). We then apply these results to the syzygy functor for self-injective algebras of

representation dimension three, where we bound the number of simple modules in terms

of the number of indecomposable nonprojective summands of an Auslander generator.

1. Introduction and Notation

It has long been of interest to determine to what extent various natural invariants of
Artin algebras are preserved by stable equivalences. Of particular importance are homo-
logical invariants, and especially those defined in terms of projective modules. Yet, even
the simplest examples of stable equivalence (for instance, between radical square zero and
hereditary algebras) already show that global and projective dimensions are not stable in-
variants. Nevertheless, it is established in [10] that projective dimensions of modules are
preserved by stable equivalences between algebras without nodes. Our main result extends
this fact to relative homological dimensions, defined with respect to contravariantly finite
subcategories. In §3 we show that, given a stable equivalence α between algebras Λ and
Λ′ without nodes, the relative projective dimension of X with respect to a contravariantly
finite subcategory C containing proj-Λ equals the relative projective dimension of αX with
respect to a corresponding contravariantly finite subcategory of mod-Λ′. Next we look to
stable equivalences given by separations of nodes, as defined in [9]. In this case we are able
to prove analogous results, provided that the contravariantly finite subcategory C contains
the nodes that are being separated. In particular, we obtain some insight into what is
behind the failure of certain stable equivalences to preserve projective dimension. Further-
more, in both situations we obtain generalizations of the well-known result from [3] and [10]
that stable equivalences commute with the syzygy operator on modules, showing that they
commute with suitable relative syzygy operators as well.

One particularly nice consequence of these results is that Auslander’s notion of represen-
tation dimension for Artin algebras [1] is invariant under stable equivalence. Our proof of
this fact, presented in §3 and §4, makes use of a well-known relative homological character-
ization of representation dimension. This result, recently proven independently by Guo [7],
as well as by Reiten and Saorin for self-injective algebras (unpublished), was the original
motivation behind this article. Naturally, there are some similarities at the core of certain
proofs, but the presentation here is substantially different, and we show that a wealth of
relative homological information is preserved by stable equivalences for the same reasons
that representation dimension is.
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In the fifth section, our intention is to show how such relative homological invariants
may be related to the number of nonprojective simple Λ-modules. The case where Λ is a
self-injective algebra of representation dimension three turns out to be especially conducive
to our methods. In particular, applying our results to the syzygy functor in this case, we
are able to improve upon a result of Rouquier [12] relating the number of simple Λ-modules
to the number of nonprojective indecomposable summands of an Auslander generator for
Λ. As we shall see, the minimal number of nonprojective indecomposable summands of
an Auslander generator is invariant under stable equivalence, and hence it is desirable to
understand any relation that may exist between this number and the number of simple
Λ-modules. Persuing these ideas we are led to some interesting structural restrictions on
algebras having Auslander generators with additional properties. In our final section, we
apply such results to help construct a specific Auslander generator over a self-injective special
biserial algebra. In fact, we hereby see how these results also provide some useful information
about the make-up of Auslander generators for algebras of representation dimension three.

Throughout this article, R will be a commutative Artinian ring, and Λ and Λ′ will
denote a pair of stably equivalent, basic Artin R-algebras with no semisimple blocks. We
shall denote by mod-Λ the category of finitely generated right Λ-modules, by mod-Λ the
stable module category, and by modPΛ the full subcategory of mod-Λ consisting of modules
with no projective direct summands. If α : mod-Λ → mod-Λ′ is an equivalence, we shall
also use α to denote the induced map mod-Λ → mod-Λ′ which takes projectives to zero.
Furthermore, we shall write α : mod(mod-Λ) → mod(mod-Λ′) for the induced equivalence of
functor categories as in [2] or [3], where mod(mod-Λ) denotes the abelian category consisting
of finitely presented, contravariant, additive functors from mod-Λ to the category of abelian
groups, which vanish on Λ. We shall abbreviate the groups HomΛ(A,B) as (A,B) when
there is no ambiguity regarding the ring Λ. We denote the morphism sets in mod-Λ by
HomΛ(A,B), which we sometimes abbreviate as (A,B). If f ∈ (A,B), f will denote the
image of f in HomΛ(A,B). Finally, all functors will be assumed to be additive and R-
linear, and all subcategories will be assumed to be full, additive R-subcategories, closed
under isomorphisms and direct summands, unless noted otherwise.

2. Stable Equivalence and Exact Sequences

We begin by studying the effect of a stable equivalence α on short exact sequences. Much
of these ideas originated in the work of Auslander and Reiten in [3] and were later extended
by Mart́ınez Villa in [10]. The proof of our main result relies heavily on Theorem 1.7 from
[10], which includes the assumption that the algebras have no nodes (see §4 for the definition
of a node). Hence, throughout this section and the next we shall assume that Λ and Λ′ have
no nodes, unless stated otherwise. We then consider stable equivalences between algebras
with nodes in §4. Before stating Mart́ınez Villa’s theorem, we quickly recall one other result
from the same paper.

Proposition 2.1. Let P be an indecomposable, noninjective projective Λ-module. Then
αExt1Λ(−, P ) ∼= Ext1Λ′(−, P ′) for some indecomposable, noninjective projective Λ′-module
P ′.

Following [10] we shall denote the Λ′-module P ′ by α′P , and we extend α′ additively to
all projective modules with no injective summands. In fact, α′ gives a bijection between
the indecomposable noninjective projective modules over Λ and Λ′. Finally, recall that a
short exact sequence is said to be minimal if it contains no nonzero split exact sequence as
a direct summand.
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Theorem 2.2 (Mart́ınez Villa [10]). Let α : mod-Λ → mod-Λ′ be a stable equivalence
between two algebras with no nodes and no semisimple blocks. Let

0 → A⊕Q1
f−→ B ⊕ P ⊕Q2

g−→ C → 0

be a minimal short exact sequence in mod-Λ where A,B,C ∈ modPΛ, Q1, Q2 are projective
modules with no injective summand, and P is projective and injective. Then there exists a
minimal short exact sequence

0 → αA⊕ α′Q1
u−→ αB ⊕ α′Q2 ⊕ P ′ v−→ αC → 0

in mod-Λ′ with P ′ projective injective, and v = αg.

We now proceed to develop a couple of useful corollaries to the above theorem. To begin
with, we show that we can basically drop the minimality conditions.

Corollary 2.3. Let all notation and hypotheses be as in the previous theorem, except we do
not assume that the given short exact sequence of Λ-modules is minimal. Then there exists
a (not necessarily minimal) short exact sequence of Λ′-modules as in the theorem.

Proof. If the given short exact sequence is not minimal we may write it as the direct sum of
a minimal short exact sequence and a split short exact sequence which, up to isomorphism,
has the form 0 → A′ −→ A′⊕C ′ −→ C ′ → 0 where A′ and C ′ are summands of A⊕Q1 and
C respectively. Applying the theorem to the minimal sequence yields a minimal sequence
over Λ′. Meanwhile, since A ⊕Q1 and C have no projective injective summands, applying
α and α′ directly to the split sequence will yield a split exact sequence over Λ′. The addi-
tivity of α and α′ clearly implies that the direct sum of these two short exact sequences of
Λ′-modules has all the desired properties. �

Next, turning our attention to long exact sequences, we obtain the following corollary
by decomposing an exact sequence into short exact sequences, applying the above corollary,
and splicing together the resulting short exact sequences over Λ′.

Corollary 2.4. Suppose

· · · → Ci ⊕ Pi ⊕Qi
fi−→ Ci+1 ⊕ Pi+1 ⊕Qi+1

fi+1−→ Ci+2 ⊕ Pi+2 ⊕Qi+2 → · · ·

is an exact sequence of Λ-modules such that for each i, Ci belongs to modPΛ, Pi is projective
injective, Qi is projective with no injective summands, and ker fi has no projective injective
summands. Then there exists an exact sequence of Λ′-modules

· · · → αCi ⊕ P ′
i ⊕ α′Qi

f ′i−→ αCi+1 ⊕ P ′
i+1 ⊕ α′Qi+1

f ′i+1−→ αCi+2 ⊕ P ′
i+2 ⊕ α′Qi+2 → · · ·

such that for each i, P ′
i is projective injective, and ker f ′i contains no projective injective

summands. Moreover, the ith term of this sequence may be taken to be zero whenever the
ith term of the given sequence is zero.

Proof. Let ker fi = Ki⊕Q′
i for Ki ∈ modPΛ and Q′

i projective with no injective summands.
Then, for each i, we have a short exact sequence

0 → Ki ⊕Q′
i −→ Ci ⊕ Pi ⊕Qi −→ Ki+1 ⊕Q′

i+1 → 0,

which, since Q′
i+1 is projective, contains a sequence isomorphic to 0 → 0 −→ Q′

i+1
Id−→

Q′
i+1 → 0 as a direct summand. Applying the previous corollary to the complement to this
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sequence, and taking the direct sum of the result with 0 → 0 −→ α′Q′
i+1

Id−→ α′Q′
i+1 → 0

now yields the short exact sequence

0 → αKi ⊕ α′Q′
i −→ αCi ⊕ P ′

i ⊕ α′Qi −→ αKi+1 ⊕ α′Q′
i+1 → 0.

Finally, splicing these together produces a long exact sequence in mod-Λ′ of the desired
form. �

Remark. Notice that, up to homotopy, any exact sequence of Λ-modules is isomorphic to
one of the above form. For, any projective injective direct summand P of ker fi must split
off as a summand of both Pi and Pi+1 and hence the given exact sequence has as a summand
the null-homotopic sequence

· · · → 0 → P
Id−→ P → 0 → · · ·

where the P ’s lie in degrees i and i + 1.

3. Relative Homological Algebra and Representation Dimension

For motivation, we begin by reviewing Auslander’s notion of representation dimension of
an algebra. We shall define the representation dimension of Λ as

rep.dim Λ = inf{gl.dim EndΛ(M) | M is a generator-cogenerator for Λ},

which differs from Auslander’s original definition only for semisimple algebras. Any generator-
cogenerator M for which this infimum is attained is called an Auslander generator. As long
as Λ is not semisimple, the representation dimension of Λ admits the following relative ho-
mological characterization. Namely, rep.dim Λ ≤ n (n ≥ 2) if and only if there exists a
generator-cogenerator M such that for every indecomposable Λ-module X there exists an
exact sequence

(3.1) 0 → Mn−2
fn−2−→ Mn−3 → · · · → M0

f0−→ X → 0

with each Mi ∈ add(M) and with the property that the induced sequence

(3.2) 0 → (M,Mn−2)
(M,fn−2)−→ · · · → (M,M0)

(M,f0)−→ (M,X) → 0

is also exact. It is easily seen that this condition, for any generator-cogenerator M , is
equivalent to its own dual, as well as to gl.dim EndΛ(M) ≤ n (see [1] or [6] for details).

In view of (3.2), the sequence (3.1) is a relative add(M)-resolution for X. More generally,
we can replace add(M) with a fixed contravariantly finite subcategory C of mod-Λ which
contains proj- Λ. We will henceforth refer to a subcategory containing proj- Λ as a generator
subcategory. (Of course, we could obtain dual results by considering covariantly finite
cogenerator subcategories, i.e., containing all the injective Λ-modules, but we leave such
formulations to the reader.) We will later be able to recover results about representation
dimension by specializing to the case C = add(M) for an Auslander generator M , noting
that add(M) is contravariantly finite since it is of finite type.

We now review some important notions from relative homological algebra. Many of the
following ideas appear also in [5], phrased in terms of subfunctors of Ext1Λ(−,−) with enough
projectives. Since C is contravariantly finite, any Λ-module X admits a C-resolution

· · · → C1
f1−→ C0

f0−→ X → 0
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where the induced sequence

· · · → (C,C1)
(C,f1)−→ (C,C0)

(C,f0)−→ (C,X) → 0

is exact for all C ∈ C. To construct such a resolution, start by taking a right C-approximation
f0 : C0 → X of X and continue by taking fi : Ci → ker fi−1 to be a right C-approximation for
each i. Since proj- Λ ⊆ C, each right C-approximation is an epimorphism and the exactness
of the resolution follows. If each fi is taken to be a minimal right C-approximation, we
obtain a minimal C-resolution of X. Since minimal right C-approximations are unique up
to isomorphism, so are minimal C-resolutions, and thus we may define Ωn

CX = ker fn−1 for
n > 0 in a minimal C-resolution of X as above.

Much of the standard theory for projective resolutions can be generalized to this setting.
In particular, a C-resolution of X is unique up to homotopy, and this allows us to define
derived functors of (−, Y ) relative to C. We write Exti

C(X, Y ) = Hi(C∗, Y ) where C∗ denotes
a C-resolution of X. We also obtain a relative version of projective dimension, C-dimension,
defined by C-dim X = inf{n ≥ 0 | Ωn+1

C X = 0}. As with projective dimension, one can
prove the following.

Lemma 3.1. For a Λ-module X, the following are equivalent:
(1) C-dim X ≤ n.
(2) The minimal C-resolution of X has length at most n.
(3) X has a C-resolution

0 → Cn → · · · → C1 −→ C0 −→ X → 0.

(4) Exti
C(X, Y ) = 0 for all i > n and all Λ-modules Y .

When C = add(M) for a generator M , we shall simplify our notation a bit by writing M ,
instead of add(M), wherever we have included C as part of a relativized definition above.
For instance, in the discussion of representation dimension at the beginning of this section,
(3.1) is an M -resolution of X giving M -dim X ≤ n − 2. Thus, for n ≥ 2, rep.dim Λ ≤ n if
and only if there exists a generator-cogenerator M such that M -dim X ≤ n − 2 for every
Λ-module X.

Now let X be an indecomposable nonprojective Λ-module with a minimal C-resolution

· · · → Mr
fr−→ Mr−1 → · · · → M0

f0−→ X → 0.

Since each fi is right minimal, ker fi contains no summands of Mi and hence no projective
injective summands for every i. Thus, Corollary 2.4 yields an exact sequence

(3.3) · · · → Nr
gr−→ Nr−1 → · · · → N0

g0−→ αX → 0.

Let αC denote the full subcategory of mod-Λ′ additively generated by all projective modules
and all modules isomorphic to αC for some nonprojective C ∈ C. Clearly each Ni ∈ αC,
and we wish to show that (3.3) is in fact an αC-resolution of αX. In view of the proof of
Corollary 2.4, it suffices to check that α, in an appropriate sense (see below), takes right
C-approximations to right αC-approximations. We first prove a simple lemma.

Lemma 3.2. Let Λ be any Artin algebra (possibly with nodes), and let g : B → C be an
epimorphism such that (X, g) : (X,B) → (X,C) is surjective for some Λ-module X. Then
(X, g) : (X, B) → (X, C) is also surjective.

Proof. Suppose we have a map s : X → C. Then there exists a map t : X → B such
that gt = s. Thus s − gt : X → C factors through the projective cover π : PC → C, say
s − gt = πu for some map u : X → PC . Clearly π factors through the epimorphism g, so
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we have π = gw for a map w : PC → B. Hence, s = gt + πu = gt + gwu = g(t + wu) and s
factors through g as required. �

Corollary 3.3. For any Artin algebra Λ and any generator subcategory C ⊆ mod-Λ, let
g : C → X be a right C-approximation. If v : αC ⊕P → αX ⊕Q is an epimorphism with P
and Q projective such that v = αg, then v is a right αC-approximation. In particular, if C
is contravariantly finite in mod-Λ then so is αC in mod-Λ′.

Proof. Since C contains the projectives, g must be an epimorphism, and hence for any
C ′ ∈ C, (C ′, g) and (C ′, g) are surjective. Applying α shows that (αC ′, v) is surjective. The
above lemma now implies that (αC ′, v) is surjective. Since (Λ′, v) is clearly surjective too,
v is a right αC-approximation. �

Notice that this corollary applies directly to the situation found in Theorem 2.2, and
it follows immediately that the sequence (3.3) is constructed from short exact sequences
which are right αC-approximations. Hence, it is an αC-resolution. We now summarize these
results in the following theorem.

Theorem 3.4. Let α : mod-Λ → mod-Λ′ be a stable equivalence between two Artin R-
algebras without nodes, let C be a contravariantly finite generator subcategory of mod-Λ,
and let X be an indecomposable, nonprojective Λ-module. Then

(a) If · · · → M ′
1⊕P1⊕Q1

f1−→ M ′
0⊕P0⊕Q0

f0−→ X → 0 is a C-resolution of X with M ′
i

in modPΛ, Qi projective with no injective summands, and Pi projective injective for
each i, then αX has an αC-resolution

· · · → αM ′
1 ⊕ P ′

1 ⊕ α′Q1
g1−→ αM ′

0 ⊕ P ′
0 ⊕ α′Q0

g0−→ αX → 0

where P ′
i is projective injective for each i. Moreover, these two resolutions have

equal lengths.
(b) If ΩCX ∼= Y ⊕ Q for Y ∈ modPΛ and Q projective with no injective summands,

then ΩαC(αX) ∼= αY ⊕ α′Q.
(c) C-dim X = αC-dim αX.

Proof. Part (a) follows from the above arguments, while Corollary 2.4 yields the statement
about the lengths of the resolutions. Part (b) is obvious if X belongs to C, and otherwise it

follows from Theorem 2.2 applied to the minimal short exact sequence 0 → ΩCX −→ C
f−→

X → 0 where f is a minimal right C-approximation, together with Corollary 3.3. Part (c)
is now a simple consequence of the definition of C-dimension. �

Corollary 3.5. If α : mod-Λ → mod-Λ′ is a stable equivalence between two Artin R-algebras
without nodes, then rep.dim Λ = rep.dim Λ′. Moreover, if M = M ′ ⊕ P is an Auslander
generator for Λ with M ′ ∈ modPΛ and P projective, then αM ′⊕Λ′ is an Auslander generator
for Λ′.

Proof. Let C = add(M) and apply part (c) of the above theorem. The only thing that
remains to be checked is that αM ′ ⊕ Λ′ is a cogenerator for Λ′. If I ′ is an indecompos-
able, nonprojective injective Λ′-module, we claim that I ′ ∼= αI for some indecomposable,
nonprojective injective Λ-module I. Since I ∈ add(M ′), we then have I ′ ∈ add(αM ′) and
the result follows. To verify the above claim, suppose I = α−1I ′ is not injective. Then, by
Lemma 3.4 of [3], Ext1Λ′(−, I ′) ∼= αExt1Λ(−, I) 6= 0, contradicting the injectivity of I ′. The
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final statement holds since αC = add(αM ′ ⊕ Λ′). �

Corollary 3.6. If Λ has no nodes, the minimal number of nonprojective indecomposable
summands in an Auslander generator for Λ is an invariant of the stable category mod-Λ.

In light of these results it would be interesting to find an equivalent definition of repre-
sentation dimension solely in terms of the stable category mod-Λ.

4. Separation of Nodes

In this section, we investigate when relative homological dimensions are preserved by
stable equivalences given by separations of nodes, as defined in [9]. As a result, we will
see that such stable equivalences also preserve representation dimension. Together with
Mart́ınez Villa’s work showing that any algebra is stably equivalent, via a separation of
nodes, to an algebra without nodes, this result completes our proof that any two stably
equivalent Artin algebras have equal representation dimension.

Our approach to the problem in this case is essentially the same as in the preceding sec-
tions. Unfortunately, much of the theory of short exact sequences under stable equivalences
becomes invalid in the presence of nodes, and thus we shall need to develop ad hoc ana-
logues of such results. Nevertheless, our explicit knowledge of a functor providing the stable
equivalence in this case simplifies matters greatly. We begin by describing this functor and
the process of separating nodes from [9].

A nonprojective, noninjective simple Λ-module S is called a node of Λ if the middle term
of the almost split sequence starting in S is projective. Let S = S1 ⊕ · · · ⊕ Sn be a sum of
nonisomorphic nodes, let a = τΛ(S) be the trace ideal of S in Λ, and let b = annr(a) be the
right annihilator of a in Λ. Define Γ to be the triangular matrix ring

Γ =
(

Λ/a a
0 Λ/b

)
.

Right Γ-modules can be identified with triples (A,B, f) where A is a Λ/a -module, B is a
Λ/b -module, and f : A⊗Λ/a a → B is a Λ/b -morphism. More precisely, this identification
yields an equivalence of categories (we refer the reader to [4] for more details). We have
a functor α : mod-Λ → mod-Γ defined on Λ-modules X by α(X) = (X/Xa, Xa,m) where
m : X/Xa ⊗Λ/a a → Xa is induced by multiplication, and defined on morphisms in the
obvious manner. Namely, for f ∈ HomΛ(X, Y ), α(f) = (f̄ , f |Xa), where f̄ denotes the
induced map X/Xa → Y/Y a. We shall write modSΛ for the full subcategory of mod-Λ
consisting of those modules with no summand in add(S), and modSΓ will denote the full
subcategory of mod-Γ consisting of those modules with no summand isomorphic to (0, T, 0)
for T ∈ add(S). Notice that α(X) ∈ modSΓ for any Λ-module X. The following theorem
summarizes the necessary results from [9].

Theorem 4.1 (Mart́ınez Villa [9]). The functor α : mod-Λ → modSΓ is full and dense, and
induces an equivalence, also denoted α, between mod-Λ and mod-Γ. Furthermore, the nodes
of Γ are precisely the Γ-modules of the form (T, 0, 0) where T is a node of Λ not isomorphic
to any Si.

We further recall the fact from [9] that for any X ∈ modSΛ, Xa = τX(S), the trace
submodule of S in X. As a result, it is clear that

(4.1) HomΛ(T,X) ∼= HomΛ(T,Xa)
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for any T ∈ add(S), and we shall identify these groups where convenient. Also notice, that
for T ∈ add(S), αT ∼= (T, 0, 0) is a semisimple injective Γ-module, while Tp := (0, T, 0) is a
semisimple projective Γ-module. Clearly, for any T ∈ add(S), we have

(4.2) HomΓ(Tp, αX) ∼= HomΛ(T,Xa) ∼= HomΛ(T,X)

and using Ta = 0,

(4.3) HomΓ(αX,αT ) ∼= HomΛ(X/Xa, T ) ∼= HomΛ(X, T ).

Again, we make no distinction between a morphism f in any of the above Hom-sets and the
corresponding morphism in an isomorphic Hom-set.

Lemma 4.2. Let 0 → A⊕ T
(f1,f2)−→ B

g−→ C → 0 be a short exact sequence in mod-Λ with

A,B ∈ modSΛ and T ∈ add(S). Then 0 → αA ⊕ Tp
(αf1,f2)−→ αB

αg−→ αC → 0 is a short
exact sequence in mod-Γ. Moreover, if g is right minimal so is αg.

Proof. To check that the sequence of Γ-modules is exact, we must check that the two
sequences of Λ-modules

0 → A/Aa
f̄1−→ B/Ba

ḡ−→ C/Ca → 0,(4.4)

0 → Aa⊕ T
(f1|Aa,f2)−→ Ba

g|Ba−→ Ca → 0(4.5)

are exact.
For (4.4), the right exactness of − ⊗ Λ/a implies that the sequence A/Aa ⊕ T

(f̄1,f̄2)−→
B/Ba

ḡ−→ C/Ca → 0 is exact. Since B ∈ modSΛ, Ba = τB(S), and hence f̄2 : T → B/Ba
is the zero map. Thus to establish the exactness of (4.4) we need only show that f̄1 is
injective.

Consider a ∈ A such that f1(a) ∈ Ba = τB(S). Clearly, τB(S) ∈ add(S), and thus the
submodule f1(a)Λ also belongs to add(S). Since f1 is injective, it induces an isomorphism
aΛ

∼=−→ f1(a)Λ, from which we conclude that aΛ ∈ add(S). Clearly, this implies a ∈ τA(S) =
Aa as required.

For (4.5), we only need to check ker g|Ba ⊆ f1(Aa) + f2(T ), as the rest is clear. Given
b ∈ Ba with g(b) = 0, there exist a ∈ A and t ∈ T such that b = f1(a) + f2(t). Thus
f1(a) = b− f2(t) ∈ Ba, and the previous paragraph yields a ∈ Aa.

Finally, the statement about minimality follows from the fact that α is full and dense. �

We now apply this lemma to study the effect of α on C-resolutions as we did in the last
section, where C again represents a contravariantly finite generator subcategory of mod-Λ.

Corollary 4.3. Let X ∈ modSΛ with ΩCX ∼= Y ⊕ T for Y ∈ modSΛ and T ∈ add(S).
Then ΩαC(αX) ∼= αY ⊕ Tp.

Proof. Apply the lemma to the exact sequence 0 → Y ⊕ T −→ C
g−→ X → 0, where g is a

minimal right C-approximation, to get an exact sequence 0 → αY ⊕Tp −→ αC
αg−→ αX → 0

with αg right minimal. Notice that C ∈ modSΛ since any morphism from a node Si to X
is not a split monomorphism and hence factors through a projective which is contained in
C. From Corollary 3.3 we know that αg is a right αC-approximation of αX, and the result
follows. �

We can now prove the following analogue of Theorem 3.4.
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Proposition 4.4. For any n ≥ 1 and any X ∈ modSΛ, if Ωn
C(X) = 0 then Ωn

αC(αX) = 0.
Furthermore, if add(S) ⊆ C then the converse holds as well. In particular, in this case we
have C-dim X = αC-dim αX.

Proof. We proceed by induction on n, noting that the case n = 1 is trivial. With the
notation of the above lemma, we have Ωn

C(X) = Ωn−1
C (ΩC(X)) ∼= Ωn−1

C (Y ⊕ T ) = 0. Thus
Ωn−1
C (Y ) = 0, and by induction Ωn−1

αC (αY ) = 0. Therefore, for n ≥ 2,

Ωn
αC(αX) = Ωn−1

αC (ΩαC(αX)) ∼= Ωn−1
αC (αY ⊕ Tp) ∼= Ωn−1

αC (αY ) = 0,

since Tp is projective and thus contained in αC.
Now suppose add(S) ⊆ C, and Ωn

αC(αX) = 0. As above, we induct on n, again noting
that the case n = 1 is trivial. For n ≥ 2 we have

Ωn
αC(αX) = Ωn−1

αC (ΩαC(αX)) ∼= Ωn−1
αC (αY ⊕ Tp) ∼= Ωn−1

αC (αY ) = 0,

and by induction Ωn−1
C (Y ) = 0. Thus Ωn

C(X) ∼= Ωn−1
C (Y ⊕T ) ∼= Ωn−1

C (T ) = 0 since T ∈ C. �

Finally, combining this result with our relative homological characterization of represen-
tation dimension we can prove, as in the previous section, that α preserves representation
dimension.

Corollary 4.5. In the above notation, rep.dim Λ = rep.dim Γ. Consequently, any two
stably equivalent Artin algebras have the same representation dimension.

Proof. Let M be an Auslander generator for Λ. We first show that we may assume that S
is a summand of M . If X ∈ modSΛ, any map from S to X factors through a projective and
thus through the right add(M)-approximation g of X. Hence g is also a right add(M ⊕ S)-
approximation. Meanwhile, if T ∈ add(S), T now has a trivial add(M ⊕S)-resolution. This
shows that for any X, (M ⊕ S)-dimX ≤ M -dim X. Since M is an Auslander generator,
M ⊕ S must be one as well.

Recall that the indecomposable projective Γ-modules are precisely the modules αP or
(Si)p for an indecomposable projective PΛ or a node Si, while the indecomposable injective
Γ-modules are precisely those modules of the form αI or αSi for an indecomposable injective
Λ-module I or a node Si. Hence αM⊕Sp is a generator-cogenerator for Γ, and any generator-
cogenerator for Γ has this form (where MΛ is a generator-cogenerator with S ∈ add(M)).
In view of the preceding result, Λ and Γ must have equal representation dimensions.

Of course, the second statement follows now from Corollary 3.5 and the fact that any
stable equivalence can be factored as a (possibly trivial) separation of nodes, composed
with a stable equivalence between algebras without nodes, and then with the inverse of a
(possibly trivial) separation of nodes. �

5. The Case of Representation Dimension 3

In order to indicate how relative homological invariants of stable equivalence may relate
to other properties of algebras, we now restrict our attention to a self-injective Artin algebra
Λ of representation dimension three. For self-injective algebras, the condition of Λ having
no nodes is equivalent to Λ having no blocks of Loewy length two, or even to Λ having no
indecomposable projective modules of length two. We thus assume that Λ has no blocks
of Loewy length two or smaller, and fix an Auslander generator M = M ′ ⊕ Λ where M ′ ∈
modPΛ.
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The focus of this section shall be to relate the number nΛ of isomorphism classes of simple
Λ-modules to the minimal number mΛ of nonisomorphic, indecomposable, nonprojective
summands of an Auslander generator in this case. Notice that the latter is invariant under
stable equivalence by Corollary 3.6. Our starting point will be a result of Rouquier [12],
stating that mΛ is at least half nΛ. We will show that “half” may be replaced with “two-
thirds”, and in case Λ is weakly symmetric or of Loewy length three, M ′ has at least nΛ

nonisomorphic indecomposable summands. We begin by citing the following lemma from
[12].

Lemma 5.1. Let 0 → M1 −→ M0 −→ S → 0 be a minimal M -resolution for the simple Λ-
module S. Then, either M1,M0 ∈ add(M ′) ⊆ modPΛ or M0 is isomorphic to the projective
cover of S and M1

∼= ΩS.

For any additive subcategory C ⊆ mod-Λ, let 〈C〉 ≤ K0(Λ) denote the subgroup of the
Grothendieck group generated by the objects of C. If X is a Λ-module, we will write [X]
for the image of X in K0(Λ).

Proposition 5.2. In the above notation, mΛ is greater than or equal to 2nΛ/3.

Proof. Let k equal the number of simple modules S such that [S] ∈ 〈add(M ′)〉, and let m
denote the number of indecomposable summands of M ′. Clearly, m ≥ rk〈add(M ′)〉 ≥ k.
By the above lemma, if S is a simple module such that [S] /∈ 〈add(M ′)〉, ΩS|M ′ (where
A|B means that A is isomorphic to a direct summand of B). Consequently, S|Ω−1M ′, and
Ω−1M ′ has at least nΛ − k simple summands. Furthermore, we know that Ω−1M ′ ⊕ Λ
is again an Auslander generator and thus the previous lemma guarantees ΩT |Ω−1M ′ for
any simple module T with [T ] /∈ 〈add(Ω−1M ′)〉. Letting l equal the number of such T ,
we have m ≥ rk〈add(Ω−1M ′)〉 ≥ nΛ − l. On the other hand, since Λ is assumed to have
no blocks of Loewy length 2, none of the modules ΩT can be simple when T is simple
(this follows from Lemma 4.3 of [3], for example). Thus, counting summands of Ω−1M ′,
we have m ≥ nΛ − k + l. Altogether we have the three inequalities m ≥ k, m ≥ nΛ − l
and m ≥ nΛ−k+l, and adding them together yields 3m ≥ 2nΛ or m ≥ 2nΛ/3 as required. �

Notice that if the simple Λ-modules are not periodic, there is some i such that Ωi−1M ′ has
no simple summands, and hence k = nΛ in the above notation with respect to the Auslander
generator ΩiM ′ ⊕ Λ. In other words, 〈add(ΩiM ′)〉 = K0(Λ), and we have mΛ ≥ nΛ. By
Proposition 1.4 of [11], this periodicity condition is satisfied by self-injective algebras of
Loewy length three and infinite representation type, which necessarily have representation
dimension three as well. We state this as a corollary.

Corollary 5.3. If Λ has no periodic simple modules—for instance, if Λ is self-injective of
Loewy length three and infinite representation type—then mΛ ≥ nΛ.

We will construct an example in the next section to show that add(M ′) does not neces-
sarily generate the entire Grothendieck group K0(Λ). However, the following results suggest
that the number of indecomposable summands of M ′ will often be much larger than the
above lower bound. In particular, it would be interesting to determine whether mΛ ≥ nΛ al-
ways holds. We begin with some preliminary results which will prove useful in investigating
some consequences of the existence of a simple module S such that [S] /∈ 〈add(M ′)〉.

Proposition 5.4. Let N be an indecomposable Λ-module such that [N ] /∈ 〈add(M ′)〉, and
suppose that HomΛ(M ′, N ′) = 0 for all proper submodules N ′ of N . Then HomΛ(M ′, N) =
0.
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Proof. Consider a map f : M ′ → N . If f is not epimorphic, f factors through a proper sub-
module of N and thus through a projective module by hypothesis. If f is an epimorphism,
any map g : P → N with P projective factors through f . In particular, given a minimal

M -resolution 0 → M1 −→ M0 ⊕ P0
(u v)−→ N → 0 for N where M0,M1 ∈ modPΛ and P0 is

projective, v : P0 → N must factor through f , and hence (u f) : M0⊕M ′ → N is epimorphic
as is (M, (u f)) : (M,M0 ⊕ M ′) → (M,N). Thus (u f) is a right add(M)-approximation
of N , and therefore M0 ⊕ M ′ contains a direct summand isomorphic to M0 ⊕ P0. Since
M0,M

′ ∈ modPΛ, we must have P0 = 0. However, then [N ] = [M0] − [M1] ∈ 〈add(M ′)〉,
contrary to our assumption. Thus f cannot be an epimorphism and HomΛ(M ′, N) = 0. �

Lemma 5.5. Suppose HomΛ(M ′, N) = 0 for an indecomposable Λ-module N . Then the
short exact sequence 0 → ΩN −→ PN

π−→ N → 0, where PN is the projective cover of N ,
is an M -resolution for N . In particular, ΩN |M ′.

Proof. Let 0 → M1 −→ M0
h−→ N → 0 be an M -resolution of N . The stated assump-

tions imply that (M,π) : (M,PN ) → (M,N) is surjective, and thus it suffices to check that
ΩN ∈ add(M). Since (M,h) : (M,M0) → (M,N) is also surjective, and M0, PN ∈ add(M),
h factors through π and π factors through h. Since π is clearly right minimal, PN splits off
as a direct summand of M0 and it follows that ΩN |M1. Since ΩN is indecomposable and
M1 ∈ add(M ′), ΩN |M ′. �

We can now establish some significant consequences of the existence of a simple module
S for which [S] /∈ 〈add(M ′)〉.

Theorem 5.6. Suppose that S is a simple Λ-module with [S] /∈ 〈add(M ′)〉, and let N be
any Λ-module with soc N ∼= S. Then the following hold.

(1) N is uniserial.
(2) HomΛ(M ′, N) = 0.
(3) ΩN |M ′.
(4) [N ] /∈ 〈add(M ′)〉.

Proof. We proceed by induction on the Loewy length r of N . If r = 1, N must be
isomorphic to S and (2) and (3) follow from the previous 2 results while (1) and (4) are
trivial. As our inductive hypothesis we shall assume that properties (1) through (4) hold
whenever N is any Λ-module of Loewy length at most r and with socle isomorphic to S.
Now suppose that N has Loewy length r + 1 and soc N ∼= S. There exists a direct sum
decomposition N/NJ = T1 ⊕ · · · ⊕ Ts for simple Λ-modules Ti, and for each i we can find
a submodule Ni ⊆ N such that NJ ⊂ Ni and Ni/NJ = Ti. Clearly we have N =

∑s
i=1 Ni

and Ni ∩Nj = NJ for all i 6= j.
Furthermore, we have non-split exact sequences 0 → NJ −→ Ni −→ Ti → 0 which

show that HomΛ(ΩTi, NJ) ∼= Ext1Λ(Ti, NJ) 6= 0. Since the induction hypothesis yields
HomΛ(M ′, NJ) = 0, we conclude that M ′ has no direct summand isomorphic to ΩTi for
any i. Consequently, by Proposition 5.4 and Lemma 5.5, we must have [Ti] ∈ 〈add(M ′)〉 for
each i. Since [NJ ] /∈ 〈add(M ′)〉 by the induction hypothesis, neither is [N ] = [NJ ] + [T1] +
· · ·+ [Ts], and we have established (4) for N .

To prove that HomΛ(M ′, N) = 0, it now suffices, by Proposition 5.4, to show that
HomΛ(M ′, N ′) = 0 for all proper submodules N ′ of N . Suppose that this is not the case,
and choose a submodule N ′ of minimal length for which HomΛ(M ′, N ′) 6= 0. From the
inductive hypothesis, it is immediate that the Loewy length of N ′ must be r + 1. Then
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N ′J ⊆ NJ and both of these modules have Loewy length r. Since NJ is uniserial, we must
have N ′J = NJ . Thus

[N ′] = [NJ ] + [Ti1 ] + · · · [Tit
] /∈ 〈add(M ′)〉,

and the minimality of N ′ allows us to invoke Proposition 5.4, which yields the contradiction
HomΛ(M ′, N ′) = 0. This proves (2), and (3) now follows via Lemma 5.5.

Finally, we must show that N is uniserial. Clearly it suffices to show that s = 1 so that
N/NJ is simple. However, if s ≥ 2 we would have a non-split exact sequence

0 → NJ −→ N1 ⊕
s∑

i=2

Ni −→ N → 0,

yielding HomΛ(ΩN,NJ) ∼= Ext1Λ(N,NJ) 6= 0. By (3) we would thus have HomΛ(M ′, NJ) 6=
0, but this contradicts the induction hypothesis. �

Remark. Working with M -coresolutions instead of M -resolutions leads to natural duals of
the previous three results. Their explicit formulation is straight-forward and thus left to
the reader. However, we shall incorporate the dual of the preceding theorem freely in the
following corollaries.

Corollary 5.7. If S is a simple Λ-module such that [S] /∈ 〈add(M ′)〉, then both the injective
envelope and the projective cover of S are uniserial. Furthermore, if N is any submodule of
the injective envelope of S and N ′ is any quotient of the projective cover of S, then ΩN |M ′

and Ω−1N ′|M ′.

We can strengthen this result even further by considering the Nakayama automorphism
N of Λ. Recall that N : mod-Λ → mod-Λ is the functor DHomΛ(−,Λ), which is an
equivalence when Λ is self-injective. If S is a simple Λ-module, NS is isomorphic to the top
of the injective hull of S and hence is also simple. The permutation that N induces on the
set of isomorphism classes of simple modules is known as the Nakayama permutation.

Since N is an equivalence, it is clear that NM is an Auslander generator for Λ whenever
M is. It is also not hard to see that N induces an automorphism of K0(Λ) by N [X] = [NX].
Thus [S] /∈ 〈add(M ′)〉 if and only if [NS] /∈ 〈add(NM ′)〉. Of course, if this is the case, we
can apply Corollary 5.7 to the simple module NS and the Auslander generator NM to
conclude that the projective cover and injective hull of NS are also uniserial. We state this
result as another corollary.

Corollary 5.8. If S is a simple Λ-module such that [S] /∈ 〈add(M ′)〉 and T is any simple
module in the N -orbit of S, then both the injective envelope and the projective cover of T
are uniserial.

Corollary 5.9. If Λ is weakly symmetric, then 〈add(M ′)〉 = K0(Λ), and hence M has at
least nΛ nonprojective indecomposable summands.

Proof. Suppose [S] /∈ 〈add(M ′)〉 for some simple module S, and let I be the injective en-
velope of S. It follows from the proof of Theorem 5.6 that any composition factor T of
I/soc I satisfies [T ] ∈ 〈add(M ′)〉. But since Λ is weakly symmetric, S ∼= NS ∼= I/IJ and
thus [S] ∈ 〈add(M ′)〉, a contradiction. �

For our final result, we further restrict our attention to a self-injective algebra Λ of Loewy
length three. Tang has shown in [13] that any Λ′ stably equivalent to such a Λ has the same
number of (nonprojective) simple modules as Λ, provided that the separated quiver of Λ has
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more than two connected components. Using the fact that self-injective algebras of Loewy
length three have representation dimension at most three, we can obtain a much weaker
result, but without any condition on the separated quiver of Λ.

Proposition 5.10. Suppose Λ and Λ′ are stably equivalent self-injective algebras and that
Λ has Loewy length three and no blocks of smaller Loewy length. Then nΛ′ ≤ 3nΛ. Fur-
thermore, if Λ′ is weakly symmetric (e.g. if Λ is symmetric) or of Loewy length three,
nΛ′ ≤ 2nΛ.

Proof. From [1] we know that rep.dim Λ ≤ 3. Since the result is of course true for algebras
of finite representation type, we may assume that rep.dim Λ = 3. Moreover, Λ⊕Λ/J⊕Λ/J2

is an Auslander generator with 2nΛ nonprojective indecomposable summands. By Theorem
3.4, Λ′ also has representation dimension three and an Auslander generator with 2nΛ non-
projective indecomposable summands. From Proposition 5.2 and Corollaries 5.3 and 5.9 we
now conclude that Λ′ has at most 3nΛ isomorphism classes of simple modules, or at most
2nΛ if Λ′ is weakly symmetric or of Loewy length three. Furthermore, we note that if Λ
is symmetric, then NX ∼= X for every Λ-module X and thus the same holds for Λ′, as it
follows from [3] that N ∼= Ω−2DTr commutes with any stable equivalence. In particular,
NS ∼= S for every simple Λ′-module S, and thus Λ′ is weakly symmetric when Λ is sym-
metric. �

6. An Example

The main purpose of this section is to present an example of a self-injective algebra
Λ of representation dimension three with a simple module S and an Auslander generator
M = M ′ ⊕Λ such that [S] /∈ 〈add(M ′)〉. In order to verify that the module M is indeed an
Auslander generator we first prove a general criterion for checking this in a finite number
of steps. Recall that since add(M) is a contravariantly finite subcategory of mod-Λ, each
indecomposable summand of M is the target of a relative sink map in add(M), i.e., a
minimal right almost-split morphism in add(M).

Proposition 6.1. Suppose that M1, . . . ,Mm are nonisomorphic indecomposable Λ-modules,
such that M =

⊕m
i=1 Mi is a non-semisimple generator-cogenerator for Λ. If Ki denotes

the kernel of the relative sink map fi : Ni → Mi in add(M), then

gl.dim EndΛ(M) = sup{add(M)-dim Ki}m
i=1 + 2.

Proof. Let Γ = EndΛ(M). Then gl.dim Γ = sup{pd Si}m
i=1 where Si is the simple

Γ-module corresponding to the indecomposable projective Γ-module (M,Mi). Moreover,

(M,Ni)
(M,fi)−→ (M,Mi) → Si → 0 is a minimal projective presentation for Si over Γ, and

hence pd Si = pd (M,Ki)+2. But, as observed in Section 3, pd (M,Ki) = add(M)-dimKi,
and the proof is complete. �

Thus, in order to find the global dimension of the endomorphism ring of a given generator-
cogenerator M , we need only compute the relative sink maps in add(M) to each indecom-
posable summand of M , and then compute the minimal add(M)-resolutions of the kernels
of these sink maps. In particular, if we know the representation dimension of Λ, we can
determine whether M is an Auslander generator in a finite number of steps. While this
method suffices to verify the following example, it does not in general lead to an efficient
algorithm for finding Auslander generators as the necessary computations vary substantially
along with the choice of the module M being tested.
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We define our algebra Λ as a quotient of the path algebra (over an infinite field k) of the
quiver

2 //

��

3oo
''NNNNNN

1

77pppppp
4

wwpppppp

6

ggNNNNNN // 5oo

OO

such that the indecomposable projective left Λ-modules have graphs:
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��
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Observe that Λ is a self-injective special biserial algebra. Furthermore Λ has infinite repre-
sentation type, as the following quiver representations correspond to pairwise nonisomorphic,
indecomposable Λ-modules for each possible c ∈ k.

k
1 //

c

��

k
0

oo

''NNNNNN

0

77pppppp
0

wwpppppp

k

ggNNNNNN 0 //
k

1
oo

1

OO

Hence, by [6] we know that rep.dim Λ = 3, and that Λ has an Auslander generator N
consisting of the direct sum of all the indecomposable projectives, all the uniserial modules,
and all the modules of the form P/soc P or rad P for an indecomposable projective P .
The module N thus has 6 indecomposable projective summands and 30 indecomposable
nonprojective summands, whose graphs the reader may easily write down.

Our goal is to construct another Auslander generator M = Λ ⊕ M ′ such that no inde-
composable summand of M ′ has the simple module S1 as a composition factor. Clearly, we
must then have [S1] /∈ 〈add(M ′)〉, and Corollary 5.7 gives the necessary condition that the
modules

2 4 3 6 2
==

5
��

5
�� ==

3 5 2 5 3 6 3

4 6
are summands of M ′. Thus, we define M ′ to be the direct sum of all the indecomposable
nonprojective summands of N that do not have S1 as a composition factor together with
the last two modules in the list above (the first four are already summands of N). It is
now possible to check that gl.dim EndΛ(Λ⊕M ′) = 3 with the help of Proposition 6.1. We
omit the lengthy calculations that include computing all 28 relative sink maps in add(M),
finding the minimal right add(M)-approximations of the kernels of each sink map, and
finally checking that the kernels of these add(M)-approximations all belong to add(M).

We conclude by noting an additional interesting property of this Auslander generator M .
If we take the syzygies of the six modules listed above which we know have to be summands
of M ′, we see that P4/soc P4 and S1 must be summands of ΩM ′. It now follows from
Theorem 5.6 (2) and Corollary 5.7 that 〈add(ΩM ′)〉 = K0(Λ). Hence, this example still
leaves open the possibility that if M = Λ⊕M ′ is an Auslander generator for a self-injective
algebra Λ of representation dimension three, then 〈add(ΩiM ′)〉 = K0(Λ) for some i. If this
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were true, it would establish that the number of indecomposable summands of M ′ is at least
the number of simple Λ-modules.
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