Math 8 - Propositions vs. Sets - Solutions

May 1, 2009

1. For each of the following, state whether it is a Proposition, an Open Proposition, a Set, or none of the above. The letters P, Q, R, \ldots represent Propositions, and the letters A, B, C, \ldots represent Sets.
(a) $x \leq y$. Open Proposition. It is ambiguous as expressed, but will be either a True or False statement once values for x and y are specified.
(b) $\forall x \in \mathbb{R} \exists y \in \mathbb{N}(x \leq y)$. Proposition. It is equivalent to the True statement "For any real number, there is a larger natural number." Any True statement is automatically a Proposition, and likewise for False statements.
(c) $\{x \in \mathbb{R} \mid x \leq 2\}$. Set. This is the set of all reals that are less than or equal to 2 .
(d) $\{x \leq 2\}$. None of the Above. $x \leq 2$ without the curly braces would be an Open Proposition. But the curly braces suggest that we are defining a set. This could be referring to the same set as in (d), but this is poor notation, as it does not specify what Universe x belongs to. For instance, would this be the set $\{x \in \mathbb{Z} \mid x \leq 2\}$ or would it be $\{x \in \mathbb{R} \mid x \leq 2\}$?
(e) $3 \in\{0,1,2\}$. Proposition. It is a False statement, and so automatically a proposition.
(f) $(P \Leftrightarrow Q) \subseteq \mathbb{R}$. None of the Above. This is nonsense: $P \Leftrightarrow Q$ denotes a biconditional Proposition, and a Proposition cannot be a subset of the Set \mathbb{R}. Compare this with the following Proposition, which makes sense since we are saying that one set is a subset of another set: $\{x \mid P(x) \Leftrightarrow Q(x)\} \subseteq \mathbb{R}$.
(g) $\mathbb{N} \subseteq \mathbb{R}$. Proposition. This is the True statement "The natural numbers are a subset of the real numbers."
(h) $A=B \Leftrightarrow A \subseteq B$. Open Proposition. It is making a statement about two sets A and B. Since A and B are not specified, it is Open.
(i) $\mathbb{Q} \cup\{x \in \mathbb{R} \mid x \sqrt{2} \in \mathbb{Q}\}$. Set. We have the union of two sets, so it is a set.
(j) $A \cap B \neq \emptyset$. Open Proposition. It is stating that A and B have a nonempty intersection, i.e., that they share at least one element. Since A and B are not specified, it is Open.
(k) $\{x \in \mathbb{R} \mid x \in \mathbb{Z}\} \Leftrightarrow\{x \in \mathbb{R} \mid-x \in \mathbb{Z}\}$. None of the Above. We have two sets with a Biconditional sign (\Leftrightarrow) between them. In general, \Leftrightarrow can be place between 2 Propositions, or an Equality sign (=) can be placed between two Sets, to get a valid Proposition.
2. Below is a proof of the statement: For any two sets A and B,

$$
(A \subseteq B) \Leftrightarrow(A \subseteq A \cap B)
$$

Describe what is wrong with the proof. Are any elements of it correct? How could you rewrite it so that it makes sense?

Proof.

$$
\begin{aligned}
A \subseteq B & =\{x \mid x \in A \Rightarrow x \in B\} \\
& =\{x \mid x \in A \Rightarrow(x \in B \wedge x \in A)\} \\
& =\{x \mid x \in A \Rightarrow x \in A \cap B\} \\
& =A \subseteq A \cap B
\end{aligned}
$$

Therefore $A \subseteq B \Leftrightarrow(A \subseteq A \cap B)$. Q.E.D.

The first mistake is in the first line: " $A \subseteq B$ " is a (Open) Proposition, and so it makes no sense to say that it Equals the Set on the right hand side. The same error occurs on the last line, which states that a Set is equal to the Proposition " $A \subseteq A \cap B$ ".
The equalities of Sets on the Right Side of the first 3 lines are essentially correct.
This is because the propositions used to define these sets are logically equivalent. $x \in A \Rightarrow x \in B \equiv(x \in A \Rightarrow(x \in B \wedge x \in A))$ is a tautology, and this is equivalent to $x \in A \Rightarrow x \in A \cap B$ by the definition of the Intersection $A \cap B$.
To correct it, we can forget about the set notation (curly braces), and just use the definitions and tautologies to obtain a sequence of equivalent Propositions:

$$
\begin{aligned}
A \subseteq B & \equiv \forall x(x \in A \Rightarrow x \in B) \quad \text { (By definition of } \subseteq .) \\
& \equiv \forall x(x \in A \Rightarrow(x \in B \wedge x \in A)) \quad \text { (By the tautology } P \Rightarrow Q \equiv P \Rightarrow(P \wedge Q) .) \\
& \equiv \forall x(x \in A \Rightarrow x \in A \cap B) \quad \text { (By definition of } \cap .) \\
& \equiv A \subseteq A \cap B \quad \text { (By definition of } \subseteq .)
\end{aligned}
$$

Therefore $A \subseteq B \Leftrightarrow(A \subseteq A \cap B)$. Q.E.D.

