Math 8 - Homework \#7 Solutions

1. Exercises 3.1 p. 143-4: 4)a; 8)b, i, j; 11) a-e.

Solutions. 4a. We want to find sets A, B, C, D such that

$$
(A \times B) \cup(C \times D) \neq(A \cup C) \times(B \cup D)
$$

Notice that the set on the right contains $C \times B$, whereas the set on the left typically won't-so an example shouldn't be too hard to find. For instance choose $A=\{a\}, B=$ $\{b\}, C=\{c\}, D=\{d\}$. Then $(A \times B) \cup(C \times D)=\{(a, b),(c, d)\}$, while $(A \cup C) \times$ $(B \cup D)=\{(a, b),(a, d),(c, b),(c, d)\}$.
Question: Is it true that the set on the left is always a subset of the set on the right?
8. (b): $R_{2}=\{(x, y) \in \mathbb{R} \times \mathbb{R} \mid y=-5 x+2\}$. To find R_{2}^{-1}, start by replacing (x, y) with (y, x), and then switch x and y and solve for y on the right to get the desired form.

$$
\begin{aligned}
R_{2}^{-1} & =\{(y, x) \in \mathbb{R} \times \mathbb{R} \mid y=-5 x+2\} \\
& =\{(x, y) \in \mathbb{R} \times \mathbb{R} \mid x=-5 y+2\} \\
& =\{(x, y) \in \mathbb{R} \times \mathbb{R} \mid y=(2-x) / 5\} .
\end{aligned}
$$

(i):

$$
\begin{aligned}
R_{9} & =\{(y, x) \in P \times P \mid y \text { is the father of } x\} \\
& =\{(x, y) \in P \times P \mid x \text { is the father of } y\} \\
& =\{(x, y) \in P \times P \mid y \text { is the child of } x\} .
\end{aligned}
$$

(j):

$$
\begin{aligned}
R_{10} & =\{(y, x) \in P \times P \mid y \text { is a sibling of } x\} \\
& =\{(x, y) \in P \times P \mid x \text { is a sibling of } y\} \\
& =\{(x, y) \in P \times P \mid y \text { is a sibling of } x\}=R_{10} .
\end{aligned}
$$

11. $(\mathrm{a})=$

$$
G_{1} \quad 2 \supset
$$

(b):

(c): \leq

(d): Reverse the arrows in (b):

(e) $: \neq$

2. Exercises 3.2 p. 150-2: 1)i, j; 2)b, c; 4)a, b, c; 8

Solutions. 1. (i) Symmetric: two lines being perpendicular does not depend on their order. Not reflexive: no line is perpendicular to itself. Not transitive: transitive and symmetric would force it to be reflexive (why?).
(j) Not reflexive: $(2,1)$ is not related to itself since $2+2>1+1$. Symmetric: $(x, y) R(z, w) \Leftrightarrow x+z \leq y+w \Leftrightarrow z+x \leq w+y \Leftrightarrow(z, w) R(x, y)$. Not transitive: $(2,1) R(1,2)$ and $(1,2) R(2,1)$ but $(2,1)$ is not related to $(2,1)$.
2. (b) Reflexive, Not Symmetric, Not Transitive: $R=\{(1,1),(2,2),(3,3),(1,2),(2,3)\}$. The first 3 are needed to make it reflexive. It is not symmetric since we have (1,2) but not $(2,1)$. It is not transitive since we have $(1,2)$ and $(2,3)$, but not $(1,3)$.
(c) Symmetric, Not Reflexive, Not Transitive: $R=\{(1,2),(2,1)\}$. It is symmetric since for each ordered pair $(a, b) \in R$, we have $(b, a) \in R$. It is not reflexive since $(1,1) \notin R$. It is not transitive since we have $(1,2)$ and $(2,1)$ but not $(1,1)$.
4. For each relation, we must check that it is Reflexive, Symmetric and Transitive.
(a) Reflexive: By definition $x R x \Leftrightarrow x^{2}=x^{2}$ which is true for all $x \in \mathbb{Z}$.

Symmetric: $x R y \Leftrightarrow x^{2}=y^{2} \Leftrightarrow y^{2}=x^{2} \Leftrightarrow y R x$ for all $x, y \in \mathbb{Z}$.

Transitive: Suppose $x R y$ and $y R z$. By definition, $x^{2}=y^{2}$ and $y^{2}=z^{2}$. Thus $x^{2}=z^{2}$ and hence $x R z$.
Equivalence classes: $0 / R=\{x \in \mathbb{Z} \mid x R 0\}=\left\{x \in \mathbb{Z} \mid x^{2}=0^{2}\right\}=\{0\}$.
$4 / R=\{x \in \mathbb{Z} \mid x R 4\}=\left\{x \in \mathbb{Z} \mid x^{2}=4^{2}\right\}=\{4,-4\}$.
$-72 / R=\{x \in \mathbb{Z} \mid x R-72\}=\left\{x \in \mathbb{Z} \mid x^{2}=(-72)^{2}\right\}=\{-72,72\}$.
(b) Reflexive: By definition $m R m$ if and only if m and m have the same digit in the tens' places. Clearly they do.
Symmetric: Clearly, if $m R n$ then m and n have the same tens' digit, and thus so do n and m. Hence $n R m$.
Transitive: If $m R n$ and $n R p$ then m and n have the same tens' digit, as do n and p. Hence m and p have the same tens' digit, and $m R p$.
Equivalence classes: $5=05 \in 106 / R$ since both have tens' digit 0 . Between 150 and 300 , any n between 200 and 209 has tens' digit 0 and is thus in $106 / R$. Greater than 1000 , we have $1001 \in 106 / R$. For $635 / R$, we have $35,230,1031 \in 635 / R$.
(c) Reflexive: $x V x$ is true for all $x \in \mathbb{R}$ by definition.

Symmetric: $x V y \Leftrightarrow x=y \vee x y=1 \Leftrightarrow y=x \vee y x=1 \Leftrightarrow y V x$.
Transitive: Suppose $x V y$ and $y V z$. Then $x=y$ or $x y=1$ and $y=z$ or $y z=1$, and there are 4 different ways these equations can be satisfied. First, if $x=y$ and $y=z$, then $x=z$ so $x V z$. Next, if $x=y$ and $y z=1$ then $x z=1$, so $x V z$. The case where $x y=1$ and $y=z$ is similar. Finally, if $x y=1$ and $y z=1$, then $x=z$ so we again get $x V z$.

Equivalence Classes: $3 / V=\{x \in \mathbb{R} \mid x=3 \vee 3 x=1\}=\{3,1 / 3\}$.
$-\frac{2}{3} / V=\left\{x \in \mathbb{R} \left\lvert\, x=-\frac{2}{3} \vee-\frac{2}{3} x=1\right.\right\}=\left\{-\frac{2}{3},-\frac{3}{2}\right\}$.
$0 / V=\{x \in \mathbb{R} \mid x=0 \vee 0 x=1\}=\{0\}$.
8. (a) We check that R is reflexive, symmetric and transitive. If $n \in \mathbb{N}$, then $2 \mid n+n$, and hence $n R n$. Thus R is reflexive. Now suppose that $n R m$ for $n, m \in \mathbb{N}$. Thus $2 \mid n+m$, and since $n+m=m+n$, we also have $2 \mid m+n$, meaning that $m R n$. Hence R is symmetric. Now suppose that $m R n$ and $n R p$. This means that $2 \mid m+n$ and $2 \mid n+p$. Hence $m+p=(m+n)+(n+p)-2 n$ is a sum of multiples of two, and is thus even as well. This shows that $m R p$, so R is transitive.
(b) S cannot be an equivalence relation since it is not reflexive. For instance, $1+1=2$ is not divisible by 3 and thus $(1,1) \notin S$.

3. Exercises 3.4 p. 166: 8.

Solution. 8. We must check that R is reflexive, antisymmetric and transitive. For $(a, b) \in \mathbb{R}^{2}$, we have $(a, b) R(a, b)$ since $a \leq a$ and $b \leq b$. Thus R is reflexive. Now suppose $(a, b) R(x, y)$ and $(x, y) R(a, b)$. This means $a \leq x$ and $b \leq y$ and $x \leq a$ and $y \leq b$. Hence we must have $(a, b)=(x, y)$, showing that R is antisymmetric. Now suppose $(a, b) R(c, d)$ and $(c, d) R(e, f)$. This means that $a \leq c$ and $c \leq e-$ so $a \leq e-$ and $b \leq d$ and $d \leq f-$ so $b \leq f$. Thus $(a, b) R(e, f)$ and R is transitive.

