Math 8 - Homework #5

Due: May 5, 2009

- 1. Express each of the following statements using sets. Your answers should be of the form "[something] \in (or \notin) [some set]".
 - (a) x is a nonnegative integer that is smaller than 5.
 - (b) Either a or b equals 1.
 - (c) Neither x nor y is 0.

Solution. (a) $x \in \{1, 2, 3, 4\}$

- (b) $1 \in \{a, b\}$
- (c) $0 \notin \{x, y\}$
- 2. Write each of the sets below in two ways: a) in the form $\{x \in U \mid P(x)\}$, and b) in the form $\{f(x) \mid x \in S\}$ where f(x) is a function (possibly of multiple variables), and S and U are some sets.
 - (i) $A = \{1, 2, 4, 8, 16, ...\}$ is the set of all (integer) powers of 2.
 - (ii) B is the set of all integers that can be written as the sum of two perfect squares.
 - (iii) C is the set of all the reciprocals of natural numbers.

Solution. (i) $A = \{x \in \mathbb{N} \mid \exists n \in \mathbb{Z} \ (x = 2^n)\} = \{2^n \mid n \in \mathbb{N} \cup \{0\} \ \}.$

- (ii) $B = \{ n \in \mathbb{Z} \mid \exists x, y \in \mathbb{Z} (n = x^2 + y^2) \} = \{ x^2 + y^2 \mid x, y \in \mathbb{Z} \}.$
- (iii) $C = \{x \in \mathbb{R} \mid \frac{1}{x} \in \mathbb{N}\} = \{\frac{1}{n} \mid n \in \mathbb{N}\}.$
- 3. (a) Prove that $\{2k-1\mid k\in\mathbb{Z}\}=\{2k+1\mid k\in\mathbb{Z}\}.$

Solution. For convenience, let $A = \{2k-1 \mid k \in \mathbb{Z} \}$ and $B = \{2k+1 \mid k \in \mathbb{Z} \}$. We must show that for any $x, x \in A \Leftrightarrow x \in B$.

 $x \in A \Rightarrow x \in B$: Assume that $x \in A$. By the definition of A, this means that x = 2k - 1 for some $k \in \mathbb{Z}$. Thus x = 2k - 1 = 2k - 2 + 1 = 2(k - 1) + 1. Since k - 1 is an integer, x is also an element of B.

 $x \in A \Leftarrow x \in B$: Now assume that $x \in B$. By definition, x = 2k + 1 for some integer k. Thus x = 2k + 1 = 2k + 2 - 1 = 2(k + 1) - 1. Since k + 1 is an integer, x is also an element of A.

(b) Are the sets $\{2k-1 \mid k \in \mathbb{N}\}$ and $\{2k+1 \mid k \in \mathbb{N}\}$ also equal? Justify your answer. (Suggestion: start listing the elements in these sets by plugging in different natural numbers for k.)

Solution. No, these sets are not equal. The first is $\{1, 3, 5, 7, \ldots\}$, but the second is $\{3, 5, 7, \ldots\}$. The first contains 1, but the second does not.

- 4. Exercises 2.1 p. 76-77: 5)b; 13; 19)a-d.
 - **Solutions. 5.** (b): Any example where A, B, C are all equal to each other will work. (In fact, this is the only possibility since $A \subseteq B \land B \subseteq C \Rightarrow A \subseteq C$, and $A \subseteq C$ together with $C \subseteq A$ implies A = C, and then B = A will follow too.)
 - 13. (a)-(c): All True. By definition of the set X, we have $a \in X \Leftrightarrow P(a)$. Parts (a) and (b) state the two directions of this biconditional, while (c) states the contrapositive of (a).
 - **19.** (a): C. The proof shows only $Y \subseteq X$, and does not address the other inclusion $X \subseteq Y$, which is needed to conclude that X = Y.
 - (b); F. Only one example is given. A valid proof should assume nothing about the sets A, B, C beyond the given hypotheses: $A \subseteq B$ and $B \subseteq C$.
 - (c): C (or maybe A?). The statement "Thus, $x \in C$." appears to be about any object x. Obviously, not every object is necessarily an element of C. Instead, it should say "Thus, if $x \in A$, then $x \in C$."
 - (d): F. The definition of \subseteq is backwards.
- 5. Exercises 2.2 p. 83-84: 2)d, f; 10)f (it may help to draw a Venn diagram); 12)b,c (you may draw a Venn diagram);

Solutions. 2. (d) P - N is the set P of all positive integers.

- (f) \tilde{N} is the set of all non-negative integers.
- **10.** (f) Suppose that $A \subseteq C$ and $B \subseteq C$. To show $A \cup B \subseteq C$, we must show that for all $x \in A \cup B$, we have $x \in C$. Assume $x \in A \cup B$. Then, either $x \in A$ or $x \in B$. If $x \in A$, then $A \subseteq C$ implies $x \in C$. Similarly, if $x \in B$, then $B \subseteq C$ implies $x \in C$. Thus, in either case, $x \in C$ as required.
- **12.** (b) Let $A = \{1\} = C$ and $B = \{1, 2\}$.
- (c) Let $A = \{1\}$, $B = \{2\}$ and $C = \{1, 2\}$.
- 6. Exercises 2.3 p. 92-93: 1)d, j, m.

Solutions. 1. (d) $\bigcap_{n\in\mathbb{N}} B_n = \emptyset$ and $\bigcup_{n\in\mathbb{N}} B_n = \mathbb{N} - \{1\}$.

- (j) $\bigcap_{n\in\mathbb{N}} M_n = \{0\}$ since M_n consists of all integer multiples of n and 0 is the only integer that is a multiple of all integers. $\bigcup_{n\in\mathbb{N}} M_n = \mathbb{N}$ since the union contains $M_1 = \mathbb{N}$ as a subset.
- (m) $\bigcap_{n\in\mathbb{Z}} A_n = \emptyset$ since even any two sets A_n and A_m with $n \neq m$ have no elements in common. $\bigcup_{n\in\mathbb{Z}} A_n = \mathbb{R} \mathbb{Z}$ the set of all real numbers that are not integers, since the set A_n consists of all the real numbers x with n < x < n + 1.