Math 8 - Homework \#5
 Due: May 5, 2009

1. Express each of the following statements using sets. Your answers should be of the form "[something] $\in($ or $\notin)$ [some set]".
(a) x is a nonnegative integer that is smaller than 5 .
(b) Either a or b equals 1 .
(c) Neither x nor y is 0 .

Solution. (a) $x \in\{1,2,3,4\}$
(b) $1 \in\{a, b\}$
(c) $0 \notin\{x, y\}$
2. Write each of the sets below in two ways: a) in the form $\{x \in U \mid P(x)\}$, and b$)$ in the form $\{f(x) \mid x \in S\}$ where $f(x)$ is a function (possibly of multiple variables), and S and U are some sets.
(i) $A=\{1,2,4,8,16, \ldots\}$ is the set of all (integer) powers of 2 .
(ii) B is the set of all integers that can be written as the sum of two perfect squares.
(iii) C is the set of all the reciprocals of natural numbers.

Solution. (i) $A=\left\{x \in \mathbb{N} \mid \exists n \in \mathbb{Z}\left(x=2^{n}\right)\right\}=\left\{2^{n} \mid n \in \mathbb{N} \cup\{0\}\right\}$.
(ii) $B=\left\{n \in \mathbb{Z} \mid \exists x, y \in \mathbb{Z}\left(n=x^{2}+y^{2}\right)\right\}=\left\{x^{2}+y^{2} \mid x, y \in \mathbb{Z}\right\}$.
(iii) $C=\left\{x \in \mathbb{R} \left\lvert\, \frac{1}{x} \in \mathbb{N}\right.\right\}=\left\{\left.\frac{1}{n} \right\rvert\, n \in \mathbb{N}\right\}$.
3. (a) Prove that $\{2 k-1 \mid k \in \mathbb{Z}\}=\{2 k+1 \mid k \in \mathbb{Z}\}$.

Solution. For convenience, let $A=\{2 k-1 \mid k \in \mathbb{Z}\}$ and $B=\{2 k+1 \mid k \in \mathbb{Z}\}$. We must show that for any $x, x \in A \Leftrightarrow x \in B$.
$x \in A \Rightarrow x \in B$: Assume that $x \in A$. By the definition of A, this means that $x=2 k-1$ for some $k \in \mathbb{Z}$. Thus $x=2 k-1=2 k-2+1=2(k-1)+1$. Since $k-1$ is an integer, x is also an element of B.
$x \in A \Leftarrow x \in B$: Now assume that $x \in B$. By definition, $x=2 k+1$ for some integer k. Thus $x=2 k+1=2 k+2-1=2(k+1)-1$. Since $k+1$ is an integer, x is also an element of A.
(b) Are the sets $\{2 k-1 \mid k \in \mathbb{N}\}$ and $\{2 k+1 \mid k \in \mathbb{N}\}$ also equal? Justify your answer. (Suggestion: start listing the elements in these sets by plugging in different natural numbers for k.)
Solution. No, these sets are not equal. The first is $\{1,3,5,7, \ldots\}$, but the second is $\{3,5,7, \ldots\}$. The first contains 1 , but the second does not.
4. Exercises 2.1 p. 76-77: 5)b; 13; 19)a-d.

Solutions. 5. (b): Any example where A, B, C are all equal to each other will work. (In fact, this is the only possibility since $A \subseteq B \wedge B \subseteq C \Rightarrow A \subseteq C$, and $A \subseteq C$ together with $C \subseteq A$ implies $A=C$, and then $B=A$ will follow too.)
13. (a)-(c): All True. By definition of the set X, we have $a \in X \Leftrightarrow P(a)$. Parts (a) and (b) state the two directions of this biconditional, while (c) states the contrapositive of (a).
19. (a): C. The proof shows only $Y \subseteq X$, and does not address the other inclusion $X \subseteq Y$, which is needed to conclude that $X=Y$.
(b); F. Only one example is given. A valid proof should assume nothing about the sets A, B, C beyond the given hypotheses: $A \subseteq B$ and $B \subseteq C$.
(c): C (or maybe A?). The statement "Thus, $x \in C$." appears to be about any object x. Obviously, not every object is necessarily an element of C. Instead, it should say "Thus, if $x \in A$, then $x \in C$."
(d): F. The definition of \subseteq is backwards.
5. Exercises 2.2 p. 83-84: 2)d, f; 10)f (it may help to draw a Venn diagram); 12)b,c (you may draw a Venn diagram);
Solutions. 2. (d) $P-N$ is the set P of all positive integers.
(f) \tilde{N} is the set of all non-negative integers.
10. (f) Suppose that $A \subseteq C$ and $B \subseteq C$. To show $A \cup B \subseteq C$, we must show that for all $x \in A \cup B$, we have $x \in C$. Assume $x \in A \cup B$. Then, either $x \in A$ or $x \in B$. If $x \in A$, then $A \subseteq C$ implies $x \in C$. Similarly, if $x \in B$, then $B \subseteq C$ implies $x \in C$. Thus, in either case, $x \in C$ as required.
12. (b) Let $A=\{1\}=C$ and $B=\{1,2\}$.
(c) Let $A=\{1\}, B=\{2\}$ and $C=\{1,2\}$.
6. Exercises 2.3 p. 92-93: 1)d, j, m.

Solutions. 1. (d) $\bigcap_{n \in \mathbb{N}} B_{n}=\emptyset$ and $\bigcup_{n \in \mathbb{N}} B_{n}=\mathbb{N}-\{1\}$.
(j) $\bigcap_{n \in \mathbb{N}} M_{n}=\{0\}$ since M_{n} consists of all integer multiples of n and 0 is the only integer that is a multiple of all integers. $\bigcup_{n \in \mathbb{N}} M_{n}=\mathbb{N}$ since the union contains $M_{1}=\mathbb{N}$ as a subset.
(m) $\bigcap_{n \in \mathbb{Z}} A_{n}=\emptyset$ since even any two sets A_{n} and A_{m} with $n \neq m$ have no elements in common. $\bigcup_{n \in \mathbb{Z}} A_{n}=\mathbb{R}-\mathbb{Z}$ the set of all real numbers that are not integers, since the set A_{n} consists of all the real numbers x with $n<x<n+1$.

