Math 8 - Practice Final Exam Solutions
 Spring 2009

1. Write each of the following sets in set-builder notation $\{x \in U \mid P(x)\}$, where U is a set and $P(x)$ is a proposition depending on x.
(a) $A=\{0,4,16,36,64,100, \ldots\}$

Solution. $A=\left\{x \in \mathbb{Z} \mid \exists n \in \mathbb{Z} x=(2 n)^{2}\right\}$
(b) $B=\{1,2,4,5,7,8,10,11,13,14,16,17,19, \ldots\}$

Solution. $B=\{n \in \mathbb{N} \mid \sim(3 \mid n)\}$
2. Are the following propositions True or False? Give brief justifications for your answers. (The domain of interpretation for all variables is \mathbb{Z}.)
(a) $\forall x \exists y \exists z(x+y=2 z)$.

Solution. TRUE. It says that for any x we can add some number y to get an even number $2 z$. This is clearly satisfied by choosing $y=x$ and $z=x$.
(b) $\forall x \exists y(x y=x+y)$.

Solution. FALSE. It does not hold for $x=1$, since $y=1+y$ is never true for an integer y.
3. Write the following statements using symbols only, and no words. (You do not have to prove them.)
(a) "Every rational number is a real number."

Solution. $\mathbb{Q} \subseteq \mathbb{R}$ or $\forall x \in \mathbb{Q}(x \in \mathbb{R})$
(b) "The product of any two odd integers is odd."

Solution. $\forall x \in \mathbb{Z} \forall y \in \mathbb{Z}[\sim(2 \mid x) \wedge \sim(2 \mid y)] \Rightarrow \sim(2 \mid x y)$.
4. For two subsets A, B of a set U, let $A \odot B=\widetilde{A \cup B}=U-(A \cup B)$. Draw Venn diagrams illustrating the following subsets of U.
(a) $A \odot B$ Solution. The picture should have everything outside of $A \cup B$ shaded in.
(b) $\tilde{A} \odot \tilde{B}$ (note $\tilde{A}=U-A$ is the complement of A.)

Solution. The picture should have just $A \cap B$ shaded in.
(c) $(B-A) \bigodot(A-B)$.

Solution. The picture should have $A \cap B$ and everything outside of $A \cup B$ shaded in.
5. Give examples of functions $f: A \rightarrow B$ and $g: B \rightarrow C$ with the stated properties, or briefly explain why none can exist. (Be sure to specify the sets A, B, C in your examples.)
(a) f is one-to-one, but $g \circ f$ is not one-to-one.

Solution. Let $A=\{1,2\}, B=\{3,4\}$ and $C=\{5\}$, and let $f=\{(1,3),(2,4)\}$ and $g=\{(3,5),(4,5)\}$. Then f is one-to-one since $f(1) \neq f(2)$, but $g(f(1))=$ $g(3)=5=g(4)=g(f(2))$ so $g \circ f$ is not injective.
(b) $g \circ f$ is one-to-one, but f is not one-to-one.

Solution. No example exists. Suppose $g \circ f$ is one-to-one, and let $a, b \in A$. If $f(a)=f(b)$, then $g(f(a))=g(f(b))$. But $g \circ f$ is one-to-one, so we must have $a=b$. This shows that f must be one-to-one.
6. Consider the relation \equiv on \mathbb{R}, defined by

$$
a \equiv b \Leftrightarrow a-b \in \mathbb{Z}
$$

for any $a, b \in \mathbb{R}$.
(a) Show that \equiv defines an equivalence relation on \mathbb{R}.

Solution. Reflexive: For any $a \in \mathbb{R}$, we have $a \equiv a$ since $a-a=0 \in \mathbb{Z}$.
Symmetric: Suppose $a \equiv b$. This means that $a-b \in \mathbb{Z}$. Thus $b-a=-(a-b) \in \mathbb{Z}$, and hence $b \equiv a$.
Transitive: Suppose $a \equiv b$ and $b \equiv c$. This means that $a-b \in \mathbb{Z}$ and $b-c \in \mathbb{Z}$. Thus $a-c=(a-b)+(b-c) \in \mathbb{Z}$, and $a \equiv c$.
(b) Describe the equivalence classes of 1 and $\frac{1}{2}$.

Solution. $1 / \equiv=\{x \in \mathbb{R} \mid x \equiv 1\}=\{x \in \mathbb{R} \mid x-1 \in \mathbb{Z}\}=\mathbb{Z}$.

$$
\begin{aligned}
\frac{1}{2} / \equiv & =\left\{x \in \mathbb{R} \left\lvert\, x \equiv \frac{1}{2}\right.\right\} \\
& =\left\{x \in \mathbb{R} \left\lvert\, x-\frac{1}{2} \in \mathbb{Z}\right.\right\} \\
& =\left\{\left.y+\frac{1}{2} \right\rvert\, y \in \mathbb{Z}\right\} \\
& =\{\ldots,-1.5,-0.5,0.5,1.5,2.5, \ldots\}
\end{aligned}
$$

7. Let $A=\{0,1,2\}$, and let B be the set of all functions $f: A \rightarrow A$. Let $e: B \rightarrow A$ be the function defined by

$$
e(f)=f(0) \quad \text { for any function } f: A \rightarrow A .
$$

Is the function e one-to-one, onto, or bijective? Justify your answer. (You should explain why it does have any of these properties, and ALSO why it does not have the other properties)
Solution. e is not injective: Notice that $|B|=3^{3}=27$, while $|A|=3$. By the pigeonhole principle, no function from B to A can be injective. (Alternatively, if
$f=\{(0,0),(1,1),(2,2)\}$ and $g=\{(0,0),(1,0),(2,0)\}$, then $g \neq f$, but $e(f)=f(0)=$ $0=g(0)=e(g)$.
e is onto: Let $a \in A$, and let f be a function from A to A that sends 0 to a. For instance $f=\{(0, a),(1,0),(2,0)\}$. Then $e(f)=f(0)=a$.
e is not bijective: Since e is not injective, it cannot be bijective.
8. Suppose that A and B are sets with equal power sets, that is, $\mathcal{P}(A)=\mathcal{P}(B)$. Prove that $A=B$.

Solution. Assume $\mathcal{P}(A)=\mathcal{P}(B)$. Since $A \subseteq A, A \in \mathcal{P}(A)$ by definition of the power set. Thus

$$
\begin{aligned}
A \subseteq A & \Rightarrow A \in \mathcal{P}(\mathcal{A}) \\
& \Rightarrow A \in \mathcal{P}(B) \\
& \Rightarrow A \subseteq B .
\end{aligned}
$$

Similarly, we can swap the roles of A and B to get

$$
\begin{aligned}
B \subseteq B & \Rightarrow B \in \mathcal{P}(\mathcal{B}) \\
& \Rightarrow B \in \mathcal{P}(A) \\
& \Rightarrow B \subseteq A .
\end{aligned}
$$

Since $A \subseteq B$ and $B \subseteq A$, we must have $A=B$.
9. Let x be a real number such that $x \geq 1$. Prove by induction that

$$
x^{n}-1 \geq(x-1)^{n}
$$

for any integer $n \geq 1$.
Solution. Let $P(n)$ be the proposition $x^{n}-1 \geq(x-1)^{n}$
Basis step: Let $n=1$. $P(1)$ says $x-1 \geq x-1$, which is obviously true.
Inductive Step: Let $k \geq 1$ and assume $x^{k}-1 \geq(x-1)^{k}$. We now prove $P(k+1)$.

$$
\begin{aligned}
(x-1)^{k+1} & =(x-1)^{k}(x-1) \\
& \leq\left(x^{k}-1\right)(x-1) \\
& =x^{k+1}-x^{k}-x+1 \\
& \leq x^{k+1}-1-1+1, \quad \text { Since } x \geq 1 \text { and } x^{k} \geq 1 \\
& =x^{k+1}-1
\end{aligned}
$$

By induction $P(n)$ is true for all integers $n \geq 1$.

