Math 8 - Homework \#4 Solutions
 Fall, 2007

1. Express each of the following statements using sets. Your answers should be of the form "[something $] \in($ or $\notin)[$ some set $]$ ".
(a) x is a nonnegative integer that is smaller than 5 .
(b) Either a or b equals 1 .
(c) Neither x nor y is 0 .

Solution. (a) $x \in\{1,2,3,4\}$
(b) $1 \in\{a, b\}$
(c) $0 \notin\{x, y\}$
2. Describe the sets from problem 2, parts (a)-(d), on page 47 of the text in the form $\{f(x) \mid x \in S\}$, where $f(x)$ is a function, and S is some set.
Solution. (a) $A=\{2 x-2 \mid x \in \mathbb{N}\}$
(b) $B=\left\{x^{2}+1 \mid x \in \mathbb{Z}\right\}$
(c) $C=\{4 x-3 \mid x \in \mathbb{N}\}$
(d) $D=\{1 / x \mid x \in \mathbb{N}\}$
3. (a) Prove that $\{2 k-1 \mid k \in \mathbb{Z}\}=\{2 k+1 \mid k \in \mathbb{Z}\}$.

Solution. For convenience, let $A=\{2 k-1 \mid k \in \mathbb{Z}\}$ and $B=\{2 k+1 \mid k \in \mathbb{Z}\}$. We must show that for any $x, x \in A \Leftrightarrow x \in B$.
$x \in A \Rightarrow x \in B$: Assume that $x \in A$. By the definition of A, this means that $x=2 k-1$ for some $k \in \mathbb{Z}$. Thus $x=2 k-1=2 k-2+1=2(k-1)+1$. Since $k-1$ is an integer, x is also an element of B.
$x \in A \Leftarrow x \in B$: Now assume that $x \in B$. By definition, $x=2 k+1$ for some integer k. Thus $x=2 k+1=2 k+2-1=2(k+1)-1$. Since $k+1$ is an integer, x is also an element of A.
(b) Are the sets $\{2 k-1 \mid k \in \mathbb{N}\}$ and $\{2 k+1 \mid k \in \mathbb{N}\}$ also equal? Justify your answer. (Suggestion: start listing the elements in these sets by plugging in different natural numbers for k.)
Solution. No, these sets are not equal. The first is $\{1,3,5,7, \ldots\}$, but the second is $\{3,5,7, \ldots\}$. The first contains 1 , but the second does not.
4. (optional) In class, we wrote the set of even integers as $2 \mathbb{Z}=\{2 k \mid k \in \mathbb{Z}\}$. In this exercise, we explore the arithmetic of sets a little more. All sets considered here will be subsets of \mathbb{R}, meaning that all their elements are assumed to be real numbers.
(a) If we replace \mathbb{Z} with \mathbb{R} in the above example, what set do we get? In other words, describe the set $2 \mathbb{R}$.
Solution. $2 \mathbb{R}=\mathbb{R}$ since any real number x can be written as $2(x / 2)$ and $x / 2$ is another real number.
(b) Let $m, n \in \mathbb{Z}$. The set of multiples of n can be written $n \mathbb{Z}=\{n k \mid k \in \mathbb{Z}\}$. We can also write $m \mathbb{Z}+n \mathbb{Z}=\{m x+n y \mid x, y \in \mathbb{Z}\}$ for the set of all sums of multiples of m and n. Describe the following sets: (i) $2 \mathbb{Z}+3 \mathbb{Z}$; (ii) $2 \mathbb{Z}+4 \mathbb{Z}$; (iii) $2 \mathbb{N}+3 \mathbb{N}$. (Suggestion: start by listing some elements of these sets by choosing different values for x and y in the expression $m x+n y$.)
Solution. (i) $2 \mathbb{Z}+3 \mathbb{Z}=\mathbb{Z}$. (Since $n=3 n-2 n$ for any $n \in \mathbb{Z}$.)
(ii) $2 \mathbb{Z}+4 \mathbb{Z}=2 \mathbb{Z}$.
(iii) $2 \mathbb{N}+3 \mathbb{N}=\{2,3,4, \ldots\}$.

