
Math 8 - Solutions to Final Exam Review Problems
Fall 2007

1. Functions. (a)-(c) Give examples of the following, or briefly explain why no example
exists.

(a) An injection f : N → N that is not surjective.

Solution. Let f(n) = n + 1. This is injective since for any a, b ∈ N, f(a) = f(b)
implies a + 1 = b + 1, which implies a = b. This is not surjective since for all
a ∈ N, f(a) 6= 1.

(b) An injection f : N → [0, 1].

Solution. Let f(n) = 1/n. This is injective since for any a, b ∈ N, f(a) = f(b)
implies 1/a = 1/b, which implies a = b.

(c) An injection f : A → B and a surjection g : B → C such that g◦f is not injective.

Solution. Let A = {0, 1}, B = {2, 3, 4} and C = {5}. Define f by the set of
ordered pairs {(0, 2), (1, 3)} (ie., f(0) = 2 and f(1) = 3), and define g by the set
of ordered pairs {(2, 5), (3, 5), (4, 5)} (this is the only function from B to C here).
Clearly f is injective since f(0) 6= f(1), g is surjective since g(2) = 5, but g ◦ f is
not injective since g(f(0)) = 5 = g(f(1)).

(d) True or False: Let A and B be sets, and suppose f : A → B is an injection. Then
there exists a surjection g : B → A. Give a proof or counterexample.

Solution. FALSE! This is not true if A = ∅. Any function f : ∅ → B (in fact
there is only one) is automatically one-to-one, since in order not to be one-to-one
there must be two elements of ∅ that produce the same output. However, there
are NO functions g : B → ∅ whenever B 6= ∅, since there are no possible outputs
in ∅ for the elements of B.

However, if A is assumed to be nonempty, it is TRUE. A surjection g can be
constructed as follows. If b = f(a) for some a ∈ A then this a is unique (since f
is one-to-one) and we may define g(b) = a. Otherwise, define g(b) = a0 where a0

is some fixed element of A. If a ∈ A, then a = g(f(a)) by definition of g, so g is
surjective.

(e)-(g) Determine whether the following functions are one-to-one, onto, or both. Justify
your answers. (Good Practice: For each function, write out the statements “f is one-
to-one”, “f is onto”, etc. symbolically using the definitions.)

(e) f : Z× Z → Z is defined by f((a, b)) = a + b for all a, b ∈ Z.

Solution. f is onto: if n ∈ Z, then n = n+0 = f((n, 0)). But f is not one-to-one:
f(0, 0) = 0 = f(1,−1).

(f) g : Z → Z× Z is defined by g(n) = (n,−n) for all n ∈ Z.

Solution. g is one-to-one: if g(n) = g(m), then (n,−n) = (m,−m), and thus
n = m. But g is not onto: If (0, 1) = g(n) for some n ∈ Z, then (0, 1) = (n,−n)
so we must have n = 0 and −n = 1, which implies 0 = n = −1, a contradiction.
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(g) h : P(N) − {∅} → N is defined by g(S) = min S, the smallest element of S, for
any nonempty S ⊆ N.

Solution. h is onto: If n ∈ N, n is the smallest element in the set {n}, so
n = h({n}). But h is not one-to-one since h({1, 2}) = 1 = h({1}).

(h) Let S be a nonempty set. Show that the function F : P(S) → P(S), defined by
F (A) = S −A for any A ⊆ S, is bijective, and describe the inverse function F−1.
(Hint: one way to show that F is bijective is to first find the inverse function and
show that the compositions in both orders F ◦ F−1 and F−1 ◦ F are the identity
functions.)

Solution. Notice that F (A) is just the complement of the subset A in S. In order
to get the original subset A back from its complement, we just need to take the
complement again. This suggests that F−1(A) = F (A) = S − A for any A ⊆ S.
Indeed, we have F−1(F (A)) = S − (S − A) = A = F (F−1(A)) for any A ⊆ S.
Thus, we know that F is a bijection.

2. Cardinality (4.1-4.3). (a)-(c) Give examples or explain why no examples exist.

(a) A surjection f : Nn → Nn that is not injective. (Recall Nn = {1, 2, 3, . . . , n}.)
Solution. No examples exist. If f is not injective, there are two different integers
that are mapped to the same image. That leaves n−2 remaining inputs in N and
n− 1 remaining outputs in N. Since n− 2 < n− 1, not every possible output can
be the image of one of these inputs, so f cannot be surjective.

(b) An injection f : R → N.

Solution. No such injection can exist. We know that R is uncountable, while
N is countable, and every subset of a countable set is countable. However, if
f : R → N is injective, it induces a bijection between R and its image, which is a
subset of N. Thus we would have a subset of N that is uncountable, but this is
impossible.

(c) A surjection f : R → N. It may be easier to just describe (in words or a graph)
a rule defining this function, without giving a formula.

Solution. f can be defined using the greatest integer function [x] (see p. 123),
which rounds a real number down to the nearest integer. Since the image of f
must be a natural number, we should first take the absolute value of x ∈ R, then
round down to the nearest integer, and finally add 1 (so we don’t end up with 0).
In symbols, f(x) = [|x|] + 1.

(d) Suppose A ≈ C and B ≈ D. Prove that A×B ≈ C ×D.

Solution. Assume A ≈ C and B ≈ D. This means that we have bijections
f : A → C and g : B → D. Define h : A × B → C ×D by h(a, b) = (f(a), g(b))
for all a ∈ A and b ∈ B. We check that h is one-to-one and onto.

One-to-one: Suppose h(a, b) = h(a′, b′). This means that (f(a), g(b)) = (f(a′), g(b′)),
which implies that f(a) = f(a′) and g(b) = g(b′). Since f and g are one-to-one,
we can conclude that a = a′ and b = b′. Hence (a, b) = (a′, b′).
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Onto: Let (c, d) ∈ C ×D. Since f and g are onto, there exist a ∈ A and b ∈ B
such that f(a) = c and g(b) = d. Thus h(a, b) = (f(a), g(b)) = (c, d).

3. Induction.

(a) Prove that for any real number x ≥ −1 and any integer n ≥ 1,

(1 + x)n ≥ 1 + nx.

Solution. We prove the proposition by induction on n ≥ 1. Fix a real number
x ≥ −1, and let P (n) be the proposition (1 + x)n ≥ 1 + nx.

Basis Step. Let n = 1. P (1) says 1 + x ≥ 1 + x, which is clearly true.

Inductive Step. Let k ≥ 1, and assume P (K) : (1 + x)k ≥ 1 + kx. We must prove
P (k + 1) : (1 + x)k+1 ≥ 1 + (k + 1)x.

(1 + x)k+1 = (1 + x)k(1 + x)

≥ (1 + kx)(1 + x) (by P(k) and since 1 + x ≥ 0)

= 1 + kx + x + x2

≥ 1 + (k + 1)x (since x2 ≥ 0).

Thus, (1 + x)k+1 ≥ 1 + (k + 1)x, and by induction (1 + x)n ≥ 1 + nx holds for all
n ≥ 1.

(b) Prove that for any integer n ≥ 1,

1

12
+

1

22
+

1

32
+ · · ·+ 1

n2
≤ 2− 1

n
.

Solution. We prove the proposition by induction on n ≥ 1. Basis Step. Let
n = 1. We must show 1

12 ≤ 2 − 1
1
, but this is clear since both sides of the

inequality are equal to 1.

Inductive Step. Let k ≥ 1, and assume

1

12
+

1

22
+

1

32
+ · · ·+ 1

k2
≤ 2− 1

k
.

We now prove that the same inequality holds for k + 1:

1

12
+

1

22
+

1

32
+ · · ·+ 1

(k + 1)2
=

(
1

12
+

1

22
+ · · ·+ 1

k2

)
+

1

(k + 1)2

≤ 2− 1

k
+

1

(k + 1)2

≤ 2− 1

k
+

1

k(k + 1)

= 2− 1

k
+

1

k
− 1

k + 1

= 2− 1

k + 1
.

Thus the given inequality holds for all n ≥ 1 by induction.
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