Math 8 - Solutions to Final Exam Review Problems

1. Functions. (a)-(c) Give examples of the following, or briefly explain why no example exists.
(a) An injection $f: \mathbb{N} \rightarrow \mathbb{N}$ that is not surjective.

Solution. Let $f(n)=n+1$. This is injective since for any $a, b \in \mathbb{N}, f(a)=f(b)$ implies $a+1=b+1$, which implies $a=b$. This is not surjective since for all $a \in \mathbb{N}, f(a) \neq 1$.
(b) An injection $f: \mathbb{N} \rightarrow[0,1]$.

Solution. Let $f(n)=1 / n$. This is injective since for any $a, b \in \mathbb{N}, f(a)=f(b)$ implies $1 / a=1 / b$, which implies $a=b$.
(c) An injection $f: A \rightarrow B$ and a surjection $g: B \rightarrow C$ such that $g \circ f$ is not injective.

Solution. Let $A=\{0,1\}, B=\{2,3,4\}$ and $C=\{5\}$. Define f by the set of ordered pairs $\{(0,2),(1,3)\}$ (ie., $f(0)=2$ and $f(1)=3$), and define g by the set of ordered pairs $\{(2,5),(3,5),(4,5)\}$ (this is the only function from B to C here). Clearly f is injective since $f(0) \neq f(1), g$ is surjective since $g(2)=5$, but $g \circ f$ is not injective since $g(f(0))=5=g(f(1))$.
(d) True or False: Let A and B be sets, and suppose $f: A \rightarrow B$ is an injection. Then there exists a surjection $g: B \rightarrow A$. Give a proof or counterexample.
Solution. FALSE! This is not true if $A=\emptyset$. Any function $f: \emptyset \rightarrow B$ (in fact there is only one) is automatically one-to-one, since in order not to be one-to-one there must be two elements of \emptyset that produce the same output. However, there are NO functions $g: B \rightarrow \emptyset$ whenever $B \neq \emptyset$, since there are no possible outputs in \emptyset for the elements of B.
However, if A is assumed to be nonempty, it is TRUE. A surjection g can be constructed as follows. If $b=f(a)$ for some $a \in A$ then this a is unique (since f is one-to-one) and we may define $g(b)=a$. Otherwise, define $g(b)=a_{0}$ where a_{0} is some fixed element of A. If $a \in A$, then $a=g(f(a))$ by definition of g, so g is surjective.
(e)-(g) Determine whether the following functions are one-to-one, onto, or both. Justify your answers. (Good Practice: For each function, write out the statements "f is one-to-one", "f is onto", etc. symbolically using the definitions.)
(e) $f: \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Z}$ is defined by $f((a, b))=a+b$ for all $a, b \in \mathbb{Z}$.

Solution. f is onto: if $n \in \mathbb{Z}$, then $n=n+0=f((n, 0))$. But f is not one-to-one: $f(0,0)=0=f(1,-1)$.
(f) $g: \mathbb{Z} \rightarrow \mathbb{Z} \times \mathbb{Z}$ is defined by $g(n)=(n,-n)$ for all $n \in \mathbb{Z}$.

Solution. g is one-to-one: if $g(n)=g(m)$, then $(n,-n)=(m,-m)$, and thus $n=m$. But g is not onto: If $(0,1)=g(n)$ for some $n \in \mathbb{Z}$, then $(0,1)=(n,-n)$ so we must have $n=0$ and $-n=1$, which implies $0=n=-1$, a contradiction.
(g) $h: \mathcal{P}(\mathbb{N})-\{\emptyset\} \rightarrow \mathbb{N}$ is defined by $g(S)=\min S$, the smallest element of S, for any nonempty $S \subseteq \mathbb{N}$.
Solution. h is onto: If $n \in \mathbb{N}, n$ is the smallest element in the set $\{n\}$, so $n=h(\{n\})$. But h is not one-to-one since $h(\{1,2\})=1=h(\{1\})$.
(h) Let S be a nonempty set. Show that the function $F: \mathcal{P}(S) \rightarrow \mathcal{P}(S)$, defined by $F(A)=S-A$ for any $A \subseteq S$, is bijective, and describe the inverse function F^{-1}. (Hint: one way to show that F is bijective is to first find the inverse function and show that the compositions in both orders $F \circ F^{-1}$ and $F^{-1} \circ F$ are the identity functions.)
Solution. Notice that $F(A)$ is just the complement of the subset A in S. In order to get the original subset A back from its complement, we just need to take the complement again. This suggests that $F^{-1}(A)=F(A)=S-A$ for any $A \subseteq S$. Indeed, we have $F^{-1}(F(A))=S-(S-A)=A=F\left(F^{-1}(A)\right)$ for any $A \subseteq S$. Thus, we know that F is a bijection.
2. Cardinality (4.1-4.3). (a)-(c) Give examples or explain why no examples exist.
(a) A surjection $f: \mathbb{N}_{n} \rightarrow \mathbb{N}_{n}$ that is not injective. (Recall $\mathbb{N}_{n}=\{1,2,3, \ldots, n\}$.)

Solution. No examples exist. If f is not injective, there are two different integers that are mapped to the same image. That leaves $n-2$ remaining inputs in \mathbb{N} and $n-1$ remaining outputs in \mathbb{N}. Since $n-2<n-1$, not every possible output can be the image of one of these inputs, so f cannot be surjective.
(b) An injection $f: \mathbb{R} \rightarrow \mathbb{N}$.

Solution. No such injection can exist. We know that \mathbb{R} is uncountable, while \mathbb{N} is countable, and every subset of a countable set is countable. However, if $f: \mathbb{R} \rightarrow \mathbb{N}$ is injective, it induces a bijection between \mathbb{R} and its image, which is a subset of \mathbb{N}. Thus we would have a subset of \mathbb{N} that is uncountable, but this is impossible.
(c) A surjection $f: \mathbb{R} \rightarrow \mathbb{N}$. It may be easier to just describe (in words or a graph) a rule defining this function, without giving a formula.
Solution. f can be defined using the greatest integer function $[x]$ (see p. 123), which rounds a real number down to the nearest integer. Since the image of f must be a natural number, we should first take the absolute value of $x \in \mathbb{R}$, then round down to the nearest integer, and finally add 1 (so we don't end up with 0). In symbols, $f(x)=[|x|]+1$.
(d) Suppose $A \approx C$ and $B \approx D$. Prove that $A \times B \approx C \times D$.

Solution. Assume $A \approx C$ and $B \approx D$. This means that we have bijections $f: A \rightarrow C$ and $g: B \rightarrow D$. Define $h: A \times B \rightarrow C \times D$ by $h(a, b)=(f(a), g(b))$ for all $a \in A$ and $b \in B$. We check that h is one-to-one and onto.
One-to-one: Suppose $h(a, b)=h\left(a^{\prime}, b^{\prime}\right)$. This means that $(f(a), g(b))=\left(f\left(a^{\prime}\right), g\left(b^{\prime}\right)\right)$, which implies that $f(a)=f\left(a^{\prime}\right)$ and $g(b)=g\left(b^{\prime}\right)$. Since f and g are one-to-one, we can conclude that $a=a^{\prime}$ and $b=b^{\prime}$. Hence $(a, b)=\left(a^{\prime}, b^{\prime}\right)$.

Onto: Let $(c, d) \in C \times D$. Since f and g are onto, there exist $a \in A$ and $b \in B$ such that $f(a)=c$ and $g(b)=d$. Thus $h(a, b)=(f(a), g(b))=(c, d)$.

3. Induction.

(a) Prove that for any real number $x \geq-1$ and any integer $n \geq 1$,

$$
(1+x)^{n} \geq 1+n x .
$$

Solution. We prove the proposition by induction on $n \geq 1$. Fix a real number $x \geq-1$, and let $P(n)$ be the proposition $(1+x)^{n} \geq 1+n x$.
Basis Step. Let $n=1$. $P(1)$ says $1+x \geq 1+x$, which is clearly true.
Inductive Step. Let $k \geq 1$, and assume $P(K):(1+x)^{k} \geq 1+k x$. We must prove $P(k+1):(1+x)^{k+1} \geq 1+(k+1) x$.

$$
\begin{aligned}
(1+x)^{k+1} & =(1+x)^{k}(1+x) \\
& \geq(1+k x)(1+x) \quad(\text { by } \mathrm{P}(\mathrm{k}) \text { and since } 1+x \geq 0) \\
& =1+k x+x+x^{2} \\
& \geq 1+(k+1) x \quad\left(\text { since } x^{2} \geq 0\right)
\end{aligned}
$$

Thus, $(1+x)^{k+1} \geq 1+(k+1) x$, and by induction $(1+x)^{n} \geq 1+n x$ holds for all $n \geq 1$.
(b) Prove that for any integer $n \geq 1$,

$$
\frac{1}{1^{2}}+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\cdots+\frac{1}{n^{2}} \leq 2-\frac{1}{n}
$$

Solution. We prove the proposition by induction on $n \geq 1$. Basis Step. Let $n=1$. We must show $\frac{1}{1^{2}} \leq 2-\frac{1}{1}$, but this is clear since both sides of the inequality are equal to 1 .
Inductive Step. Let $k \geq 1$, and assume

$$
\frac{1}{1^{2}}+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\cdots+\frac{1}{k^{2}} \leq 2-\frac{1}{k} .
$$

We now prove that the same inequality holds for $k+1$:

$$
\begin{aligned}
\frac{1}{1^{2}}+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\cdots+\frac{1}{(k+1)^{2}} & =\left(\frac{1}{1^{2}}+\frac{1}{2^{2}}+\cdots+\frac{1}{k^{2}}\right)+\frac{1}{(k+1)^{2}} \\
& \leq 2-\frac{1}{k}+\frac{1}{(k+1)^{2}} \\
& \leq 2-\frac{1}{k}+\frac{1}{k(k+1)} \\
& =2-\frac{1}{k}+\frac{1}{k}-\frac{1}{k+1} \\
& =2-\frac{1}{k+1} .
\end{aligned}
$$

Thus the given inequality holds for all $n \geq 1$ by induction.

