Math 8 - Midterm 2 Solutions

Fall, 2007

- 1. Give an example of a function with the stated property, or briefly explain why no such function can exist.
 - (a) A surjective function $f:A\to B$ that is not injective. (Please also specify the sets A and B.)

Solution. Let $A = \{1, 2\}$ and $B = \{3\}$, and define $f : A \to B$ by f(1) = f(2) = 3. This f is surjective since all elements of B, namely just 3, are images of elements of A. But f is not injective since f(1) = f(2).

(b) A one-to-one function $f: \{0, 1, 2\} \to \{3, 4\}$.

Solution. No such function can exist. For f to be one-to-one each of the three elements 0, 1, 2 must be sent to a different element of the set $\{3, 4\}$. However, this set has only two elements so this is impossible.

- 2. Let P(a, b) stand for the proposition "a knows b's name," and assume the universe of discourse is the set of all people. Write the following statements symbolically.
 - (a) "Each person knows the names of at least two people."

Solution. $\forall a \ \exists b \ \exists c \ (P(a,b) \land P(a,c))$

(b) "Somebody knows only their own name and no others."

Solution. $\exists a \ \forall b \ [P(a,a) \land (P(a,b) \Rightarrow b = a)]$

- 3. True or False? Give brief justifications for your answers.
 - (a) $\forall x \in \mathbb{R} \ \exists y \in \mathbb{Z} \ (x < y)$.

Solution. True. This just says that for any real number x there is an integer y that is larger than x. This is obvious.

(b) $\exists x \in \mathbb{Z} \ \forall y \in \mathbb{Z} \ \sim (2|xy)$. (Recall that a|b means b is an integer multiple of a.)

Solution. False. Notice first that $\sim (2|xy)$ means that xy is not a multiple of 2, or in other words, that xy is odd. Thus the proposition says that there is an integer x such that xy is odd for all integers y. But this is impossible, since no matter what x is, 2x will be even.

4. Let A and B be sets. Prove that $A \subseteq B$ if and only if $A \cap B = A$.

Solution. We first prove $A \subseteq B \Rightarrow A \cap B = A$. Assume $A \subseteq B$. We must show that $A \cap B \subseteq A$ and $A \subseteq A \cap B$. It is always true that $A \cap B \subseteq A$ (If x is an element of both A and B, then it is an element of A). Now let $x \in A$. Since we are assuming $A \subseteq B$, we know that $x \in B$. Thus, for any x, we have

$$x \in A \Rightarrow (x \in A \land x \in B) \equiv x \in A \cap B.$$

Hence we have shown that $A \subseteq A \cap B$. Together, these two inclusions prove that $A = A \cap B$.

We now prove that $A \cap B = A \Rightarrow A \subseteq B$. Assume that $A \cap B = A$. Then $A = A \cap B \subseteq B$ shows that $A \subseteq B$.

5. For each $n \in \mathbb{Z}$, let

$$A_n = \{(a, b) \in \mathbb{Z} \times \mathbb{Z} \mid a + b = n\}.$$

- (a) Write down A_0 , A_1 and A_{-3} by listing (some of) their elements between braces. **Solution.** $A_0 = \{(a,b) \in \mathbb{Z} \times \mathbb{Z} \mid a+b=0\} = \{\dots, (-1,1), (0,0), (1,-1), (2,-2), \dots\}$. $A_1 = \{(a,b) \in \mathbb{Z} \times \mathbb{Z} \mid a+b=1\} = \{\dots, (-1,2), (0,1), (1,0), (2,-1), \dots\}$. $A_{-3} = \{(a,b) \in \mathbb{Z} \times \mathbb{Z} \mid a+b=-3\} = \{\dots, (-1,-2), (0,-3), (1,-2), (2,-1), \dots\}$.
- (b) What is $\bigcup_{n\in\mathbb{Z}} A_n$?

Solution. $\bigcup_{n\in\mathbb{Z}} A_n$ is the set of all ordered pairs (x,y) that appear in at least one of the sets A_n for some integer n. But any ordered pair (x,y) of integers appears in the set A_{x+y} . Thus the union of all the sets A_n will be all of $\mathbb{Z} \times \mathbb{Z}$.