
Math 5A - Midterm 2 Review Problems - Solutions
Winter 2009

The exam will focus on topics from Section 3.6 and Chapter 5 of the text, although you
may need to know additional material from Chapter 3 (covered in 3C) or from Chapter 4
(covered earlier this quarter). Below is an outline of the key topics and sample problems
of the type you may be asked on the test. Many are similar to homework problems you
have done–just remember that you will be required to show your work and/or justify your
answers on the exam.

3.6: Span, Linear (In)dependence, Basis, Dimension.

1. Determine if each list of vectors is linearly dependent or independent. Justify your
answers.

(a) (1, 2), (2, 1)

Solution. We write c1(1, 2)+ c2(2, 1) = (0, 0) and solve for c1 and c2. This yields
two equations c1 + 2c2 = 0 and 2c1 + c2 = 0, and it follows that c1 = c2 = 0 is the
only solution. Hence the two vectors are linearly independent.

(b) (2,−2), (−2, 2)

Solution. Notice that (−2, 2) = −(2,−2). Since one vector is a scalar multiple
of the other, they are linearly dependent.

(c) (1, 2, 1), (1, 3, 1), (0,−1, 0)

Solution. We write c1(1, 2, 1) + c2(1, 3, 1) + c3(0,−1, 0) = (0, 0, 0) which yields
only 2 equations c1 + c2 = 0 and 2c1 + 3c2 − c3 = 0 in 3 unknowns. Hence there
must be nonzero solutions: for instance, c1 = 1, c2 = −1, c3 = −1 is such a solu-
tion. This means the vectors are linearly dependent.

(d) (1, 0, 0), (1, 1, 0), (1, 1, 1)

Solution. We write c1(1, 0, 0) + c2(1, 1, 0) + c3(1, 1, 1) = (0, 0, 0), which yields 3
equations c1 +c2 +c3 = 0, c1 +c2 = 0 and c3 = 0. It follows that c1 = c2 = c3 = 0
is the only solution, and thus the vectors are linearly independent.

(e) x + 1, x2 + 2x, x2 − 2 in the vector space P2 of polynomials of degree less than or
equal to 2.

Solution. We write a(x + 1) + b(x2 + 2x) + c(x2 − 2) = 0, and compare the
coefficients of each different power of x on each side of the equation. This yields
3 equations (the first comes from looking at the constant terms, the second from
the x-terms and the third from the x2-terms): a−2c = 0, a+2b = 0 and b+c = 0.
Solving for a, b, c, we see that there is a free variable, and one nonzero solution is
given by a = 2, b = −1, c = 1. Hence the vectors are linearly dependent.

1



2. For each part of Problem 1, find a basis for the span of the listed vectors. What is the
dimension of the span in each case? Justify your answers.

Solution. (a) & (d): Since the given vectors were already linearly independent, they
form a basis for their span. For the rest, we must find the largest subset of the given
vectors that is linearly independent.

(b): Since the two vectors (2,−2) and (−2, 2) point in opposite directions, their span
will consist of all scalar multiples of either one of them. Hence we can pick (2,−2) as
our basis vector (any set of 1 nonzero vector is automatically linearly independent).

(c): As shown above (1, 2, 1) = (1, 3, 1) + (0,−1, 0), so (1, 2, 1) belongs to the span of
(1, 3, 1) and (0,−1, 0). Thus the span of all 3 vectors will be the same as the span of
just the last 2. Clearly (1, 3, 1) and (0,−1, 0) are linearly independent since neither is
a scalar multiple of the other. Thus {(1, 3, 1), (0,−1, 0)} is a basis for the span.

(e): As shown above x2 − 2 = −2(x + 1) + (x2 + 2x), so (x2 − 2) belongs to the span
of (x + 1) and (x2 + 2x). Thus the span of all 3 polynomials is the same as the span
of the first 2. The first 2 are also clearly linearly independent, since they are not
scalar multiples of each other (one has degree 1 and the other has degree 2). Hence
{x + 1, x2 + 2x} is a basis of the span.

3. What is the dimension of the subspace W = {(x, y, z, w) ∈ R4 | x + y + z = 0} of R4?
Find a basis for this subspace.

Solution. The subspace is defined as the solution space of the single equation x +
y + z = 0 in the 4 variables x, y, z, w. Thus there should be 3 free variables, and the
subspace will have dimension 3. We choose y, z, w for the free variables–they can take
on any values in R–and then the value of x will be determined by x = −y − z. Hence
we can express the given subspace as

{(−y−z, y, z, w)|y, z, w ∈ R} = {y(−1, 1, 0, 0)+z(−1, 0, 1, 0)+w(0, 0, 0, 1)|y, z, w ∈ R},
which equals span{(−1, 1, 0, 0), (−1, 0, 1, 0), (0, 0, 0, 1)}. Since these 3 vectors are lin-
early independent, they form a basis for W , and dim W = 3.

5.1: Linear Transformations–Definition and Standard Matrix.

4. Which of the following functions are linear transformations? Justify your answers.

(a) T : R2 → R3 defined by T (x, y) = (x + y, x− y, 2x).

Solution. Linear. The standard matrix for T has columns equal to T (e1) =
(1, 1, 2) and T (e2) = (1,−1, 0). Hence, we see that T is linear because it coincides
with matrix multiplication:

T

(
x
y

)
=

 1 1
1 −1
2 0

 (
x
y

)
.
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(b) T : R3 → R2 defined by T (x, y, z) = (x + y + z + 1, 0).

Solution. Not Linear. Notice that T (0, 0, 0) = (1, 0). However, in order for T
to be linear we would need T (0, 0, 0) = T (0 ∗ (x, y, z)) = 0 ∗ T (x, y, z) = (0, 0) by
the second axiom.

(c) T : R2 → R2 defined by T (x, y) = (cos x, sin y).

Solution. Not Linear. Again T (0, 0) = (cos 0, sin 0) = (1, 0). So T is not linear
for the same reason as in (b).

(d) T : R3 → R3 defined by T (x, y, z) = (z, x, y).

Solution. Linear. The standard matrix for T has columns equal to T (e1) =
(0, 1, 0), T (e2) = (0, 0, 1) and T (e3) = (1, 0, 0). Hence, we see that T is linear
because it coincides with matrix multiplication:

T

 x
y
z

 =

 0 0 1
1 0 0
0 1 0

  x
y
z

 .

(e) T : C(2)(R) → C(R) defined by T (f(x)) = f ′′(x)− f(x)

Solution. Linear. We check that the two axioms are satisfied. Let f(x) and g(x)
be two functions in C(2)(R). Then

T (f + g) = (f + g)′′ − (f + g) = (f ′′ − f) + (g′′ − g) = T (f) + T (g).

If c ∈ R, then T (cf) = (cf)′′ − (cf) = c(f ′′ − f) = cT (f).

5. Find the standard matrix of each of the linear transformations from (a)-(d) above.

Solution. See the solutions above.
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5.2: Kernel and Image of a Linear Transformation. Rank and Nullity.

6. Find a basis for the kernel of each linear transformation from Problem 4. Find a
basis for the image of each linear transformation from Problem 4 (a)-(d). Justify your
answers.

Solution. (a) To calculate ker(T ), we set T (x, y) = (0, 0, 0) and get 3 equations:
x + y = 0, x− y = 0, 2x = 0. The only solution is x = y = 0, and thus the zero vector
(0, 0) is the only element of the kernel. (Technically, a basis for the zero subspace is
the empty set ∅, which has no elements.) The image of T is given by the span of the
columns of the standard matrix of T (i.e., it is the column space of this matrix). Hence

Im(T ) = span{(1, 1, 2), (1,−1, 0)},

and since these two vectors are linearly independent, they are a basis for the image.

(d) We calculate Im(T ) first. Again it will be the column space of the standard matrix
of T . So

Im(T ) = span{(0, 1, 0), (0, 0, 1), (1, 0, 0)} = R3,

and these three vectors are linearly independent (in fact, they are just the standard
basis vectors in a different order) so they form a basis for im(T ). The rank-nullity
theorem implies that dim ker(T ) = dim R3 − dim Im(T ) = 3 − 3 = 0, so ker(T ) must
be the zero subspace. (Again, a basis for ker(T ) is the empty set ∅.)
(e) Since ker(T ) = {y ∈ C(2)(R) | y′′ − y = 0}, we must solve the differential equation
y′′ − y = 0. The characteristic equation is r2 − 1 = 0, and the characteristic roots are
r = 1,−1. Thus the general solution is y = c1e

t + c2e
−t. This means that a basis for

the kernel consists of the two linearly independent solutions f1(t) = et and f2(t) = e−t.

7. Give an example of a linear transformation T : R3 → R3 for which ker(T ) is 1-
dimensional and Im(T ) is 2-dimensional. (Would it be possible for ker(T ) and Im(T )
to both be 1-dimensional?)

Solution. We need a 3× 3 matrix T of rank 2. The rank-nullity theorem then implies
that the kernel of T has dimension 3 − 2 = 1. So we just have to choose 3 vectors in
R3 for the columns of T such that two of the vectors are linearly independent, and the
third is contained in the span of the first two. (Recall that the image of T is just the
span of the columns of the matrix.) For instance we can choose

T =

 1 0 1
0 1 1
0 0 0

 .

We have ker(T ) = span{(0, 0, 1)} Im(T ) = span{(1, 0, 0), (0, 1, 0)} (why?).

5.3: Eigenvalues, Eigenvectors, Eigenspaces.
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8. Find the eigenvalues, and one eigenvector for each eigenvalue, of the following matrices.

(a)

A =

(
1 1

−2 −2

)
Solution. The characteristic polynomial is p(x) = (1−x)(−2−x)+2 = x2 +x =
x(x + 1). Hence the eigenvalues are x = 0,−1. For x = 0, the eigenvectors are
just the nonzero vectors in ker A. Since the second row of A is −2 times the first
row, the kernel is defined by a single equation: it consists of all vectors (y, z) with
y + z = 0. Thus one such eigenvector is (1,−1). For x = −1, the eigenvectors are
the nonzero vectors in ker(A + I), which contains all (y, z) such that 2y + z = 0.
Thus one such eigenvector is (1,−2).

(b)

B =

(
2 −2
2 2

)
Solution. The characteristic polynomial is p(z) = (2−z)(2−z)+4 = z2−4z+8,
which has two complex roots z = 2 ± 2i, and these are the eigenvalues. For
z = 2 + 2i, the eigenvectors are just the nonzero vectors in ker(B − (2 + 2i)I).
We write down this matrix and convert it to RREF:

B − (2 + 2i)I =

(
−2i −2
2 −2i

)
7→

(
1 −i
0 0

)
.

Hence any (x, y) with x− iy = 0 is an eigenvector: for instance (i, 1).

For z = 2− 2i, we have

B − (2− 2i)I =

(
2i −2
2 2i

)
7→

(
1 i
0 0

)
.

Hence any (x, y) with x + iy = 0 is an eigenvector: for instance (−i, 1).

(c)

C =

 1 1 1
0 2 1
0 0 1


Solution. Using the fact that the matrix C is upper-triangular, we easily compute
its characteristic polynomial p(t) = det(C − tI) = (1 − t)(2 − t)(1 − t) and thus
the eigenvalues of C are t = 1, 2. For t = 1, we convert the matrix C−I to RREF
to compute its kernel:

C − I =

 0 1 1
0 1 1
0 0 0

 7→

 0 1 1
0 0 0
0 0 0

 .
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Hence any (x, y, z) with y + z = 0 is an eigenvector: for instance (1, 0, 0).

For t = 2, we convert the matrix C − 2I to RREF to compute its kernel:

C − 2I =

 −1 1 1
0 0 1
0 0 −1

 7→

 1 −1 0
0 0 1
0 0 0

 .

Hence any (x, y, z) with x − y = 0 and z = 0 is an eigenvector: for instance
(1, 1, 0).

9. λ = 2 is an eigenvalue of the matrix

A =

 4 −12 −6
1 −4 −3

−1 6 5

 .

Find a basis for the eigenspace of A for the eigenvalue λ = 2.

Solution. We convert the matrix A− 2I to RREF to compute its kernel:

A− 2I =

 2 −12 −6
1 −6 −3
−1 6 3

 7→

 2 −12 −6
1 −6 −3
0 0 0


7→

 1 −6 −3
1 −6 −3
0 0 0

 7→

 1 −6 −3
0 0 0
0 0 0


Hence, the eigenspace is

ker(A− 2I) = {(x, y, z) ∈ R3 | x− 6y − 3z = 0}
= {(6y + 3z, y, z) | y, z ∈ R}
= {y(6, 1, 0) + z(3, 0, 1) | y, z ∈ R}
= span{(6, 1, 0), (3, 0, 1)}.

Since the two vectors (6, 1, 0) and (3, 0, 1) are linearly independent and they span the
eigenspace, they form a basis for the eigenspace.

5.4: Diagonalization (and Diagonalizability) of Matrices.

10. Are the following matrices diagonalizable? Justify your answers. In each case where
the matrix is diagonalizable, give the change of coordinate matrix P such that P−1AP
is diagonal.
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(a)

A =

(
1 1
1 1

)
Solution. We start by finding the eigenvalues and eigenvectors. The characteris-
tic polynomial is p(t) = (1− t)(1− t)−1 = t2−2t = t(t−2). Thus the eigenvalues
are t = 0, 2. Since there are two distinct eigenvalues (and A is 2 × 2), there is a
theorem that says that A is diagonalizable. To find the change of coordinate ma-
trix P , we still need to find a basis of eigenvectors. When t = 0, the eigenvectors
are the nonzero elements of the ker(A): (1,−1) is one such vector. When t = 2,
we can find an eigenvector by solving (A − 2I)x = 0, which yields the equation
−x + y = 0. Thus one eigenvector for eigenvalue 2 is (1, 1). Thus

P =

(
1 1

−1 1

)
.

(b)

B =

(
2 −2
0 2

)
Solution. The characteristic polynomial is p(t) = (2 − t)2. Thus t = 2 is the
only eigenvalue for B. The eigenspace for the eigenvalue t = 2 is ker(B − 2I),
which is spanned by (1, 0). Since the eigenspace is only one-dimensional, it is
not possible to find a basis of R2 consisting of eigenvectors of B. Hence B is not
diagonalizable.

(c) C is the 3× 3 matrix from Problem 9.

Solution. We already found two linearly independent eigenvectors (6, 1, 0) and
(3, 0, 1) for the eigenvalue 2. Thus to show that C is diagonalizable, we only
need to find one more eigenvector that is not spanned by these two. We first
must find another eigenvalue. The characteristic polynomial is det(C − tI) =
(4−t)[(−4−t)(5−t)+18]−1[−12(5−t)+36]−1[36+6(−4−t)] = −t3+5t2−8t+4 =
−(t− 2)2(t− 1) (factoring it is not too bad since we know that (t− 2)2 should be
one factor). Thus the other eigenvalue is t = 1. If we try to solve Cx = x we get
three equations: 3x−12y−6z = 0; x−5y−3z = 0; and −x+6y+4z = 0. Adding
the last two yields y + z = 0, and then the last one becomes x = 2y. Thus we get
an eigenvector (2, 1,−1) with eigenvalue 1. We now have a basis of eigenvectors
of C, and these make up the columns of our change of coordinate matrix P :

P =

 6 3 2
1 0 1
0 1 −1

 .
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