
Math 5A - Solutions to Final Exam Review Problems
Winter 2009

Solving 2x2 Homogeneous, Linear Systems of DEs. Details on finding the eigenvalues
and eigenvectors have been left out. Of course, on the exam you will be expected to show
the work for these calculations.

• 6.2: Real Eigenvalues.

1. Find the general solution ~x(t) of the system ~x′ =
(

1 − 2
3 − 4

)
~x, and the unique

solution that satisfies the initial condition ~x(0) =
(

1
1

)
.

Solution. The eigenvalues of the matrix A are λ1 = −1 and λ2 = −2, and the

eigenvectors are ~v1 =
(

1
1

)
and ~v2 =

(
2
3

)
(of course, scalar multiples of these

eigenvectors would also be acceptable). Thus the general solution is

~x(t) = c1e
−t

(
1
1

)
+ c2e

−2t
(

2
3

)
.

Plugging in t = 0 yields c1

(
1
1

)
+ c2

(
2
3

)
=

(
1
1

)
. Hence c1 = 1 and c2 = 0

and the unique solution satisfying ~x(0) =
(

1
1

)
is

~x(t) = e−t
(

1
1

)
=

(
e−t

e−t

)
.

2. Find the general solution ~x(t) of the system ~x′ =
(

1 − 1
1 3

)
~x, and the unique

solution that satisfies the initial condition ~x(0) =
(

0
−1

)
.

Solution. The only eigenvalue is λ = 2 and an eigenvector is ~v =
(

1
−1

)
. Since

there are not two linearly independent eigenvectors, we must find a vector ~u such

that (A− λI)~u = ~v. One such vector is ~u =
(

0
−1

)
. The formula now yields the

general solution

~x(t) = c1e
2t

(
1
−1

)
+ c2e

2t(t
(

1
−1

)
+

(
0
−1

)
).

Plugging in t = 0 gives c1

(
1
−1

)
+ c2

(
0
−1

)
=

(
0
−1

)
. Hence c1 = 0 and c2 = 1,

and the unique solution satisfying the initial condition is

~x(t) = e2t(t
(

1
−1

)
+

(
0
−1

)
) =

(
te2t

−(t + 1)e2t

)
.
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• 6.3: Complex Eigenvalues.

3. Find the general solution ~x(t) of the system ~x′ =
(

2 − 2
4 − 2

)
~x, and the unique

solution that satisfies the initial condition ~x(0) =
(

1
1

)
.

Solution. The eigenvalues are λ = ±2i, whence α = 0 and β = 2. We know
the eigenvectors should be of the form ~u± i~v, where ~u + i~v is the eigenvector for

λ = +2i. We find this eigenvector to be
(

1
1− i

)
=

(
1
1

)
+ i

(
0
−1

)
, whence

~u =
(

1
1

)
and ~v =

(
0
−1

)
. The general solution is thus

~x(t) = c1(cos(2t)
(

1
1

)
− sin(2t)

(
0
−1

)
) + c2(sin(2t)

(
1
1

)
+ cos(2t)

(
0
−1

)
).

Plugging in t = 0, we get c1

(
1
1

)
+ c2

(
0
−1

)
= ~x(0) =

(
1
1

)
, and thus c1 = 1

and c2 = 0. Hence the unique solution satisfying the initial condition is

~x(t) = cos(2t)
(

1
1

)
− sin(2t)

(
0
−1

)
=

(
cos(2t)

cos(2t) + sin(2t)

)
.

4. Find the general solution ~x(t) of the system ~x′ =
(

1 − 1
1 1

)
~x, and the unique

solution that satisfies the initial condition ~x(0) =
(

0
1

)
.

Solution. The eigenvalues are λ = 1± i, whence α = β = 1. An eigenvector for

λ = 1 + i is
(

1
−i

)
=

(
1
0

)
+ i

(
0
−1

)
, whence ~u =

(
1
0

)
and ~v =

(
0
−1

)
. The

general solution is

~x(t) = c1e
t(cos t

(
1
0

)
− sin t

(
0
−1

)
) + c2e

t(sin t
(

1
0

)
+ cos t

(
0
−1

)
).

Plugging in t = 0 gives c1

(
1
0

)
+ c2

(
0
−1

)
= ~x(0) =

(
0
1

)
, from which we see

that c1 = 0 and c2 = −1. Hence the unique solution satisfying the initial condition
is

~x(t) = −et
(

sin t
− cos t

)
=

(
−et sin t
et cos t

)
.

Phase Plane Portraits for Homogeneous, Linear Systems. Stability of Equilibria.
You will not be asked to draw phase plane portraits on the exam. However, you should still
be able to recognize the phase plane portrait of a given system. For instance, you may be
asked to match several systems with their phase plane portraits.

• 6.2, 6.4: Phase Planes for Systems with Real Eigenvalues.

5. Sketch several representative trajectories in the phase plane for the system in
Problem 1 above. Draw the separatrix, and give the stability classification of the
equilibrium at (0, 0).
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Solution. The separatrices are the straight-line trajectories along the eigenvec-

tors
(

1
1

)
and

(
2
3

)
. Since both eigenvalues are negative, these trajectories are

approaching the origin. The equilibrium point (0, 0) is thus a stable, attract-
ing node. The rest of the trajectories will typically start off parallel to the line(

x
y

)
= t

(
2
3

)
(heading toward the origin) – since

(
2
3

)
is the eigenvector for

the eigenvalue −2 of largest absolute value – and then they will curve parallel to

the line
(

x
y

)
= t

(
1
1

)
and continue heading toward the origin.

6. In Problem 2, above, is the equilibrium at (0, 0) stable or unstable? Justify.

Solution. The stability of the equilibrium point at (0, 0) is determined by the
sign of the eigenvalues of the matrix A. Since the matrix A has only one eigenvalue
λ = 2 > 0, the equilibrium is unstable (it would be stable if λ < 0). Here, (0, 0)
is called a degenerate node.

• 6.3, 6.4: Phase Planes for Systems with Complex Eigenvalues.

7. For Problems 3 and 4, above, determine the stability of the equilibrium point
(0, 0), and describe the behavior of the trajectories near the origin.

Solution. 3) Since the eigenvalues are ±2i, which are pure imaginary, the equi-
librium point (0, 0) will be a center equilibrium, which is neutrally stable. The
trajectories will be ellipses centered at the origin.

4) Since the eigenvalues are 1 ± i, with α = 1 > 0, the equilibrium point (0, 0)
will be unstable. The trajectories will be repelling spirals.

Solving Nonhomogeneous, Linear Systems (6.7).

8. Find a particular solution to ~x′ =
(

1 4
1 1

)
~x +

(
0

10 sin t

)
.

Solution. We use the method of undetermined coefficients. Thus we guess

~xp =
(

A cos t + B sin t
C cos t + D sin t

)
, so then~x′p =

(
−A sin t + B cos t
−C sin t + D cos t

)
.

We now set

~x′p =
(

1 4
1 1

)
~xp +

(
0

10 sin t

)
=

(
(A + 4C) cos t + (B + 4D) sin t

(A + C) cos t + (B + D + 10) sin t

)
,

which yields 4 equations in A, B, C,D once we equate the coefficients of cos t and sin t
on the left and right in each component of the vector. We get

−A = B + 4D

B = A + 4C

−C = B + D + 10

D = A + C,
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which we can solve to get A = 4, B = −8, C = −3, D = 1. Thus a particular solution
is

~xp(t) =
(

4 cos t− 8 sin t
−3 cos t + sin t

)
.

9. Find a particular solution to ~x′ =
(

1 4
1 1

)
~x +

(
t−3

−t−2

)
, t > 0.

Solution. We use variation of parameters since the components of the forcing term
are not polynomials, exponentials or sin or cos functions. We first have to solve the
homogeneous system to find the fundamental matrix F . The eigenvalues of the given

matrix are λ1 = −1 and λ2 = 3, and the eigenvectors are ~v1 =
(

2
−1

)
and ~v2 =

(
2
1

)
.

The columns of the fundamental matrix F will be eλit~vi for i = 1, 2, and thus we get

F =

(
2e−t 2e3t

−e−t e3t

)
.

We now guess ~xp(t) = F~v where ~v =
(

v1(t)
v2(t)

)
. The variation of parameters formula

(formula (13) on p. 416) says

~xp(t) = F

∫
F−1

(
t−3

−t−2

)
dt.

We first calculate

F−1 =
1

4e2t

(
e3t −2e3t

e−t 2e−t

)
=

(
et/4 et/2

e−3t/4 e−3t/2

)
.

Now vecv =
∫

F−1 ~f dt gives

v1 =

∫
(t−3 + 2t−2)et/4 dt, and v2 =

∫
(t−3 − 2t−2)e−3t/4 dt.

(We will not try to integrate these here. However, on the exam you will be expected
to perform the integration at this stage, but the problem will be carefully written so
that the integration is actually possible.) Finally, for our particular solution, we have

~xp(t) = F~v =

(
2e−t

∫
(t−3 + 2t−2)et/4 dt + 2e3t

∫
(t−3 − 2t−2)e−3t/4 dt

−e−t
∫

(t−3 + 2t−2)et/4 dt + e3t
∫

(t−3 − 2t−2)e−3t/4 dt

)
.

Nonlinear Systems of DE’s (7.1-7.2).

10. Find all equilibrium points of the nonlinear system

x′ = −2x + 3y + xy
y′ = −x + y − 2xy2 ,
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and calculate the linearized system at each. Use the eigenvalues and eigenvectors of
the Jacobian matrices to determine whether each equilibrium point is stable/unstable
and to describe the behavior of the nearby trajectories. (For fun, you might also try
to sketch the phase plane portrait.)

Solution. To find the equilibrium points we set x′ = −2x + 3y + xy = 0 and y′ =
−x + y − 2xy2 = 0 and solve for x and y. From the first equation, we get x = −3y

y−2
.

Substituting this in for x in the second equation, and then multiplying by (y−2) gives
y(6y2 + y + 1) = 0. The quadratic factor has only complex roots, so the only real
solution occurs when y = 0, and then also x = 0. Thus (0, 0) is the only equilibrium
point. The linearization at (0, 0) is the system ~u′ = J(0, 0)~u where

J(x, y) =

(
fx fy

gx gy

)
=

(
−2 + y 3 + x
−1− 2y2 1− 4xy

)
.

Thus J(0, 0) =
(

−2 3
−1 1

)
. The eigenvalues are λ = −1

2
± i

√
3

2
. Since α = −1/2 < 0, the

equilibrium is stable and the trajectories spiral toward the origin.

11. Same as 10, but for the system
x′ = 1− xy
y′ = x− y3 ,

Solution. To find the equilibrium points we set x′ = 1− xy = 0 and y′ = x− y3 = 0
and solve for x and y. From the first equation, we get x = 1

y
. Substituting this in for

x in the second equation, and then simplifying yields y4 = 1. Thus y = ±1 and then
x = 1/y = ±1. The two equilibrium points are (1, 1) and (−1,−1).

The linearization at (1, 1) is the system ~u′ = J(1, 1)~u where

J(x, y) =

(
fx fy

gx gy

)
=

(
−y −x
1 −3y2

)
.

Thus J(1, 1) =
(

−1 − 1
1 − 3

)
. The only eigenvalue is λ = −2, and an eigenvector is

~v =
(

1
1

)
. Since λ = −2 < 0, the equilibrium is stable and the trajectories near (1, 1)

will travel parallel to ~v and then curve around as they approach (1, 1). The phase
plane portrait near (1, 1) should look roughly like a degenerate node (as in problems
2, 6 above).

The linearization at (−1,−1) is the system ~u′ = J(−1,−1)~u where J(−1,−1) =(
1 1

1 − 3

)
. The eigenvalues are λ1 = −1 −

√
5 < 0 and λ2 = −1 +

√
5 > 0. The

corresponding eigenvectors are ~v1 =
(

1

−2 +
√

5

)
and ~v2 =

(
1

−2−
√

5

)
. Since the eigen-

values have opposite signs, (−1,−1) is an unstable saddle node. The trajectories near
(−1,−1) will travel towards (−1. − 1) parallel to ~v1 and then curve and travel away
from (−1,−1) parallel to ~v2.
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