
Math 108B - Take-Home Midterm Solutions
1. The matrix (

−2 11
4 2

)
represents a linear transformation T : R2 → R2 with respect to the basis {v1, v2} where
v1 = (3, 1) and v2 = (0, 2). Find the matrix of T with respect to the basis {w1, w2}
where w1 = (1, 1) and w2 = (−1, 1).

Solution. We must multiply the given matrix on the right by the change of basis
matrix C whose columns are the coordinates of the new basis w1, w2 in the old basis
{v1, v2}, and we must multiply it on the left by the change of basis matrix C−1 whose
columns are the coordinates of v1, v2 in the new basis {w1, w2}. To find C, note that

w1 = (1, 1) =
1

3
(3, 1) +

1

3
(0, 2) =

1

3
v1 +

1

3
v2

and

w2 = (−1, 1) = −1

3
(3, 1) +

2

3
(0, 2) = −1

3
v1 +

2

3
v2.

Hence

C =

(
1/3 −1/3
1/3 2/3

)
.

To get C−1, note
v1 = (3, 1) = (2, 2)− (−1, 1) = 2w1 − w2

and
v2 = (0, 2) = (1, 1) + (−1, 1) = w1 + w2.

Hence

C−1 =

(
2 1

−1 1

)
,

and the matrix for T in the new basis is

C−1AC =

(
2 1

−1 1

) (
−2 11

4 2

) (
1/3 −1/3
1/3 2/3

)
=

(
8 16

−1 −8

)

2. Consider the vector space M2(C) of all 2 × 2 matrices with complex entries. If A =(
a b
c d

)
∈ M2(C), then A∗ denotes the conjugate transpose of A, that is the matrix

A∗ = ĀT =

(
a c

b d

)
.
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(a) For A, B ∈ M2(C), show that 〈A, B〉 = tr(AB∗) defines an inner product.

Solution. Let A =

(
a b
c d

)
and B =

(
a′ b′

c′ d′

)
. Then

〈A, B〉 = tr(AB∗) = aa′ + bb′ + cc′ + dd′.

Since this is the same formula as for the usual dot product on C4, we know from
Lecture and Homework 2 that this is an inner product.

(b) Find an orthonormal basis for M2(C) with respect to this inner product.

Solution. It is clear that {E11, E12, E21, E22} is a basis for M2(C), where Eij

denotes the matrix with 1 in entry ij, and 0’s in all other entries. If we apply
the Gram-Schmidt process to this basis, nothing changes, so it must be an or-
thonormal basis. Of course, in performing the Gram-Schmidt process we already
see that the inner product of each of these basis vectors with the others is 0 and
with itself is 1. So we could also just check directly that these matrices are or-
thonormal. Yet another way to see this is to note that these matrices correspond
to the standard basis of C4, which is orthonormal with respect to the usual dot
product.

(c) Let U ⊆ M2(C) be the subspace of all matrices A with tr(A) = 0. Find an
orthonormal basis for U and describe U⊥.

Solution. A basis for U is easily seen to be {E11 − E22, E21, E12}, and these are
orthogonal and the last two are normal. Then we only need to rescale the first
matrix to give it norm 1. Currently its norm is

√
2, so we get an orthonormal

basis {E11/
√

2−E22/
√

2, E21, E22} for U . We know U⊥ must be one-dimensional
since dim U⊥ = dim V − dim U . Thus U⊥ will consist of all scalar multiples of a
single matrix in U⊥. One easily sees that the identity matrix I2 is in U⊥, since
if A ∈ U , 〈A, I2〉 = tr(AI∗2 ) = tr(A) = 0 since A ∈ U . Hence U⊥ consists of all
scalar multiples of I2, and thus of all scalar matrices in M2(C).

3. Let V be an inner product space. If U is a subspace of V and PU denotes the orthogonal
projection onto U , we can define the reflection in U to be the linear transformation
RU : V → V given by RU(v) = 2PU(v)− v for all v ∈ V .

(a) Show that R2
U = IdV .

(b) Show that
〈RU(v), RU(w)〉 = 〈v, w〉 for all v, w ∈ V.

Hint: Recall that PU(v)− v ∈ U⊥ for any v ∈ V .

Solution. (a) For v ∈ V , R2
U(v) = RU(2PU(v)−v) = 2PU(2PU(v)−v)−(2PU(v)−v) =

4P 2
U(v)− 4PU(v) + v = v, since P 2

U = PU for any orthogonal projection.
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(b)

〈RU(v), RU(w)〉 = 〈2PU(v)− v, 2PU(w)− w〉
= 〈PU(v)− v, 2PU(w)− w〉+ 〈PU(v), 2PU(w)− w〉
= 2〈PU(v)− v, PU(w)〉 − 〈PU(v)− v, w〉

+〈PU(v), PU(w)− w〉+ 〈PU(v), PU(w)〉
= −〈PU(v)− v, w〉+ 〈PU(v), PU(w)〉 (by hint)

= 〈PU(v), PU(w)− w〉+ 〈v, w〉
= 〈v, w〉 (again by hint)

4. Let V be an inner product space, and let U and W be subspaces of U . Show that

(U ∩W )⊥ = U⊥ + W⊥

and
(U + W )⊥ = U⊥ ∩W⊥.

(Hint: Use one to prove the other.)

Solution. We’ll show the second identity first. We first show (U + W )⊥ ⊆ U⊥ ∩W⊥.
Let v ∈ (U + W )⊥. Since U ⊆ U + W and 〈v, u〉 = 0 for all u ∈ U + W , 〈v, u〉 = 0 for
all u ∈ U . Thus v ∈ U⊥. Similarly, v ∈ W⊥, and hence v ∈ U⊥ ∩W⊥. For the reverse
inclusion, suppose v ∈ U⊥ ∩W⊥, and let u + w ∈ U + W for u ∈ U and w ∈ W . Then
〈v, u + w〉 = 〈v, u〉+ 〈v, w〉 = 0. Hence v ∈ (U + W )⊥.

We now use the second identity to prove the first. Since the second identity is true for
any pair of subspaces of V , we can replace U with U⊥ and W with W⊥ to get

(U⊥ + W⊥)⊥ = (U⊥)⊥ ∩ (W⊥)⊥ = U ∩W

since (U⊥)⊥ = U and similarly for W . Now take the orthogonal complement of both
sides to get U⊥ + W⊥ = (U ∩W )⊥ as desired.
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