Math 108B - Take-Home Midterm Solutions

1. The matrix

$$
\left(\begin{array}{rr}
-2 & 11 \\
4 & 2
\end{array}\right)
$$

represents a linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ with respect to the basis $\left\{v_{1}, v_{2}\right\}$ where $v_{1}=(3,1)$ and $v_{2}=(0,2)$. Find the matrix of T with respect to the basis $\left\{w_{1}, w_{2}\right\}$ where $w_{1}=(1,1)$ and $w_{2}=(-1,1)$.
Solution. We must multiply the given matrix on the right by the change of basis matrix C whose columns are the coordinates of the new basis w_{1}, w_{2} in the old basis $\left\{v_{1}, v_{2}\right\}$, and we must multiply it on the left by the change of basis matrix C^{-1} whose columns are the coordinates of v_{1}, v_{2} in the new basis $\left\{w_{1}, w_{2}\right\}$. To find C, note that

$$
w_{1}=(1,1)=\frac{1}{3}(3,1)+\frac{1}{3}(0,2)=\frac{1}{3} v_{1}+\frac{1}{3} v_{2}
$$

and

$$
w_{2}=(-1,1)=-\frac{1}{3}(3,1)+\frac{2}{3}(0,2)=-\frac{1}{3} v_{1}+\frac{2}{3} v_{2}
$$

Hence

$$
C=\left(\begin{array}{rr}
1 / 3 & -1 / 3 \\
1 / 3 & 2 / 3
\end{array}\right)
$$

To get C^{-1}, note

$$
v_{1}=(3,1)=(2,2)-(-1,1)=2 w_{1}-w_{2}
$$

and

$$
v_{2}=(0,2)=(1,1)+(-1,1)=w_{1}+w_{2} .
$$

Hence

$$
C^{-1}=\left(\begin{array}{rr}
2 & 1 \\
-1 & 1
\end{array}\right)
$$

and the matrix for T in the new basis is

$$
\begin{aligned}
C^{-1} A C & =\left(\begin{array}{rr}
2 & 1 \\
-1 & 1
\end{array}\right)\left(\begin{array}{rr}
-2 & 11 \\
4 & 2
\end{array}\right)\left(\begin{array}{rr}
1 / 3 & -1 / 3 \\
1 / 3 & 2 / 3
\end{array}\right) \\
& =\left(\begin{array}{rr}
8 & 16 \\
-1 & -8
\end{array}\right)
\end{aligned}
$$

2. Consider the vector space $M_{2}(\mathbb{C})$ of all 2×2 matrices with complex entries. If $A=$ $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in M_{2}(\mathbb{C})$, then A^{*} denotes the conjugate transpose of A, that is the matrix

$$
A^{*}=\bar{A}^{T}=\left(\begin{array}{cc}
\bar{a} & \bar{c} \\
\bar{b} & \bar{d}
\end{array}\right)
$$

(a) For $A, B \in M_{2}(\mathbb{C})$, show that $\langle A, B\rangle=\operatorname{tr}\left(A B^{*}\right)$ defines an inner product.

Solution. Let $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ and $B=\left(\begin{array}{ll}a^{\prime} & b^{\prime} \\ c^{\prime} & d^{\prime}\end{array}\right)$. Then

$$
\langle A, B\rangle=\operatorname{tr}\left(A B^{*}\right)=a \overline{a^{\prime}}+b \overline{b^{\prime}}+c \overline{c^{\prime}}+d \overline{d^{\prime}}
$$

Since this is the same formula as for the usual dot product on \mathbb{C}^{4}, we know from Lecture and Homework 2 that this is an inner product.
(b) Find an orthonormal basis for $M_{2}(\mathbb{C})$ with respect to this inner product.

Solution. It is clear that $\left\{E_{11}, E_{12}, E_{21}, E_{22}\right\}$ is a basis for $M_{2}(\mathbb{C})$, where $E_{i j}$ denotes the matrix with 1 in entry $i j$, and 0 's in all other entries. If we apply the Gram-Schmidt process to this basis, nothing changes, so it must be an orthonormal basis. Of course, in performing the Gram-Schmidt process we already see that the inner product of each of these basis vectors with the others is 0 and with itself is 1 . So we could also just check directly that these matrices are orthonormal. Yet another way to see this is to note that these matrices correspond to the standard basis of \mathbb{C}^{4}, which is orthonormal with respect to the usual dot product.
(c) Let $U \subseteq M_{2}(\mathbb{C})$ be the subspace of all matrices A with $\operatorname{tr}(A)=0$. Find an orthonormal basis for U and describe U^{\perp}.
Solution. A basis for U is easily seen to be $\left\{E_{11}-E_{22}, E_{21}, E_{12}\right\}$, and these are orthogonal and the last two are normal. Then we only need to rescale the first matrix to give it norm 1. Currently its norm is $\sqrt{2}$, so we get an orthonormal basis $\left\{E_{11} / \sqrt{2}-E_{22} / \sqrt{2}, E_{21}, E_{22}\right\}$ for U. We know U^{\perp} must be one-dimensional since $\operatorname{dim} U^{\perp}=\operatorname{dim} V-\operatorname{dim} U$. Thus U^{\perp} will consist of all scalar multiples of a single matrix in U^{\perp}. One easily sees that the identity matrix I_{2} is in U^{\perp}, since if $A \in U,\left\langle A, I_{2}\right\rangle=\operatorname{tr}\left(A I_{2}^{*}\right)=\operatorname{tr}(A)=0$ since $A \in U$. Hence U^{\perp} consists of all scalar multiples of I_{2}, and thus of all scalar matrices in $M_{2}(\mathbb{C})$.
3. Let V be an inner product space. If U is a subspace of V and P_{U} denotes the orthogonal projection onto U, we can define the reflection in U to be the linear transformation $R_{U}: V \rightarrow V$ given by $R_{U}(v)=2 P_{U}(v)-v$ for all $v \in V$.
(a) Show that $R_{U}^{2}=I d_{V}$.
(b) Show that

$$
\left\langle R_{U}(v), R_{U}(w)\right\rangle=\langle v, w\rangle \text { for all } v, w \in V
$$

Hint: Recall that $P_{U}(v)-v \in U^{\perp}$ for any $v \in V$.
Solution. (a) For $v \in V, R_{U}^{2}(v)=R_{U}\left(2 P_{U}(v)-v\right)=2 P_{U}\left(2 P_{U}(v)-v\right)-\left(2 P_{U}(v)-v\right)=$ $4 P_{U}^{2}(v)-4 P_{U}(v)+v=v$, since $P_{U}^{2}=P_{U}$ for any orthogonal projection.
(b)

$$
\begin{aligned}
\left\langle R_{U}(v), R_{U}(w)\right\rangle= & \left\langle 2 P_{U}(v)-v, 2 P_{U}(w)-w\right\rangle \\
= & \left\langle P_{U}(v)-v, 2 P_{U}(w)-w\right\rangle+\left\langle P_{U}(v), 2 P_{U}(w)-w\right\rangle \\
= & 2\left\langle P_{U}(v)-v, P_{U}(w)\right\rangle-\left\langle P_{U}(v)-v, w\right\rangle \\
& +\left\langle P_{U}(v), P_{U}(w)-w\right\rangle+\left\langle P_{U}(v), P_{U}(w)\right\rangle \\
= & -\left\langle P_{U}(v)-v, w\right\rangle+\left\langle P_{U}(v), P_{U}(w)\right\rangle \text { (by hint) } \\
= & \left\langle P_{U}(v), P_{U}(w)-w\right\rangle+\langle v, w\rangle \\
= & \langle v, w\rangle \quad \text { again by hint) }
\end{aligned}
$$

4. Let V be an inner product space, and let U and W be subspaces of U. Show that

$$
(U \cap W)^{\perp}=U^{\perp}+W^{\perp}
$$

and

$$
(U+W)^{\perp}=U^{\perp} \cap W^{\perp}
$$

(Hint: Use one to prove the other.)
Solution. We'll show the second identity first. We first show $(U+W)^{\perp} \subseteq U^{\perp} \cap W^{\perp}$. Let $v \in(U+W)^{\perp}$. Since $U \subseteq U+W$ and $\langle v, u\rangle=0$ for all $u \in U+W,\langle v, u\rangle=0$ for all $u \in U$. Thus $v \in U^{\perp}$. Similarly, $v \in W^{\perp}$, and hence $v \in U^{\perp} \cap W^{\perp}$. For the reverse inclusion, suppose $v \in U^{\perp} \cap W^{\perp}$, and let $u+w \in U+W$ for $u \in U$ and $w \in W$. Then $\langle v, u+w\rangle=\langle v, u\rangle+\langle v, w\rangle=0$. Hence $v \in(U+W)^{\perp}$.
We now use the second identity to prove the first. Since the second identity is true for any pair of subspaces of V, we can replace U with U^{\perp} and W with W^{\perp} to get

$$
\left(U^{\perp}+W^{\perp}\right)^{\perp}=\left(U^{\perp}\right)^{\perp} \cap\left(W^{\perp}\right)^{\perp}=U \cap W
$$

since $\left(U^{\perp}\right)^{\perp}=U$ and similarly for W. Now take the orthogonal complement of both sides to get $U^{\perp}+W^{\perp}=(U \cap W)^{\perp}$ as desired.

